The Python Library Reference
Release 2.6

Guido van Rossum

Fred L. Drake, Jr., editor

October 02, 2008

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
Built-in Functions 5
Non-essential Built-in Functions 21
Built-in Constants 23
4.1 Constants added by the sitemodule L oo, 23
Built-in Objects 25
Built-in Types 27
6.1 Truth Value Testing o L o e e 27
6.2 Boolean Operations — and, Or, NOL« v v v v v v bt e e e e e e e e e e 27
6.3 ComPpariSOnS v v v v e 28
6.4 Numeric Types — int, float, 1ong, Complex v v v v v v v v v v i e e e e e e 28
6.5 Tterator Types e 31
6.6 Sequence Types — str,unicode, list, tuple, buffer,xrange 32
6.7 SetTypes — set, frozenset o v v i i v i i e e e e e e e e e e e e e 40
6.8 Mapping Types — dict« o o it e e e e e e e e 42
6.9 FileObjects o e e e e e e e e 44
6.10 Context Manager Types o L o i e e e e e e 47
6.11 Other Built-in Types o L e e e 48
6.12 Special Atributes o e e e e e e e e e e e e e e e e e e e 50
Built-in Exceptions 51
String Services 57
8.1 string— Common String OPerations ottt 57
8.2 re — Regular expression operations e e e e e e e 66
8.3 struct — Interpret strings as packed binarydata oL 80
84 difflib— Helpersforcomputingdeltas 83
8.5 StringIO—Readandwritestringsasfiles 92
8.6 cStringIO— Faster versionof StringIO vttt 92
8.7 textwrap—Textwrappingandfilling 93
8.8 codecs — Codecregistry and base classes o 95
8.9 unicodedata—Unicode Database 107
8.10 stringprep — Internet String Preparation Lo 109
8.11 fpformat — Floating point conversions o i 110
Data Types 111
9.1 datetime —Basicdateandtimetypes e 111
9.2 calendar — General calendar-related functions 132
9.3 collections — High-performance container datatypes 134
94 heapg—Heapqueuealgorithm 143

9.5 bisect — Array bisection algorithm oL 145
9.6 array — Efficient arrays of numeric values e 146
9.7 sets — Unordered collections of unique elements 149
9.8 sched—Eventscheduler 152
9.9 mutex — Mutual exclusion supportl 153
9.10 gqueue — A synchronized queue class L 154
9.11 weakref —Weakreferences e 156
9.12 UserDict — Class wrapper for dictionary objects 159
9.13 UserList — Class wrapper for listobjects 160
9.14 UserString— Class wrapper for string objects 161
9.15 types—Names for built-intypes L e 161
9.16 new — Creation of runtime internal objects oo 163
9.17 copy — Shallow and deep copy Operations v v v v v v v v it e 164
9.18 pprint —Datapretty printero e e e e e e e e 165
9.19 repr — Alternate repr () implementation oo 168
10 Numeric and Mathematical Modules 171
10.1 numbers — Numeric abstractbaseclasses 171
10.2 math — Mathematical functions 174
10.3 cmath — Mathematical functions for complex numbers 177
10.4 decimal — Decimal fixed point and floating point arithmetic 179
10.5 fractions—Rationalnumbers o 200
10.6 random — Generate pseudo-random numbers oL oLl 201
10.7 itertools — Functions creating iterators for efficient looping 205
10.8 functools — Higher order functions and operations on callable objects 214
10.9 operator — Standard operators as functions 215
11 File and Directory Access 223
11.1 os.path — Common pathname manipulations 223
11.2 fileinput — Iterate over lines from multiple input streams 226
11.3 stat — Interpreting stat () results o e e e 227
11.4 statvfs — Constants used with os.statvEis () 229
11.5 filecmp — File and Directory Comparisons 230
11.6 tempfile — Generate temporary files and directories 231
11.7 glob — Unix style pathname pattern expansion 233
11.8 fnmatch — Unix filename pattern matching 234
11.9 linecache —Randomaccesstotextlines 235
11.10 shutil — High-level file operations 235
11.11 dircache — Cached directory listings 238
11.12 macpath — Mac OS 9 path manipulation functions 239
12 Data Persistence 241
12.1 pickle — Python object serialization 241
122 cPickle—Afasterpickle e e e e e e 250
12.3 copy_reg— Register pickle support functions 251
12.4 shelve — Python object persistence o v v v v v i v it e e e e 251
12.5 marshal — Internal Python object serialization 253
12.6 anydbm — Generic access to DBM-style databases 0., 254
12.7 whichdb — Guess which DBM module created a database 255
12.8 dbm — Simple “database” interface oL e 256
12.9 gdbm — GNU’s reinterpretationofdbm oo 256
12.10 dbhash — DBM-style interface to the BSD database library 257
12.11 bsddb — Interface to Berkeley DB library 258
12.12 dumbdbm — Portable DBM implementation 261
12.13 sglite3 — DB-API 2.0 interface for SQLite databases 262
13 Data Compression and Archiving 277
13.1 zlib — Compression compatible withgzip, 277
13.2 gzip—Supportforgzipfiles 279

13.3 bz2 — Compression compatible withbzip2 280

134 zipfile— Work withZIParchives i 282
13.5 tarfile —Readand write tararchivefiles L. 286
14 File Formats 295
14.1 csv—CSV File Reading and Writing it i it 295
142 ConfigParser — Configuration file parser 301
143 robotparser —Parserforrobots.txt Lo 306
144 netrc—netrcfile processingo 307
145 xdrlib—Encode anddecode XDRdata, 308
14.6 plistlib — Generate and parse Mac OS X .plistfiles. 310
15 Cryptographic Services 313
15.1 hashlib — Secure hashes and message digests 313
15.2 hmac — Keyed-Hashing for Message Authentication 314
15.3 md5 — MDS5 message digest algorithm L o o 315
154 sha — SHA-1 message digest algorithm 316
16 Generic Operating System Services 317
16.1 os — Miscellaneous operating system interfaces 317
16.2 io— Core tools for working with streams 337
16.3 time — Time access and CONVEISIONS o v v v vt v v it e e e e e 343
16.4 optparse — More powerful command line option parser 348
16.5 getopt — Parser for command lineoptions o 372
16.6 logging — Logging facility for Python 374
16.7 getpass — Portable passwordinput oL 405
16.8 curses — Terminal handling for character-cell displays 406
16.9 curses.textpad — Text input widget for curses programs 421
16.10 curses.wrapper — Terminal handler for curses programs 422
16.11 curses.ascii — Utilities for ASCII characters 422
16.12 curses.panel — A panel stack extension forcurses. L. 424
16.13 plat form — Access to underlying platform’s identifying data. 426
16.14 errno — Standard errno system symbolso oo 428
16.15 ctypes — A foreign function library for Python. 434
17 Optional Operating System Services 465
17.1 select — Waiting for /O completion 465
17.2 threading — Higher-level threading interface 469
17.3 thread — Multiple threads of control 4717
17.4 dummy_threading — Drop-in replacement for the threadingmodule 479
17.5 dummy_thread — Drop-in replacement for the threadmodule 479
17.6 multiprocessing — Process-based “threading” interface 479
177 mmap — Memory-mapped file support 526
17.8 readline — GNUreadlineinterface 529
179 rlcompleter — Completion function for GNU readline 531
18 Interprocess Communication and Networking 533
18.1 subprocess — Subprocess managementol L e e 533
18.2 socket — Low-level networking interface 0o, 539
18.3 ss1 — SSL wrapper for socketobjects L oL 548
18.4 signal — Set handlers for asynchronous events 555
18.5 popen2 — Subprocesses with accessible [/O streams 558
18.6 asyncore — Asynchronous sockethandler 560
18.7 asynchat — Asynchronous socket command/response handler 563
19 Internet Data Handling 567
19.1 email — Anemail and MIME handling package 567
19.2 json—JSONencoderanddecoder 594

193 mailcap —Mailcap filehandling L 598

20

21

22

19.4 mailbox — Manipulate mailboxes in various formats,
19.5 mhlib—Accessto MHmailboxes e
19.6 mimetools — Tools for parsing MIME messages
19.7 mimetypes — Map filenames to MIME types L oo
19.8 MimeWriter — Generic MIME file writer
19.9 mimify — MIME processing of mail messages
19.10 multifile — Support for files containing distinct parts
19.11 r£fc822 — Parse RFC 2822 mail headers
19.12 base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings
19.13 binhex — Encode and decode binhex4 files,
19.14 binascii — Convert between binaryand ASCIT
19.15 quopri — Encode and decode MIME quoted-printabledata
19.16 uu — Encode and decode uuencode files L Lo

Structured Markup Processing Tools

20.1 HTMLParser — Simple HTML and XHTML parser
20.2 sgmllib— Simple SGML parser o v v i i it i e e e e e e e
20.3 htmllib — A parser for HTML documents
204 htmlentitydefs — Definitions of HTML general entities
20.5 xml.parsers.expat — Fast XML parsingusing Expat
20.6 xml.dom — The Document Object Model APT
20.7 xml.dom.minidom— Lightweight DOM implementation
20.8 xml.dom.pulldom— Support for building partial DOM trees
209 xml.sax— Supportfor SAX2 parsers.o e e e
20.10 xml.sax.handler — Base classes for SAX handlers
20.11 xml.sax.saxutils —SAXUtilities i
20.12 xml.sax.xmlreader — Interface for XML parsers
20.13 xml.etree.ElementTree — The ElementTree XML APl

Internet Protocols and Support

21.1 webbrowser — Convenient Web-browser controller
21.2 cgi — Common Gateway Interface support. e
21.3 cgitb — Traceback manager for CGIscripts
21.4 wsgiref — WSGI Utilities and Reference Implementation
21.5 urllib — Open arbitrary resourcesby URL
21.6 urllib2 — extensible library foropening URLs
217 httplib—HTTP protocolclient ettt e et
21.8 ftplib—FTPprotocolclient e
219 poplib —POP3 protocolclient L
21.10 imaplib —IMAP4 protocol client
21.11 nntplib — NNTP protocolclient i e
21.12 smtplib — SMTPprotocolclient e
21.13 smtpd — SMTP Server o e e e e e
21.14 telnetlib—Telnetclient e
21.15 uuid — UUID objects according to RFC 4122
21.16 urlparse — Parse URLs into componentso vt v i i
21.17 SocketServer — A framework for network servers oL
21.18 BaseHTTPServer —Basic HTTPserver
21.19 SimpleHTTPServer — Simple HTTP requesthandler
21.20 CGIHTTPServer — CGl-capable HTTPrequesthandler
21.21 cookielib — Cookie handling for HTTP clients
21.22 Cookie — HTTP state management« v v v v v v v v e e e e e e e e e e e e o
21.23 xmlrpclib — XML-RPCclientaccess v v v v i v it ittt e e
21.24 SimpleXMLRPCServer — Basic XML-RPCserver
21.25 DocXMLRPCServer — Self-documenting XML-RPCserver

Multimedia Services
22.1 audioop — Manipulateraw audiodatao Lo
22.2 imageop — Manipulate raw image datao

635
635
637
639
641
641
649
658
663
663
664
668
669
673

679
679
681
687
688
695
701
710
714
717
719
724
728
731
732
734
737
740
747
749
750
751
759
762
769
772

23

24

25

26

27

28

22.3 aifc—Readand write AIFFand AIFCfiles
224 sunau—Readand write Sun AU files Lo
22.5 wave —Read and write WAV files L. e
22.6 chunk —Read IFFchunkeddata
227 colorsys — Conversions between colorsystems
22.8 imghdr — Determine the type of animage
22.9 sndhdr — Determine type of soundfile
22.10 ossaudiodev — Access to OSS-compatible audio devices

Internationalization
23.1 gettext — Multilingual internationalization Services v v v v v v v ..
23.2 locale — Internationalization SEIVICES v v v v v v v v v e e e e e e e e e e

Program Frameworks
24.1 cmd — Support for line-oriented command interpreterso L.
242 shlex — Simple lexical analysis o o i e e e e

Graphical User Interfaces with Tk

25.1 Tkinter — Pythoninterfaceto Tcl/Tk
25.2 Tix —Extensionwidgetsfor Tk L
253 ScrolledText — Scrolled Text Widget
254 turtle —Turtle graphics for Tk L
255 IDLE
25.6 Other Graphical User Interface Packages

Development Tools

26.1 pydoc — Documentation generator and online help system
26.2 doctest — Testinteractive Pythonexamples
26.3 unittest — Unittesting framework o
26.4 2to3 - Automated Python 2 to 3 code translation L oL
26.5 test — Regression tests package forPython. o oo
26.6 test.test_support — Utility functions fortests

Debugging and Profiling

27.1 bdb — Debugger framework
27.2 pdb — The Python Debugger
27.3 Debugger Commands it e e e e e e e e e e e e e e e
274 How It Works o e
27.5 ThePython Profilers
27.6 hotshot — High performance logging profiler
2777 timeit — Measure execution time of small code snippets
27.8 trace — Trace or track Python statement execution

Python Runtime Services

28.1 sys — System-specific parameters and functions oL
28.2 __builtin__ —Built-inobjects e e e
28.3 future_builtins —Python3builtins o ..
28.4 _ _main__ — Top-level script environment oL
28.5 warnings — Warningcontrol Lo
28.6 contextlib — Utilities for with-statement contexts. o oo vt .t ..
28.7 abc— Abstract Base Classes o i i e e e e
28.8 atexit —Exithandlers e
28.9 traceback — Print or retrieve a stack traceback oL o oo
28.10 _ future_ — Future statement definitions
28.11 gc — Garbage Collector interface
28.12 inspect — Inspect live objects oL e e e
28.13 site — Site-specific configurationhook Lo L oo
28.14 user — User-specific configurationhook o oL
28.15 fpectl — Floating point exceptioncontrol L 0oL

807
807
809

813
813
823
827
828
852
855

857
857
858
879
890
891
893

897
897
900
902
904
905
912
913
916

919
919
927
927
928
928
932
933
936
937
940
941
943
948
949
950

29

30

31

32

33

34

35

36

Custom Python Interpreters
29.1 code — Interpreter base classeso e e e e e
29.2 codeop — Compile Pythoncode

Restricted Execution
30.1 rexec — Restricted execution framework L o o
30.2 Bastion — Restricting accessto objects oL oo

Importing Modules

31.1 imp— Accessthe importinternals L e
312 imputil —Importutilities oL
313 zipimport — Import modules from Zip archives
31.4 pkgutil — Package extensionutility L o
31.5 modulefinder —Find modulesused by ascript
31.6 runpy — Locating and executing Pythonmodules

Python Language Services

32.1 parser — Access Pythonparsetrees 0 i i i i e e
32.2 Abstract Syntax Trees o o o i e e e e e e e e e e e e e e e
32.3 symtable — Access to the compiler’s symbol tables
32.4 symbol — Constants used with Python parse trees
32.5 token — Constants used with Python parsetrees
32.6 keyword — Testing for Python keywords Lo
327 tokenize — Tokenizer for Pythonsource,
32.8 tabnanny — Detection of ambiguous indentationo
32.9 pyclbr — Python class browser support oL oL
32.10 py_compile — Compile Python source files
32.11 compileall — Byte-compile Python libraries
32.12 dis — Disassembler for Python bytecode
32.13 pickletools — Tools for pickle developers.
32.14 distutils — Building and installing Pythonmodules

Python compiler package

33.1 Thebasicinterface L e
332 LImitations e e e e e e e e e
33.3 Python Abstract Syntax o L i e e e e e e e e e e e
33.4 Using Visitors to Walk ASTS o o e
33.5 Bytecode Generation v v v it e e e e e e e e e e e e e e e e e e

Miscellaneous Services
34.1 formatter — Generic output formatting oo

MS Windows Specific Services

35.1 msilib — Read and write Microsoft Installer files
35.2 msvcrt — Useful routines from the MS VC++ runtime
353 _winreg— Windows regiStry aCCeSS . . .« v v v v v v e e e e e e e e e e e e e e e e e
35.4 winsound — Sound-playing interface for Windows oL

Unix Specific Services

36.1 posix — The most common POSIX systemcalls
36.2 pwd—The password database e
36.3 spwd— The shadow password database
364 grp—Thegroupdatabase L
36.5 crypt — Function to check Unix passwords
36.6 dl — Call C functions in shared objects
36.7 termios —POSIXstylettycontrol e
36.8 tty — Terminal control functions
36.9 pty —Pseudo-terminal utilities Lo
36.10 fcntl —The fcntl () and ioctl () systemcalls L.

953
953
955

957
957
960

963
963
966
969
971
971
973

vi

37

38

39

40

41

36.11 pipes — Interface to shell pipelines
36.12 posixfile — File-like objects with locking support
36.13 resource — Resource usage information Lo
36.14 nis — Interface to Sun’s NIS (Yellow Pages)
36.15 syslog — Unix syslog library routines it
36.16 commands — Utilities for running commands oL

Mac OS X specific services

37.1 ic — Accesstothe Mac OS X Internet Config
37.2 MacOS — Access to Mac OS interpreter features oL
37.3 macostools — Convenience routines for file manipulation
374 findertools — The finder‘s Apple Eventsinterface
37.5 EasyDialogs — Basic Macintosh dialogs
37.6 FrameWork — Interactive application framework,
377 autoGIL — Global Interpreter Lock handling in eventloops
37.8 Mac OS Toolbox Modules e e
379 ColorPicker —Colorselectiondialog

MacPython OSA Modules

38.1 gensuitemodule — Generate OSA stubpackages
38.2 aetools —OSACHENnt sUpport v v v v it e e e e e e e e e
38.3 aepack — Conversion between Python variables and AppleEvent data containers
384 aetypes —AppleEventobjects
38.5 MiniAEFrame — Open Scripting Architecture server support

SGI IRIX Specific Services

39.1 al —Audiofunctionsonthe SGI
39.2 AL —Constants used withtheal module
39.3 cd—CD-ROM access on SGISystems v v v v v v it e e e e e e e e
39.4 f£1 — FORMS library for graphical user interfaces
39.5 FL — Constants used withthe f1 module
39.6 flp — Functions for loading stored FORMS designs
39.7 fm— Font Managerinterface o e e e e e e e e e e e
39.8 gl — Graphics Library interface o e e e e e e
39.9 DEVICE — Constants used withthe gl module
39.10 GL — Constants used withthe gl module,
39.11 imgfile — Support for SGI imglib files o Lo
39.12 jpeg—Read and write JPEG files

SunOS Specific Services
40.1 sunaudiodev — Access to Sun audio hardware
40.2 SUNAUDIODEV — Constants used with sunaudiodev

Undocumented Modules

41.1 Miscellaneous useful utilities e
41.2 Platform specificmodules L
41.3 Multimedia e e e e e e e e e
41.4 Undocumented Mac OS modules e
41.5 Obsolete e e e e e e e e e e e
41.6 SGl-specific Extensionmodules

Glossary

About these documents
B.1 Contributors to the Python Documentation,

History and License
C.1 Historyofthesoftware 0 e e e e e e
C.2 Terms and conditions for accessing or otherwise using Python

vii

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Module Index

Index

viii

The Python Library Reference, Release 2.6

Release 2.6
Date October 02, 2008

While The Python Language Reference (in The Python Language Reference) describes the exact syntax and se-
mantics of the Python language, this library reference manual describes the standard library that is distributed with
Python. It also describes some of the optional components that are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of
contents listed below. The library contains built-in modules (written in C) that provide access to system func-
tionality such as file I/O that would otherwise be inaccessible to Python programmers, as well as modules written
in Python that provide standardized solutions for many problems that occur in everyday programming. Some of
these modules are explicitly designed to encourage and enhance the portability of Python programs by abstracting
away platform-specifics into platform-neutral APIs.

The Python installers for the Windows platform usually includes the entire standard library and often also include
many additional components. For Unix-like operating systems Python is normally provided as a collection of
packages, so it may be necessary to use the packaging tools provided with the operating system to obtain some or
all of the optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual
programs and modules to packages and entire application development frameworks), available from the Python
Package Index.

Contents 1

http://pypi.python.org/pypi
http://pypi.python.org/pypi

The Python Library Reference, Release 2.6

2 Contents

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and
lists. For these types, the Python language core defines the form of literals and places some constraints on their
semantics, but does not fully define the semantics. (On the other hand, the language core does define syntactic
properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without
the need of an import statement. Some of these are defined by the core language, but many are not essential for
the core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this col-
lection. Some modules are written in C and built in to the Python interpreter; others are written in Python and
imported in source form. Some modules provide interfaces that are highly specific to Python, like printing a
stack trace; some provide interfaces that are specific to particular operating systems, such as access to specific
hardware; others provide interfaces that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only available when the underlying
system supports or requires them; yet others are available only when a particular configuration option was chosen
at the time when Python was compiled and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions
and exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as
well as the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored,
you will get a reasonable overview of the available modules and application areas that are supported by the Python
library. Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of
the manual), or look for a specific function, module or term in the index (in the back). And finally, if you enjoy
learning about random subjects, you choose a random page number (see module random) and read a section or
two. Regardless of the order in which you read the sections of this manual, it helps to start with chapter Built-in
Objects, as the remainder of the manual assumes familiarity with this material.

Let the show begin!

The Python Library Reference, Release 2.6

4 Chapter 1. Introduction

CHAPTER
TWO

Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

__import__ (name, [globals, [locals, [fromlist, [level]]]])
Note: This is an advanced function that is not needed in everyday Python programming.

The function is invoked by the import statement. It mainly exists so that you can replace it with another
function that has a compatible interface, in order to change the semantics of the import statement. For
examples of why and how you would do this, see the standard library modules 1hooks and rexec. See
also the built-in module imp, which defines some useful operations out of which you can build your own
__import__ () function.

For example, the statement import spam results in the following call: ___import__ (' spam’,
globals (), locals(), [1, -1); the statement from spam.ham import eggs results in
__import__ (’spam.ham’, globals (), locals(), ["eggs’], -1). Note that even

though locals () and [’ eggs’] are passed in as arguments, the __import__ () function does not set
the local variable named eggs; this is done by subsequent code that is generated for the import statement.
(In fact, the standard implementation does not use its locals argument at all, and uses its globals only to
determine the package context of the import statement.)

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned. This is done for compatibility with the bytecode generated
for the different kinds of import statement; when using import spam.ham.eggs, the top-level package
spam must be placed in the importing namespace, but when using from spam.ham import eggs,
the spam. ham subpackage must be used to find the eggs variable. As a workaround for this behavior, use
getattr () toextract the desired components. For example, you could define the following helper:

def my_import (name) :
mod = __import__ (name)
components = name.split(’.’)
for comp in components[l:]:
mod = getattr (mod, comp)
return mod

level specifies whether to use absolute or relative imports. The default is —1 which indicates both ab-
solute and relative imports will be attempted. O means only perform absolute imports. Positive values
for level indicate the number of parent directories to search relative to the directory of the module call-
ing _ import__ (). Changed in version 2.5: The level parameter was added.Changed in version 2.5:
Keyword support for parameters was added.

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point
number. If the argument is a complex number, its magnitude is returned.

The Python Library Reference, Release 2.6

all (iterable)
Return True if all elements of the iterable are true. Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any (iterable)
Return True if any element of the iterable is true. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

New in version 2.5.

basestring ()
This abstract type is the superclass for st r and unicode. It cannot be called or instantiated, but it can be
used to test whether an object is an instance of st r or unicode. isinstance (obj, basestring)
is equivalent to isinstance (obj, (str, unicode)).New in version 2.3.

bool ([x])
Convert a value to a Boolean, using the standard truth testing procedure. If x is false or omitted, this returns
False; otherwise it returns True. bool is also a class, which is a subclass of int. Class bool cannot
be subclassed further. Its only instances are False and True. New in version 2.2.1.Changed in version
2.3: If no argument is given, this function returns False.

callable (object)
Return True if the object argument appears callable, False if not. If this returns true, it is still possible
that a call fails, but if it is false, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); class instances are callable if they havea __call__ () method.

chr (i)
Return a string of one character whose ASCII code is the integer i. For example, chr (97) returns the string
"a’. This is the inverse of ord (). The argument must be in the range [0..255], inclusive; ValueError
will be raised if i is outside that range. See also unichr ().

classmethod (function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an instance method receives the in-
stance. To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed
as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see stat icmethod () in
this section.

For more information on class methods, consult the documentation on the standard type hierarchy in The
standard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4:
Function decorator syntax added.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6

cmp (X, y)
Compare the two objects x and y and return an integer according to the outcome. The return value is negative
if x < y,zeroif x == vy and strictly positive if x > y.

compile (source, filename, mode, [flags, [dont_inherit]])
Compile the source into a code or AST object. Code objects can be executed by an exec statement or
evaluated by a call to eval (). source can either be a string or an AST object. Refer to the _ast module
documentation for information on how to compile into and from AST objects.

When compiling a string with multi-line statements, two caveats apply: line endings must be represented
by a single newline character (’ \n’), and the input must be terminated by at least one newline character. If
line endings are represented by ’ \r\n’, use the string replace () method to change them into \n’ .

The filename argument should give the file from which the code was read; pass some recognizable value if
it wasn’t read from a file (<string>’ is commonly used).

The mode argument specifies what kind of code must be compiled; it can be ' exec’ if source consists of a
sequence of statements, eval’ if it consists of a single expression, or / single’ if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something else than None
will be printed).

The optional arguments flags and dont_inherit (which are new in Python 2.2) control which future state-
ments (see PEP 236) affect the compilation of source. If neither is present (or both are zero) the code is
compiled with those future statements that are in effect in the code that is calling compile. If the flags argu-
ment is given and dont_inherit is not (or is zero) then the future statements specified by the flags argument
are used in addition to those that would be used anyway. If dont_inherit is a non-zero integer then the flags
argument is it — the future statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements.
The bitfield required to specify a given feature can be found as the compiler_ flag attribute on the
_Feature instance inthe ___future__ module.

This function raises SyntaxError if the compiled source is invalid, and TypeError if the source con-
tains null bytes. New in version 2.6: Support for compiling AST objects.

complex ([real, [imag]])

Create a complex number with the value real + imag*j or convert a string or number to a complex number.
If the first parameter is a string, it will be interpreted as a complex number and the function must be called
without a second parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function serves as a
numeric conversion function like int (), long () and float (). If both arguments are omitted, returns
03.

The complex type is described in Numeric Types — int, float, long, complex.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, ’foobar’) isequivalenttodel x.foobar.

dict ([arg])
Create a new data dictionary, optionally with items taken from arg. The dictionary type is described in
Mapping Types — dict.
For other containers see the built in 1ist, set, and tuple classes, and the collections module.

dir ([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return
a list of valid attributes for that object.

If the object has a method named ___dir__ (), this method will be called and must return the list of
attributes. This allows objects that implement a custom __getattr__ () or __getattribute__ ()
function to customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
___dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

http://www.python.org/dev/peps/pep-0236

The Python Library Reference, Release 2.6

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:
oIf the object is a module object, the list contains the names of the module’s attributes.

oIf the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

*Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and re-
cursively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # doctest: +SKIP
["__builtins_ ', ’'__doc_ ', '__name_ ', ’struct’]
>>> dir (struct) # doctest: +NORMALIZE WHITESPACE

["Struct’, ’'__builtins_ ', ’'__doc_ ', ’'__file_ ', '"_ _name_ ',
' __package__ ', ’'_clearcache’, ’'calcsize’, ’'error’, ’'pack’, ’'pack_into’,
"unpack’, "unpack_from’]
>>> class Foo(object):
def _ dir_ (self):
return ["kan", "ga", "roo"]

>>> f = Fool()
>>> dir (f)
["ga’, 'kan’, ’'roo’]

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of
names, and its detailed behavior may change across releases. For example, metaclass attributes are not in
the result list when the argument is a class.

divmod (a, b)

Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators
apply. For plain and long integers, the result is the same as (a // b, a % b). For floating point
numbers the result is (g, a % b), where g is usually math.floor (a / b) but may be 1 less than
that. Inanycase g * b + a % bisveryclosetoa,if a % b is non-zero it has the same sign as b, and
0 <= abs(a % b) < abs (b). Changed in version 2.3: Using divmod () with complex numbers is
deprecated.

enumerate (sequence, [start=0])
Return an enumerate object. sequence must be a sequence, an iferator, or some other object which sup-
ports iteration. The next () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the corresponding value obtained from iterating over iter-
able. enumerate () is useful for obtaining an indexed series: (0, seqg[0]), (1, seqlll), (2,
seq([2]), ... For example:

>>> for i, season in enumerate ([’ Spring’, ’Summer’, 'Fall’, ’'Winter’]):
. print i, season

Spring
Summer
Fall
Winter

w N = O

New in version 2.3.New in version 2.6: The start parameter.

eval (expression, [globals, [locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object. Changed in version 2.4: formerly locals was required to be a
dictionary. The expression argument is parsed and evaluated as a Python expression (technically speaking,
a condition list) using the globals and locals dictionaries as global and local namespace. If the globals
dictionary is present and lacks ‘__builtins__’, the current globals are copied into globals before expression

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6

is parsed. This means that expression normally has full access to the standard __builtin__ module
and restricted environments are propagated. If the locals dictionary is omitted it defaults to the globals
dictionary. If both dictionaries are omitted, the expression is executed in the environment where eval () is
called. The return value is the result of the evaluated expression. Syntax errors are reported as exceptions.
Example:

>>> x =1
>>> print eval ('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with ' exec’ as the
kind argument, eval () ‘s return value will be None.

Hints: dynamic execution of statements is supported by the exec statement. Execution of statements from
a file is supported by the execfile () function. The globals () and locals () functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use by eval () or
execfile ().

execfile (filename, [globals, [locals]])
This function is similar to the exec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and
does not create a new module.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence
of Python statements (similarly to a module) using the globals and locals dictionaries as global and local
namespace. If provided, locals can be any mapping object. Changed in version 2.4: formerly locals was
required to be a dictionary. If the locals dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment where execfile () is called. The
return value is None.

Warning: The default locals act as described for function 1ocals () below: modifications to the
default locals dictionary should not be attempted. Pass an explicit locals dictionary if you need to
see effects of the code on locals after function execfile () returns. execfile () cannot be used
reliably to modify a function’s locals.

file (filename, [mode, [bufsize]])
Constructor function for the £ile type, described further in section File Objects. The constructor’s argu-
ments are the same as those of the open () built-in function described below.

When opening a file, it’s preferable to use open () instead of invoking this constructor directly. file is
more suited to type testing (for example, writing isinstance (£, file)). New in version 2.2.

filter (function, iterable)
Construct a list from those elements of iterable for which function returns true. iterable may be either a
sequence, a container which supports iteration, or an iterator. If iterable is a string or a tuple, the result also
has that type; otherwise it is always a list. If function is None, the identity function is assumed, that is, all
elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to [item for item in iterable
if function(item)] if function is not None and [item for item in iterable if
item] if function is None.

float (/x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. The argument may also be [+|-]nan or
[+l-]inf. Otherwise, the argument may be a plain or long integer or a floating point number, and a floating
point number with the same value (within Python’s floating point precision) is returned. If no argument is
given, returns 0. 0.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying
C library. Float accepts the strings nan, inf and -inf for NaN and positive or negative infinity. The case and

! It is used relatively rarely so does not warrant being made into a statement.

The Python Library Reference, Release 2.6

a leading + are ignored as well as a leading - is ignored for NaN. Float always represents NaN and infinity
as nan, inf or -inf.

The float type is described in Numeric Types — int, float, long, complex.

frozenset ([iterable])
Return a frozenset object, optionally with elements taken from iterable. The frozenset type is described in
Set Types — set, frozenset.

For other containers see the built in dict, 1ist, and tuple classes, and the collections module.
New in version 2.4.

getattr (object, name, [default])
Return the value of the named attributed of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, ’foobar’)
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError israised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current

module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the ob-
ject’s attributes, False if not. (This is implemented by calling getattr (object, name) and seeing
whether it raises an exception or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly
compare dictionary keys during a dictionary lookup. Numeric values that compare equal have the same
hash value (even if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked
up as the name of a module, function, class, method, keyword, or documentation topic, and a help page is
printed on the console. If the argument is any other kind of object, a help page on the object is generated.

This function is added to the built-in namespace by the site module. New in version 2.2.

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Changed in version 2.4: Formerly only returned an unsigned literal.

id (object)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id () value. (Implementation note: this is the address of the object.)

input (/prompt])
Equivalent to eval (raw_input (prompt)).

Warning: This function is not safe from user errors! It expects a valid Python expression as input; if
the input is not syntactically valid, a SyntaxError will be raised. Other exceptions may be raised if
there is an error during evaluation. (On the other hand, sometimes this is exactly what you need when
writing a quick script for expert use.)

If the readline module was loaded, then input () will use it to provide elaborate line editing and
history features.

Consider using the raw_input () function for general input from users.
int ([x, [radix]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace. The radix parameter

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6

gives the base for the conversion (which is 10 by default) and may be any integer in the range [2, 36], or
zero. If radix is zero, the proper radix is determined based on the contents of string; the interpretation is the
same as for integer literals. (See Numeric literals (in The Python Language Reference).) If radix is specified
and x is not a string, TypeError is raised. Otherwise, the argument may be a plain or long integer or
a floating point number. Conversion of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned instead. If no arguments are given,
returns O.

The integer type is described in Numeric Types — int, float, long, complex.

isinstance (object, classinfo)

Return true if the object argument is an instance of the classinfo argument, or of a (direct or indirect)
subclass thereof. Also return true if classinfo is a type object (new-style class) and object is an object of
that type or of a (direct or indirect) subclass thereof. If object is not a class instance or an object of the
given type, the function always returns false. If classinfo is neither a class object nor a type object, it may
be a tuple of class or type objects, or may recursively contain other such tuples (other sequence types are
not accepted). If classinfo is not a class, type, or tuple of classes, types, and such tuples, a TypeError
exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is considered a subclass of itself.
classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any other
case, a TypeError exception is raised. Changed in version 2.3: Support for a tuple of type information
was added.

iter (o, [sentinel])

Return an iterator object. The first argument is interpreted very differently depending on the presence of
the second argument. Without a second argument, o must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()

method with integer arguments starting at 0). If it does not support either of those protocols, TypeError
is raised. If the second argument, sentinel, is given, then o must be a callable object. The iterator created in
this case will call o with no arguments for each call to its next () method; if the value returned is equal to
sentinel, St opIteration will be raised, otherwise the value will be returned. New in version 2.2.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list)
or a mapping (dictionary).

list ([iterable])
Return a list whose items are the same and in the same order as iferable‘s items. iterable may be either a
sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is made
and returned, similar to iterable[:]. Forinstance, 1ist (abc’) returns ["a’, 'b’, ’'c’] and
list((1, 2, 3)) returns [1, 2, 3].Ifnoargumentis given, returns a new empty list, [].

1list is a mutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, buffer,
xrange. For other containers see the built in dict, set, and tuple classes, and the collections
module.

locals ()
Update and return a dictionary representing the current local symbol table.

Warning: The contents of this dictionary should not be modified; changes may not affect the values of
local variables used by the interpreter.

Free variables are returned by locals () when it is called in a function block. Modifications of free
variables may not affect the values used by the interpreter. Free variables are not returned in class blocks.

long ([x, [radix]])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed
number of arbitrary size, possibly embedded in whitespace. The radix argument is interpreted in the same
way as for int (), and may only be given when x is a string. Otherwise, the argument may be a plain or
long integer or a floating point number, and a long integer with the same value is returned. Conversion of
floating point numbers to integers truncates (towards zero). If no arguments are given, returns 0L.

11

The Python Library Reference, Release 2.6

The long type is described in Numeric Types — int, float, long, complex.

map (function, iterable, ...)
Apply function to every item of iterable and return a list of the results. If additional iterable arguments are
passed, function must take that many arguments and is applied to the items from all iterables in parallel.
If one iterable is shorter than another it is assumed to be extended with None items. If function is None,
the identity function is assumed; if there are multiple arguments, map () returns a list consisting of tuples
containing the corresponding items from all iterables (a kind of transpose operation). The iterable arguments
may be a sequence or any iterable object; the result is always a list.

max (iterable, [args...], [key])
With a single argument iterable, return the largest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the largest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort ().
The key argument, if supplied, must be in keyword form (for example, max (a, b, ¢, key=func)).
Changed in version 2.5: Added support for the optional key argument.

min (iterable, [args...], [key])
With a single argument iterable, return the smallest item of a non-empty iterable (such as a string, tuple or
list). With more than one argument, return the smallest of the arguments.

The optional key argument specifies a one-argument ordering function like that used for 1ist.sort ().
The key argument, if supplied, must be in keyword form (for example, min (a, b, ¢, key=func)).
Changed in version 2.5: Added support for the optional key argument.

next (iterator, [default])
Retrieve the next item from the iterator by calling its next () method. If default is given, it is returned if
the iterator is exhausted, otherwise St opIterat ion is raised. New in version 2.6.

obiject ()
Return a new featureless object. object is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.Changed in version 2.3: This function
does not accept any arguments. Formerly, it accepted arguments but ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed
in version 2.4: Formerly only returned an unsigned literal.

open (filename, [mode, [bufsize]])
Open a file, returning an object of the file type described in section File Objects. If the file cannot be
opened, TOError is raised. When opening a file, it’s preferable to use open () instead of invoking the
f1ile constructor directly.

The first two arguments are the same as for stdio‘s fopen: filename is the file name to be opened, and
mode is a string indicating how the file is to be opened.

The most commonly-used values of mode are ' r’ for reading, ' w’ for writing (truncating the file if it
already exists), and ’ a’ for appending (which on some Unix systems means that all writes append to the
end of the file regardless of the current seek position). If mode is omitted, it defaults to ' r’. The default
is to use text mode, which may convert ’ \n’ characters to a platform-specific representation on writing
and back on reading. Thus, when opening a binary file, you should append " b’ to the mode value to open
the file in binary mode, which will improve portability. (Appending " b’ is useful even on systems that
don’t treat binary and text files differently, where it serves as documentation.) See below for more possible
values of mode. The optional bufsize argument specifies the file’s desired buffer size: 0 means unbuffered,
1 means line buffered, any other positive value means use a buffer of (approximately) that size. A negative
bufsize means to use the system default, which is usually line buffered for tty devices and fully buffered for
other files. If omitted, the system default is used.

Modes ' r+’, " w+’ and ’ a+’ open the file for updating (note that ” w+’ truncates the file). Append ' b’
to the mode to open the file in binary mode, on systems that differentiate between binary and text files; on
systems that don’t have this distinction, adding the ' b’ has no effect.

In addition to the standard fopen values mode may be ' U’ or ’ rU’ . Python is usually built with univer-
sal newline support; supplying ’ U’ opens the file as a text file, but lines may be terminated by any of the
following: the Unix end-of-line convention ’ \n’, the Macintosh convention ’ \r’, or the Windows con-

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6

vention ' \r\n’. All of these external representations are seen as ’ \n’ by the Python program. If Python
is built without universal newline support a mode with ’ U’ is the same as normal text mode. Note that file
objects so opened also have an attribute called newlines which has a value of None (if no newlines have
yet been seen), " \n’, " \r’, " \r\n’, or a tuple containing all the newline types seen.

Python enforces that the mode, after stripping ’ U’ , begins with " v/, "w’ or " a’.

Python provides many file handling modules including £ileinput, os, os.path, tempfile, and
shutil. Changed in version 2.5: Restriction on first letter of mode string introduced.

ord (c)
Given a string of length one, return an integer representing the Unicode code point of the character when
the argument is a unicode object, or the value of the byte when the argument is an 8-bit string. For example,
ord (’a’) returns the integer 97, ord (u’ \u2020’) returns 8224. This is the inverse of chr () for
8-bit strings and of unichr () for unicode objects. If a unicode argument is given and Python was built
with UCS2 Unicode, then the character’s code point must be in the range [0..65535] inclusive; otherwise
the string length is two, and a TypeError will be raised.

pow (x, y, [z])
Return x to the power y; if z is present, return x to the power y, modulo z (computed more efficiently
than pow (x, y) % z). The two-argument form pow (x, y) is equivalent to using the power operator:
X*x*Yy.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int and long int operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are converted to float and a float result
is delivered. For example, 10+ 2 returns 100, but 10+ x—2 returns 0. 01. (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second argument was
negative, an exception was raised.) If the second argument is negative, the third argument must be omitted.
If z is present, x and y must be of integer types, and y must be non-negative. (This restriction was added
in Python 2.2. In Python 2.1 and before, floating 3-argument pow () returned platform-dependent results
depending on floating-point rounding accidents.)

print ([object, ...], [sep=""], [end="n"], [file=sys.stdout])
Print object(s) to the stream file, separated by sep and followed by end. sep, end and file, if present, must be
given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated
by sep and followed by end. Both sep and end must be strings; they can also be None, which means to use
the default values. If no object is given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None,
sys.stdout will be used.

Note: This function is not normally available as a builtin since the name print is recognized as the
print statement. To disable the statement and use the print () function, use this future statement at the
top of your module:

from _ future import print_function

New in version 2.6.

property ([fger, [fset, [fdel, [doc]]]])
Return a property attribute for new-style classes (classes that derive from object).

fget is a function for getting an attribute value, likewise fset is a function for setting, and fdel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def _ init_ (self):
self._x = None

def getx(self):
return self._x
def setx(self, value):
self._x = value

13

The Python Library Reference, Release 2.6

def delx (self):
del self._x
x = property(getx, setx, delx, "I'm the ’"x’ property.")

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fget‘s docstring
(if it exists). This makes it possible to create read-only properties easily using property () asadecorator:

class Parrot (object) :
def _ init_ (self):
self._voltage = 100000

@property

def voltage (self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a “getter” for a read-only attribute with the same name.

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C(object):
def _ init_ (self): self._x = None

@property

def x(self):
"""I’m the ’x’ property."""
return self._x

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name
as the original property (x in this case.)

The returned property also has the attributes fget, fset, and fdel corresponding to the constructor
arguments. New in version 2.2.Changed in version 2.5: Use fget‘s docstring if no doc given.Changed in
version 2.6: The getter, setter, and deleter attributes were added.

range ([start], stop, [step])

This is a versatile function to create lists containing arithmetic progressions. It is most often used in for
loops. The arguments must be plain integers. If the step argument is omitted, it defaults to 1. If the start
argument is omitted, it defaults to 0. The full form returns a list of plain integers [start, start +
step, start + 2 * step, ...]. If step is positive, the last element is the largest start + i
x step less than stop; if step is negative, the last element is the smallest start + i1 * step greater
than stop. step must not be zero (or else ValueError is raised). Example:

>>> range (10)

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> range (1, 11)

(L, 2, 3, 4, 5, 6, 7, 8, 9, 10]

>>> range (0, 30, 5)

[, 5, 10, 15, 20, 25]

>>> range (0, 10, 3)

[0, 3, 6, 9]

>>> range (0, -10, -1)

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6

>>> range (0)
[]
>>> range(l, 0)

[]

raw_input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function
then reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When
EOF is read, EOFError is raised. Example:

>>> s = raw_input (' ——> ")
—-—> Monty Python’s Flying Circus
>>> s

"Monty Python’s Flying Circus"

If the readline module was loaded, then raw_input () will use it to provide elaborate line editing and
history features.

reduce (function, iterable, [initializer])
Apply function of two arguments cumulatively to the items of iterable, from left to right, so as to reduce
the iterable to a single value. For example, reduce (lambda x, y: x+y, [1, 2, 3, 4, 51)
calculates ((((1+2)+3)+4) +5). The left argument, x, is the accumulated value and the right argument,
Yy, is the update value from the iterable. If the optional initializer is present, it is placed before the items of
the iterable in the calculation, and serves as a default when the iterable is empty. If initializer is not given
and iterable contains only one item, the first item is returned.

reload (module)
Reload a previously imported module. The argument must be a module object, so it must have been suc-
cessfully imported before. This is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter. The return value is the module
object (the same as the module argument).

When reload (module) is executed:

*Python modules’ code is recompiled and the module-level code reexecuted, defining a new set of
objects which are bound to names in the module’s dictionary. The init function of extension modules
is not called a second time.

*As with all other objects in Python the old objects are only reclaimed after their reference counts drop
to zero.

*The names in the module namespace are updated to point to any new or changed objects.

*Other references to the old objects (such as names external to the module) are not rebound to refer to
the new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first import statement for it does not bind
its name locally, but does store a (partially initialized) module object in sys.modules. To reload the
module you must first import it again (this will bind the name to the partially initialized module object)
before you can reload () it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redef-
initions of names will override the old definitions, so this is generally not a problem. If the new version
of a module does not define a name that was defined by the old version, the old definition remains. This
feature can be used to the module’s advantage if it maintains a global table or cache of objects — with a
try statement it can test for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

15

The Python Library Reference, Release 2.6

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except for
sys,__main__and __builtin__. In many cases, however, extension modules are not designed to be
initialized more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import ..., calling reload () for the
other module does not redefine the objects imported from it — one way around this is to re-execute the
from statement, another is to use import and qualified names (module.*name*) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for
derived classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conver-
sions (reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For
many types, this function makes an attempt to return a string that would yield an object with the same value
when passed to eval (), otherwise the representation is a string enclosed in angle brackets that contains
the name of the type of the object together with additional information often including the name and address
of the object. A class can control what this function returns for its instances by defining a __repr__ ()
method.

reversed (seq)
Return a reverse iterator. seq must be an object which has a __reversed__ () method or supports
the sequence protocol (the ___len__ () method and the __getitem__ () method with integer argu-
ments starting at 0). New in version 2.4.Changed in version 2.6: Added the possibility to write a custom
__reversed__ () method.

round (x, [n])
Return the floating point value x rounded to n digits after the decimal point. If n is omitted, it defaults to
zero. The result is a floating point number. Values are rounded to the closest multiple of 10 to the power
minus #; if two multiples are equally close, rounding is done away from O (so. for example, round (0. 5)
is 1.0 and round (-0.5) is —1.0).

set ([iterable])
Return a new set, optionally with elements are taken from iferable. The set type is described in Ser Types —
set, frozenset.
For other containers see the built in dict, 1ist, and tuple classes, and the collections module.
New in version 2.4.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, pro-
vided the object allows it. For example, setattr (x, ’foobar’, 123) isequivalentto x.foobar
= 123.

slice ([start], stop, [step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by Numerical Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example: a[start:stop:step] or a[start:stop,
il.

sorted (iterable, [cmp, [key, [reverse]]])
Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as those for the 1ist.sort ()
method (described in section Mutable Sequence Types).

cmp specifies a custom comparison function of two arguments (iterable elements) which should return a
negative, zero or positive number depending on whether the first argument is considered smaller than, equal
to, or larger than the second argument: cmp=lambda x,y: cmp(x.lower (), y.lower ()).The
default value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:

16 Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6

key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch each
element only once. New in version 2.4.

staticmethod (function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod formis a function decorator — see the description of function definitions in Function
definitions (in The Python Language Reference) for details.

It can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a more advanced concept, see
classmethod () in this section.

For more information on static methods, consult the documentation on the standard type hierarchy in The
standard type hierarchy (in The Python Language Reference). New in version 2.2.Changed in version 2.4:
Function decorator syntax added.

str ([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference with repr (object) is that str (object) does not always attempt to return a
string that is acceptable to eval () ; its goal is to return a printable string. If no argument is given, returns
the empty string, ”.

For more information on strings see Sequence Types — str, unicode, list, tuple, buffer, xrange which de-
scribes sequence functionality (strings are sequences), and also the string-specific methods described in the
String Methods section. To output formatted strings use template strings or the % operator described in the
String Formatting Operations section. In addition see the String Services section. See also unicode ().

sum (iterable, [start])
Sums start and the items of an iterable from left to right and returns the total. start defaults to 0. The
iterable‘s items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
a sequence of strings is by calling . join (sequence). Note that sum (range (n) , m) is equivalent
to reduce (operator.add, range (n), m) New in version 2.3.

super (type, [object-or-type])
Return a “super” object that acts like the superclass of type.
If the second argument is omitted the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true. super () only works for new-style classes.

There are two typical use cases for “super”. In a class hierarchy with single inheritance, “super” can be used
to refer to parent classes without naming them explicitly, thus making the code more maintainable. This use
closely parallels the use of “super” in other programming languages.

The second use case is to support cooperative multiple inheritence in a dynamic execution environment.
This use case is unique to Python and is not found in statically compiled languages or languages that only
support single inheritance. This makes in possible to implement “diamond diagrams” where multiple base
classes implement the same method. Good design dictates that this method have the same calling signature
in every case (because the order of parent calls is determined at runtime and because that order adapts to
changes in the class hierarchy).

For both use cases, a typical superclass call looks like this:

17

The Python Library Reference, Release 2.6

class C(B):
def meth(self, arg):
super (C, self) .meth(arg)

Note that super () is implemented as part of the binding process for explicit dotted attribute
lookups such as super (C, self)._ _getitem__ (name). It does so by implementing its own
__getattribute__ () method for searching parent classes in a predictable order that supports coop-
erative multiple inheritance. Accordingly, super () is undefined for implicit lookups using statements or
operators such as super (C, self) [name]. New in version 2.2.

tuple ([iterable])

Return a tuple whose items are the same and in the same order as iferable‘s items. iterable may be a se-
quence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is returned
unchanged. For instance, tuple (' abc’) returns (‘a’, ’b’, ’'c’) and tuple([1, 2, 3]) re-
turns (1, 2, 3).Ifnoargument is given, returns a new empty tuple, ().

tuple is an immutable sequence type, as documented in Sequence Types — str, unicode, list, tuple, buffer,

xrange. For other containers see the built in dict, 1ist, and set classes, and the collections
module.

type (object)

Return the type of an object. The return value is a type object. The isinstance () built-in function is
recommended for testing the type of an object.

With three arguments, t ype () functions as a constructor as detailed below.

type (name, bases, dict)

Return a new type object. This is essentially a dynamic form of the class statement. The name string is
the class name and becomes the ___name___ attribute; the bases tuple itemizes the base classes and becomes
the _ bases__ attribute; and the dict dictionary is the namespace containing definitions for class body
and becomes the __dict__ attribute. For example, the following two statements create identical type
objects:

>>> class X (object):
a =1

>>> X = type('X’, (object,), dict(a=1))

New in version 2.2.

unichr (i)

Return the Unicode string of one character whose Unicode code is the integer i. For example, unichr (97)
returns the string u’ a’. This is the inverse of ord () for Unicode strings. The valid range for the argu-
ment depends how Python was configured — it may be either UCS2 [0..0xFFFF] or UCS4 [0..0x10FFFF].
ValueError is raised otherwise. For ASCII and 8-bit strings see chr (). New in version 2.0.

unicode ([object, [encoding, [errors]]])

Return the Unicode string version of object using one of the following modes:

If encoding and/or errors are given, unicode () will decode the object which can either be an 8-bit string
or a character buffer using the codec for encoding. The encoding parameter is a string giving the name of
an encoding; if the encoding is not known, LookupError is raised. Error handling is done according
to errors; this specifies the treatment of characters which are invalid in the input encoding. If errors is
"strict’ (the default), a ValueError israised on errors, while a value of / ignore’ causes errors to
be silently ignored, and a value of * replace’ causes the official Unicode replacement character, U+FFFD,
to be used to replace input characters which cannot be decoded. See also the codecs module.

If no optional parameters are given, unicode () will mimic the behaviour of str () except that it returns
Unicode strings instead of 8-bit strings. More precisely, if object is a Unicode string or subclass it will
return that Unicode string without any additional decoding applied.

For objects which provide a __unicode__ () method, it will call this method without arguments to
create a Unicode string. For all other objects, the 8-bit string version or representation is requested and then
converted to a Unicode string using the codec for the default encoding in strict’ mode.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 2.6

For more information on Unicode strings see Sequence Types — str; unicode, list, tuple, buffer, xrange which
describes sequence functionality (Unicode strings are sequences), and also the string-specific methods de-
scribed in the String Methods section. To output formatted strings use template strings or the % operator
described in the String Formatting Operations section. In addition see the String Services section. See also
str (). New in version 2.0.Changed in version 2.2: Support for __unicode__ () added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else thathasa __ dict__ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on
the corresponding symbol table are undefined. >

xrange ([start], stop, [step])
This function is very similar to range (), but returns an “xrange object” instead of a list. This is an
opaque sequence type which yields the same values as the corresponding list, without actually storing them
all simultaneously. The advantage of xrange () over range () is minimal (since xrange () still has
to create the values when asked for them) except when a very large range is used on a memory-starved
machine or when all of the range’s elements are never used (such as when the loop is usually terminated
with break).

Note: xrange () is intended to be simple and fast. Implementations may impose restrictions to achieve
this. The C implementation of Python restricts all arguments to native C longs (“short” Python integers),
and also requires that the number of elements fit in a native C long.

zip ([iterable, ...])
This function returns a list of tuples, where the i-th tuple contains the i-th element from each of the argu-
ment sequences or iterables. The returned list is truncated in length to the length of the shortest argument
sequence. When there are multiple arguments which are all of the same length, zip () is similar to map ()
with an initial argument of None. With a single sequence argument, it returns a list of 1-tuples. With no
arguments, it returns an empty list.

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering
a data series into n-length groups using zip (x [iter (s)] #xn). New in version 2.0.Changed in version
2.4: Formerly, z1ip () required at least one argument and zip () raised a TypeError instead of returning
an empty list.

2 In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes
(such as modules) can be. This may change.

19

The Python Library Reference, Release 2.6

20 Chapter 2. Built-in Functions

CHAPTER
THREE

Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python program-
ming. They have been kept here to maintain backwards compatibility with programs written for older versions of
Python.

Python programmers, trainers, students and book writers should feel free to bypass these functions without con-
cerns about missing something important.

apply (function, args, [keywords])

The function argument must be a callable object (a user-defined or built-in function or method, or a class
object) and the args argument must be a sequence. The function is called with args as the argument list; the
number of arguments is the length of the tuple. If the optional keywords argument is present, it must be a
dictionary whose keys are strings. It specifies keyword arguments to be added to the end of the argument
list. Calling apply () is different from just calling function (args), since in that case there is always
exactly one argument. The use of apply () isequivalentto function (xargs, =*xkeywords). Dep-
recated since version 2.3: Use the extended call syntax with rargs and «xkeywords instead.

buffer (object, [offset, [size]])
The object argument must be an object that supports the buffer call interface (such as strings, arrays, and
buffers). A new buffer object will be created which references the object argument. The buffer object will
be a slice from the beginning of object (or from the specified offset). The slice will extend to the end of
object (or will have a length given by the size argument).

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules
as used by arithmetic operations. If coercion is not possible, raise TypeError.

intern (string)

Enter string in the table of “interned” strings and return the interned string — which is string itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary
are interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer
compare instead of a string compare. Normally, the names used in Python programs are automatically
interned, and the dictionaries used to hold module, class or instance attributes have interned keys. Changed
in version 2.3: Interned strings are not immortal (like they used to be in Python 2.2 and before); you must
keep a reference to the return value of intern () around to benefit from it.

Specifying a buffer size currently has no effect on systems that don’t have setvbuf. The interface to specify the
buffer size is not done using a method that calls set vbuf, because that may dump core when called after any I/O
has been performed, and there’s no reliable way to determine whether this is the case.

21

The Python Library Reference, Release 2.6

22 Chapter 3. Non-essential Built-in Functions

CHAPTER
FOUR

Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. New in version 2.3.

True
The true value of the bool type. New in version 2.3.

None
The sole value of types.NoneType. None is frequently used to represent the absence of a value, as
when default arguments are not passed to a function. Changed in version 2.4: Assignments to None are
illegal and raise a SyntaxError.

NotImplemented
Special value which can be returned by the “rich comparison” special methods (__eq__ (),
and friends), to indicate that the comparison is not implemented with respect to the other type.

1t (),

Ellipsis
Special value used in conjunction with extended slicing syntax.

__debug_
This constant is true if Python was not started with an —O option. Assignments to ___debug___ are illegal
and raise a SyntaxError. See also the assert statement.

4.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is
given) adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and
should not be used in programs.
quit
exit
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemExit with the specified exit code, and when .

copyright

license

credits
Objects that when printed, print a message like “Type license() to see the full license text”, and when called,
display the corresponding text in a pager-like fashion (one screen at a time).

23

The Python Library Reference, Release 2.6

24 Chapter 4. Built-in Constants

CHAPTER
FIVE

Built-in Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names
can override built-in names. Built-in types are described together here for easy reference.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within
a table) and grouping operators that have the same priority in the same box. Binary operators of the same priority
group from left to right. (Unary operators group from right to left, but there you have no real choice.) See Summary
(in The Python Language Reference) for the complete picture on operator priorities.

25

The Python Library Reference, Release 2.6

26 Chapter 5. Built-in Objects

CHAPTER
SIX

Built-in Types

The following sections describe the standard types that are built into the interpreter.

Note: Historically (until release 2.2), Python’s built-in types have differed from user-defined types because it was
not possible to use the built-in types as the basis for object-oriented inheritance. This limitation no longer exists.

The principal built-in types are numerics, sequences, mappings, files, classes, instances and exceptions. Some
operations are supported by several object types; in particular, practically all objects can be compared, tested for
truth value, and converted to a string (with the repr () function or the slightly different st r () function). The
latter function is implicitly used when an object is written by the print () function.

6.1 Truth Value Testing

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean
operations below. The following values are considered false:

¢ None

* False

* zero of any numeric type, for example, 0, 0L, 0.0, 073.

 any empty sequence, for example, ", (), [].

* any empty mapping, for example, { }.

¢ instances of user-defined classes, if the class defines a ___nonzero_ () or __len__ () method, when

that method returns the integer zero or bool value False. !

All other values are considered true — so objects of many types are always true. Operations and built-in functions
that have a Boolean result always return 0 or False for false and 1 or True for true, unless otherwise stated.
(Important exception: the Boolean operations or and and always return one of their operands.)

6.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

! Additional information on these special methods may be found in the Python Reference Manual (Basic customization (in The Python
Language Reference)).

27

The Python Library Reference, Release 2.6

Operation Result Notes

X Or y if x is false, then y, else x (1)

x and y if x is false, then x, else y 2)

not x if x is false, then True, else False | (3)
Notes:

1. This is a short-circuit operator, so it only evaluates the second argument if the first one is False.
2. This is a short-circuit operator, so it only evaluates the second argument if the first one is True.

3. not has alower priority than non-Boolean operators, so not a == bisinterpreted as not (a == b),
and a == not Db is a syntax error.

6.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of
the Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z is equivalent to x
< y and y <= gz,exceptthaty is evaluated only once (but in both cases z is not evaluated at all when x < y
is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
1= not equal (D
is object identity
is not negated object identity
Notes:
1. !'= can also be written <>, but this is an obsolete usage kept for backwards compatibility only. New code

should always use !=.

Objects of different types, except different numeric types and different string types, never compare equal; such
objects are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result).
Furthermore, some types (for example, file objects) support only a degenerate notion of comparison where any
two objects of that type are unequal. Again, such objects are ordered arbitrarily but consistently. The <, <=, >
and >= operators will raise a TypeError exception when any operand is a complex number. Instances of a class
normally compare as non-equal unless the class defines the __cmp___ () method. Refer to Basic customization
(in The Python Language Reference)) for information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the
same types that don’t support proper comparison are ordered by their address. Two more operations with the
same syntactic priority, in and not in, are supported only by sequence types (below).

6.4 Numeric Types — int, float, long, complex

There are four distinct numeric types: plain integers, long integers, floating point numbers, and complex numbers.
In addition, Booleans are a subtype of plain integers. Plain integers (also just called infegers) are implemented
using long in C, which gives them at least 32 bits of precision (sys.maxint is always set to the maximum
plain integer value for the current platform, the minimum value is -sys.maxint - 1). Long integers have
unlimited precision. Floating point numbers are implemented using double in C. All bets on their precision are
off unless you happen to know the machine you are working with.

28 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

Complex numbers have a real and imaginary part, which are each implemented using double in C. To extract
these parts from a complex number z, use z . real and z.imag. Numbers are created by numeric literals or as
the result of built-in functions and operators. Unadorned integer literals (including hex and octal numbers) yield
plain integers unless the value they denote is too large to be represented as a plain integer, in which case they
yield a long integer. Integer literals with an ' L’ or / 1 suffix yield long integers (L” is preferred because 11
looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign yield floating point
numbers. Appending ’ 3’ or / J’ to a numeric literal yields a complex number with a zero real part. A complex
numeric literal is the sum of a real and an imaginary part. Python fully supports mixed arithmetic: when a binary
arithmetic operator has operands of different numeric types, the operand with the “narrower” type is widened to
that of the other, where plain integer is narrower than long integer is narrower than floating point is narrower than
complex. Comparisons between numbers of mixed type use the same rule. The constructors int (), long (),
float (),and complex () can be used to produce numbers of a specific type.

All builtin numeric types support the following operations. See The power operator (in The Python Language
Reference) and later sections for the operators’ priorities.

Operation Result Notes

X +y sum of x and y

X -y difference of x and y

X *x Y product of x and y

x /y quotient of x and y @))]

x //y (floored) quotient of x and y @(5)

X %y remainder of x / y @

-X x negated

+x x unchanged

abs (x) absolute value or magnitude of x 3)

int (x) x converted to integer)

long (x) x converted to long integer 2)

float (x) x converted to floating point 6)

complex (re, im) | acomplex number with real part re, imaginary part im. im defaults to zero.

c.conjugate () conjugate of the complex number c. (Identity on real numbers)

divmod (x, V) the pair (x // y, x % V) 3)4)

pow (x, V) X to the power y 3)7)

X *%x Y X to the power y @)
Notes:

1. For (plain or long) integer division, the result is an integer. The result is always rounded towards minus
infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either
operand is a long integer, regardless of the numeric value.

2. Conversion from floating point to (long or plain) integer may round or truncate as in C; see functions
math.floor () andmath.ceil () for well-defined conversions. Deprecated since version 2.6: Instead,
convert floats to long explicitly with trunc ().

3. See Built-in Functions for a full description.

4. Complex floor division operator, modulo operator, and divmod (). Deprecated since version 2.3: Instead
convert to float using abs () if appropriate.

5. Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int.

6. float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity. New in version 2.6.

7. Python defines pow (0, 0) and 0 = O tobe 1, as is common for programming languages.

All numbers.Real types (int, long, and £ 1loat) also include the following operations:

6.4. Numeric Types — int, float, long, complex 29

The Python Library Reference, Release 2.6

Operation Result Notes
trunc (x) x truncated to Integral

round(x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to 0.
math.floor (x) | the greatest integral float <= x

math.ceil (x) the least integral float >= x

6.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that
no overflow occurs during the operation).

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the
comparisons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bit-string operations sorted in ascending priority:

Operation Result Notes
x |y bitwise or of x and y
x "Ny bitwise exclusive or of x and y
X &y bitwise and of x and y
x << n x shifted left by n bits (H2)
X >> n x shifted right by n bits (H@A3)
~X the bits of x inverted

Notes:

1. Negative shift counts are illegal and cause a ValueError to be raised.

2. A left shift by n bits is equivalent to multiplication by pow (2, n). A long integer is returned if the result
exceeds the range of plain integers.

3. A right shift by » bits is equivalent to division by pow (2, n).

6.4.2 Additional Methods on Float

The float type has some additional methods.

as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs. New in version 2.6.

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful
when debugging, and in numerical work.

hex ()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent. New in version 2.6.

fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace. New in version 2.6.

Note that f1loat .hex () is an instance method, while f1loat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] [’0x’] integer [’.’ fraction] [’'p’ exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits,
and exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at

30 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

least one hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in
section 6.4.4.2 of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output
of float.hex () is usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings
produced by C’s $a format character or Java’s Double.toHexString are accepted by f1loat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3.a7p10 represents the floating-point number
(3 + 10./16 + 7./16%%x2) * 2.0x%10,0r 3740.0:

>>> float.fromhex (' 0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
"0x1.d380000000000p+11"

6.5 Iterator Types

New in version 2.2. Python supports a concept of iteration over containers. This is implemented using two distinct
methods; these are used to allow user-defined classes to support iteration. Sequences, described below in more
detail, always support the iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter_ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a
container supports different types of iteration, additional methods can be provided to specifically request
iterators for those iteration types. (An example of an object supporting multiple forms of iteration would be
a tree structure which supports both breadth-first and depth-first traversal.) This method corresponds to the
tp_iter slot of the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

__iter_ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the
for and in statements. This method corresponds to the tp_iter slot of the type structure for Python
objects in the Python/C API.

next ()
Return the next item from the container. If there are no further items, raise the St opIterat ion exception.
This method corresponds to the tp_iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iterator’s next () method raises StopIteration, it will continue
to do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint
was added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically, a
generator object) supplying the __iter__ () and next () methods.

6.5. Iterator Types 31

The Python Library Reference, Release 2.6

6.6 Sequence Types — str, unicode, list, tuple, buffer,
xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects. (For other con-
tainers see the built in dict, 1ist, set, and tuple classes, and the collections module.) String literals
are written in single or double quotes: ' xyzzy’, "frobozz". See String literals (in The Python Language
Reference) for more about string literals. Unicode strings are much like strings, but are specified in the syntax
using a preceding ’ u’ character: u’ abc’, u"def". In addition to the functionality described here, there are
also string-specific methods described in the String Methods section. Lists are constructed with square brackets,
separating items with commas: [a, b, c]. Tuples are constructed by the comma operator (not within square
brackets), with or without enclosing parentheses, but an empty tuple must have the enclosing parentheses, such as
a, b, cor (). Asingle item tuple must have a trailing comma, such as (d,).

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer (). They don’t support concatenation or repetition.

Objects of type xrange are similar to buffers in that there is no specific syntax to create them, but they are created
using the xrange () function. They don’t support slicing, concatenation or repetition, and using in, not in,
min () ormax () on them is inefficient.

Most sequence types support the following operations. The in and not in operations have the same priorities
as the comparison operations. The + and » operations have the same priority as the corresponding numeric
operations. > Additional methods are provided for Mutable Sequence Types.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same
priority). In the table, s and ¢ are sequences of the same type; n, i and j are integers:

Operation Result Notes
x in s True if an item of s is equal to x, else False | (1)

X not in s False if an item of s is equal to x, else True | (1)

s + t the concatenation of s and ¢ (6)

s * n, n * s | nshallow copies of s concatenated 2)
s[i] i‘th item of s, origin O 3)
s[i:7] slice of s from i to j 3@
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min(s) smallest item of s

max (s) largest item of s

Sequence types also support comparisons. In particular, tuples and lists are compared lexicographically by com-
paring corresponding elements. This means that to compare equal, every element must compare equal and the two
sequences must be of the same type and have the same length. (For full details see Comparisons (in The Python
Language Reference) in the language reference.) Notes:

1. When s is a string or Unicode string object the in and not in operations act like a substring test. In
Python versions before 2.3, x had to be a string of length 1. In Python 2.3 and beyond, x may be a string of
any length.

2. Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note also
that the copies are shallow; nested structures are not copied. This often haunts new Python programmers;
consider:

>>> lists = [[]] » 3
>>> lists

(1, 1, [11

>>> lists[0].append(3)
>>> lists

(es1, 31, [311

2 They must have since the parser can’t tell the type of the operands.

32 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of
[[]1] =* 3 are (pointers to) this single empty list. Modifying any of the elements of 11 st s modifies this
single list. You can create a list of different lists this way:

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> lists[1l].append(5)

>>> lists[2].append(7)

>>> lists

[e31, 51, [711]

3. If i orj is negative, the index is relative to the end of the string: len(s) + iorlen(s) + jis substi-
tuted. But note that —0 is still O.

4. The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j.Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).
If i is greater than or equal to j, the slice is empty.

5. The slice of s from i to j with step k is defined as the sequence of items with index x = i1 + nxk such
that 0 <= n < (j-1i)/k. In other words, the indices are i, i+k, i+2+k, 1+3+k and so on, stopping
when j is reached (but never including j). If i or j is greater than 1len (s), use len (s). If i or j are omitted
or None, they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is
None, it is treated like 1.

6. If s and ¢ are both strings, some Python implementations such as CPython can usually perform an in-place
optimization for assignments of the form s=s+t or s+=t. When applicable, this optimization makes
quadratic run-time much less likely. This optimization is both version and implementation dependent. For
performance sensitive code, it is preferable to use the st r . join () method which assures consistent linear
concatenation performance across versions and implementations. Changed in version 2.4: Formerly, string
concatenation never occurred in-place.

6.6.1 String Methods

Below are listed the string methods which both 8-bit strings and Unicode objects support. Note that none of these
methods take keyword arguments.

In addition, Python’s strings support the sequence type methods described in the Sequence Types — str, unicode,
list, tuple, buffer, xrange section. To output formatted strings use template strings or the % operator described in the
String Formatting Operations section. Also, see the re module for string functions based on regular expressions.

capitalize ()
Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.

center (width, [fillchar])
Return centered in a string of length width. Padding is done using the specified fillchar (default is a space).
Changed in version 2.4: Support for the fillchar argument.

count (sub, [start, [end]])
Return the number of occurrences of substring sub in the range [start, end]. Optional arguments start and
end are interpreted as in slice notation.

decode ([encoding, [errors]])
Decodes the string using the codec registered for encoding. encoding defaults to the default string encoding.
errors may be given to set a different error handling scheme. The default is * strict’, meaning that
encoding errors raise UnicodeError. Other possible values are ignore’, ' replace’ and any other
name registered via codecs.register_error (), see section Codec Base Classes. New in version
2.2.Changed in version 2.3: Support for other error handling schemes added.

encode ([encoding, [errors]])
Return an encoded version of the string. Default encoding is the current default string encoding. er-
rors may be given to set a different error handling scheme. The default for errors is ' strict’,

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 33

The Python Library Reference, Release 2.6

meaning that encoding errors raise a UnicodeError. Other possible values are ’ignore’,
"replace’, 'xmlcharrefreplace’, "backslashreplace’ and any other name registered
via codecs.register_error (), see section Codec Base Classes. For a list of possible en-
codings, see section Standard Encodings. New in version 2.0.Changed in version 2.3: Support for
"xmlcharrefreplace’ and 'backslashreplace’ and other error handling schemes added.

endswith (suffix, [start, [end]])
Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple
of suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing
at that position. Changed in version 2.5: Accept tuples as suffix.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. The column number is reset to zero after each newline occurring
in the string. If tabsize is not given, a tab size of 8 characters is assumed. This doesn’t understand other
non-printing characters or escape sequences.

£ind (sub, [start, [end]])
Return the lowest index in the string where substring sub is found, such that sub is contained in the range
[start, end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is not
found.

format (format_string, *args, **kwargs)
Perform a string formatting operation. The format_string argument can contain literal text or replacement
fields delimited by braces {}. Each replacement field contains either the numeric index of a positional
argument, or the name of a keyword argument. Returns a copy of format_string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 1s {0}".format (1+2)
"The sum of 1 + 2 is 3’

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

This method of string formatting is the new standard in Python 3.0, and should be preferred to the % format-
ting described in String Formatting Operations in new code. New in version 2.6.

index (sub, [start, [end]])
Like £ind (), but raise ValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.
isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.
isspace ()

Return true if there are only whitespace characters in the string and there is at least one character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

istitle()
Return true if the string is a titlecased string and there is at least one character, for example uppercase

34 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

characters may only follow uncased characters and lowercase characters only cased ones. Return false
otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq)
Return a string which is the concatenation of the strings in the sequence seq. The separator between elements
is the string providing this method.

1just (width, [fillchar])
Return the string left justified in a string of length widrh. Padding is done using the specified fillchar (default
is a space). The original string is returned if width is less than 1en (s). Changed in version 2.4: Support
for the fillchar argument.

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

1strip ([chars])
Return a copy of the string with leading characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> 7 spacious " lstrip()

" spacious !

>>> 'www.example.com’ .1lstrip (’ cmowz.”)
"example.com’

Changed in version 2.2.2: Support for the chars argument.

partition (sep)
Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
the string itself, followed by two empty strings. New in version 2.5.

replace (o0ld, new, [count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

rfind (sub, [start, [end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start,end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

rindex (sub, [start, [end]])
Like rfind () butraises ValueError when the substring sub is not found.

rijust (width, [fillchar])
Return the string right justified in a string of length widrh. Padding is done using the specified fillchar
(default is a space). The original string is returned if width is less than len (s). Changed in version 2.4:
Support for the fillchar argument.

rpartition (sep)
Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing
two empty strings, followed by the string itself. New in version 2.5.

rsplit ([sep, [maxsplit]])
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator.

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 35

The Python Library Reference, Release 2.6

Except for splitting from the right, rsplit () behaves like split () which is described in detail below.
New in version 2.4.

rstrip ([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the
set of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace.
The chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> spacious " .rstrip()

! spacious’

>>> 'mississippi’ .rstrip(’ipz’)
"mississ’

Changed in version 2.2.2: Support for the chars argument.

split ([sep, [maxsplit]])

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified, then
there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, 1,2’ .split (’,’) returns ["1’, ", ’2’1). The sep argument may consist of multiple
characters (for example, ’ 1<>2<>37’ .split (/<>") returns [" 17, ’2’, ’3’7). Splitting an empty
string with a specified separator returns [”].

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace
are regarded as a single separator, and the result will contain no empty strings at the start or end if the string
has leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just
whitespace with a None separator returns [].

Forexample,” 1 2 3 ’.split() returns ['1’, ’'2’, '3’],and’ 1 2 3 ' .split (None,
1) returns [71", "2 3 '].

splitlines ([keepends])

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the
resulting list unless keepends is given and true.

startswith (prefix, [start, [end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes
to look for. With optional start, test string beginning at that position. With optional end, stop comparing
string at that position. Changed in version 2.5: Accept tuples as prefix.

strip ([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> 7 spacious " .strip ()
"spacious’

>>> 'www.example.com’ .strip (’ cmowz.’)
"example’

Changed in version 2.2.2: Support for the chars argument.

swapcase ()

Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

title()

Return a titlecased version of the string: words start with uppercase characters, all remaining cased charac-
ters are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table, [deletechars])

Return a copy of the string where all characters occurring in the optional argument deletechars are removed,

36

Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

and the remaining characters have been mapped through the given translation table, which must be a string
of length 256.

You can use the maketrans () helper function in the st ring module to create a translation table. For
string objects, set the fable argument to None for translations that only delete characters:

>>> ’"read this short text’.translate (None, ’"aeiou’)
"rd ths shrt txt’

New in version 2.6: Support for a None table argument. For Unicode objects, the translate () method
does not accept the optional deletechars argument. Instead, it returns a copy of the s where all characters
have been mapped through the given translation table which must be a mapping of Unicode ordinals to
Unicode ordinals, Unicode strings or None. Unmapped characters are left untouched. Characters mapped
to None are deleted. Note, a more flexible approach is to create a custom character mapping codec using
the codecs module (see encodings.cpl251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

z£ill (width)
Return the numeric string left filled with zeros in a string of length width. A sign prefix is handled correctly.
The original string is returned if width is less than len (s). New in version 2.2.2.

The following methods are present only on unicode objects:

isnumeric ()
Return True if there are only numeric characters in S, False otherwise. Numeric characters include
digit characters, and all characters that have the Unicode numeric value property, e.g. U+2155, VULGAR
FRACTION ONE FIFTH.

isdecimal ()
Return True if there are only decimal characters in S, False otherwise. Decimal characters include digit
characters, and all characters that that can be used to form decimal-radix numbers, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO.

6.6.2 String Formatting Operations

String and Unicode objects have one unique built-in operation: the % operator (modulo). This is also known as
the string formatting or interpolation operator. Given format % values (where format is a string or Unicode
object), % conversion specifications in format are replaced with zero or more elements of values. The effect is
similar to the using sprintf in the C language. If format is a Unicode object, or if any of the objects being
converted using the $s conversion are Unicode objects, the result will also be a Unicode object.

If format requires a single argument, values may be a single non-tuple object. Otherwise, values must be a
tuple with exactly the number of items specified by the format string, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in
this order:

1. The " %’ character, which marks the start of the specifier.
. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

. Conversion flags (optional), which affect the result of some conversion types.

~ WL

. Minimum field width (optional). If specified as an ” »’ (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional
precision.

5. Precision (optional), given as a * .’ (dot) followed by the precision. If specified as ’ «’ (an asterisk), the
actual width is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 37

The Python Library Reference, Release 2.6

6. Length modifier (optional).
7. Conversion type.
When the right argument is a dictionary (or other mapping type), then the formats in the string must include a

parenthesised mapping key into that dictionary inserted immediately after the ’ $’ character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print / has % (#) 03d quote types.’ % \
{’language’ : "Python", "#": 2}
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
" The value conversion will use the “alternate form” (where defined below).

"0’ The conversion will be zero padded for numeric values.

r—r The converted value is left adjusted (overrides the / 0’ conversion if both are given).

s (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

r4r A sign character (“ +’ or ’ -) will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is
identical to $d.

The conversion types are:

Con- Meaning Notes

version

rd’ Signed integer decimal.

rir Signed integer decimal.

"o’ Signed octal value. €))

ru’ Obselete type — it is identical to d” . @)

rx! Signed hexadecimal (lowercase).)

X’ Signed hexadecimal (uppercase). 2)

re’ Floating point exponential format (lowercase). 3)

"B’ Floating point exponential format (uppercase). 3)

r£r Floating point decimal format. 3)

rE’ Floating point decimal format. 3)

rg’ Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

"G’ Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

el Single character (accepts integer or single character string).

"¢’ String (converts any python object using repr ()). 5)

"s’ String (converts any python object using st r ()). ©6)

I No argument is converted, results in a * $’ character in the result.

Notes:

1. The alternate form causes a leading zero (* 0’) to be inserted between left-hand padding and the formatting
of the number if the leading character of the result is not already a zero.

2. The alternate form causes a leading ' Ox’ or ' 0X’ (depending on whether the ’ x’ or ’ X’ format was
used) to be inserted between left-hand padding and the formatting of the number if the leading character of
the result is not already a zero.

3. The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

38 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

4. The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed
as they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to
6.

5. The %r conversion was added in Python 2.0.

The precision determines the maximal number of characters used.

6. If the object or format provided is a unicode string, the resulting string will also be unicode.

The precision determines the maximal number of characters used.

7. See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that / \ 0" is the end of the string.

For safety reasons, floating point precisions are clipped to 50; $ £ conversions for numbers whose absolute value
is over 1e25 are replaced by $g conversions. * All other errors raise exceptions. Additional string operations are
defined in standard modules string and re.

6.6.3 XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange
type is that an xrange object will always take the same amount of memory, no matter the size of the range it
represents. There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, and the 1en () function.

6.6.4 Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence
types (when added to the language) should also support these operations. Strings and tuples are immutable se-
quence types: such objects cannot be modified once created. The following operations are defined on mutable
sequence types (where x is an arbitrary object):

Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:j] =t slice of s from i to j is replaced by the contents of the

iterable ¢
del s[i:7] sameas s[i:3] = []
s[i:Jj:k] =t the elements of s [1: j:k] are replaced by those of | (1)

t
del s[i:7j:k] removes the elements of s [1:j:k] from the list
s.append (x) same as s[len(s) :len(s)] = [x] 2)
s.extend (x) same as s[len(s) :len(s)] = x 3)
s.count (x) return number of i‘s for which s[1] == x
s.index (x[, 1[, 3J11) return smallest £ such that s[k] == xandi <= 4)

k <
s.insert (i, x) sameas s[1i:1] = [x] (®))
s.pop([il) sameasx = s[i]; del s[i]; return x 6)
s.remove (x) same as del s[s.index (x)] “4)
s.reverse () reverses the items of s in place (7)
s.sort ([cmp[, keyl[, sort the items of s in place (N (®)(9)(10
reversel]]l])

Notes:

1. ¢ must have the same length as the slice it is replacing.

3 These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct
use and without having to know the exact precision of floating point values on a particular machine.

6.6. Sequence Types — str, unicode, list, tuple, buffer, xrange 39

http://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 2.6

2. The C implementation of Python has historically accepted multiple parameters and implicitly joined them
into a tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python
1.4.

3. x can be any iterable object.

4. Raises ValueError when x is not found in s. When a negative index is passed as the second or third
parameter to the index () method, the list length is added, as for slice indices. If it is still negative, it is
truncated to zero, as for slice indices. Changed in version 2.3: Previously, index () didn’t have arguments
for specifying start and stop positions.

5. When a negative index is passed as the first parameter to the insert () method, the list length is added,
as for slice indices. If it is still negative, it is truncated to zero, as for slice indices. Changed in version 2.3:
Previously, all negative indices were truncated to zero.

6. The pop () method is only supported by the list and array types. The optional argument i defaults to -1,
so that by default the last item is removed and returned.

7. The sort () and reverse () methods modify the list in place for economy of space when sorting or
reversing a large list. To remind you that they operate by side effect, they don’t return the sorted or reversed
list.

8. The sort () method takes optional arguments for controlling the comparisons.

cmp specifies a custom comparison function of two arguments (list items) which should return a negative,
zero or positive number depending on whether the first argument is considered smaller than, equal to,
or larger than the second argument: cmp=lambda x,y: cmp(x.lower(), y.lower()). The
default value is None.

key specifies a function of one argument that is used to extract a comparison key from each list element:
key=str.lower. The default value is None.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

In general, the key and reverse conversion processes are much faster than specifying an equivalent cmp
function. This is because cmp is called multiple times for each list element while key and reverse touch
each element only once. Changed in version 2.3: Support for None as an equivalent to omitting cmp was
added.Changed in version 2.4: Support for key and reverse was added.

9. Starting with Python 2.3, the sort () method is guaranteed to be stable. A sort is stable if it guarantees not
to change the relative order of elements that compare equal — this is helpful for sorting in multiple passes
(for example, sort by department, then by salary grade).

10. While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined.
The C implementation of Python 2.3 and newer makes the list appear empty for the duration, and raises
ValueError if it can detect that the list has been mutated during a sort.

6.7 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, dif-
ference, and symmetric difference. (For other containers see the built in dict, 1ist, and tuple classes, and
the collections module.) New in version 2.4. Like other collections, sets support x in set, len (set),
and for x in set. Being an unordered collection, sets do not record element position or order of insertion.
Accordingly, sets do not support indexing, slicing, or other sequence-like behavior.

There are currently two builtin set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable —
its contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of
another set.

The constructors for both classes work the same:

40 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified,
a new empty set is returned.

Instances of set and frozenset provide the following operations:
len (s)
Return the cardinality of set s.
X in s
Test x for membership in s.
x not in s
Test x for non-membership in s.
isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set. New in version 2.6.
issubset (other)
set <= other()
Test whether every element in the set is in other.
set < other ()
Test whether the set is a true subset of other, that is, set <= other and set != other.
issuperset (other)
set >= other ()
Test whether every element in other is in the set.

set > other ()

Test whether the set is a true superset of other, that is, set >= other and set != other.
union (other, ...)
set | other | ... ()
Return a new set with elements from both sets. Changed in version 2.6: Accepts multiple input
iterables.

intersection (other ...)

set & other & ... ()
Return a new set with elements common to both sets. Changed in version 2.6: Accepts multiple input
iterables.

difference (other ...)

set - other - ... ()
Return a new set with elements in the set that are not in the others. Changed in version 2.6: Accepts
multiple input iterables.

symmetric_difference (other)
set * other ()
Return a new set with elements in either the set or other but not both.

copy ()

Return a new set with a shallow copy of s.
Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any it-
erable as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set ("abc’) & ’cbs’ in favor of the more readable
set ("abc’) .intersection (' cbs’).

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only
if the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another
set if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set (’abc’) == frozenset (’abc’) returns True and so does set (‘abc’) in
set ([frozenset ("abc’)1).

6.7. Set Types — set, frozenset 41

The Python Library Reference, Release 2.6

The subset and equality comparisons do not generalize to a complete ordering function. For example, any
two disjoint sets are not equal and are not subsets of each other, so all of the following return False: a<b,
a==Db, or a>b. Accordingly, sets do not implement the __cmp___ () method.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For exam-
ple: frozenset ("ab’) | set (’bc’) returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of
frozenset:

update (other; ...)
set |= other | ... ()
Update the set, adding elements from other. Changed in version 2.6: Accepts multiple input iterables.

intersection_update (other, ...)

set &= other & ... ()
Update the set, keeping only elements found in it and other. Changed in version 2.6: Accepts multiple
input iterables.

difference_update (other, ...)

set —-= other | ... ()
Update the set, removing elements found in others. Changed in version 2.6: Accepts multiple input
iterables.

symmetric_difference_update (other)
set “*= other ()
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()

Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.
clear ()

Remove all elements from the set.

Note, the non-operator versions of the update(), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept
any iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a
set. To support searching for an equivalent frozenset, the elem set is temporarily mutated during the search
and then restored. During the search, the elem set should not be read or mutated since it does not have a
meaningful value.

See Also:

Comparison to the built-in set types Differences between the set s module and the built-in set types.

6.8 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently
only one standard mapping type, the dictionary. (For other containers see the built in 1ist, set, and tuple
classes, and the collections module.)

42 Chapter 6. Built-in Types

The Python Library Reference, Release 2.6

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists,
dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used as
keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such as 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry. (Note however,
that since computers store floating-point numbers as approximations it is usually unwise to use them as dictionary
keys.)

Dictionaries can be created by placing a comma-separated list of key: value pairs within braces, for ex-
ample: {’ jack’: 4098, ’'sjoerd’: 4127}or {4098: 'Jack’, 4127: ’sjoerd’},orby
the dict constructor.

class dict ([arg])

Return a new dictionary initialized from an optional positional argument or from a set of keyword argu-
ments. If no arguments are given, return a new empty dictionary. If the positional argument arg is a
mapping object, return a dictionary mapping the same keys to the same values as does the mapping object.
Otherwise the positional argument must be a sequence, a container that supports iteration, or an iterator
object. The elements of the argument must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the second as the key’s value. If a
given key is seen more than once, the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items
to the dictionary. If a key is specified both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example, these all return a dictionary equal to
{"one": 2, "two": 3}:

edict (one=2, two=3)

edict ({’one’: 2, 'two’: 3})
edict (zip(('one’, ’"two’), (2, 3)))
edict ([["two’, 3