Python Library Reference
Release 2.4.1

Guido van Rossum

Fred L. Drake, Jr., editor

30 March 2005

Python Software Foundation
Email: docs@python.org

Copyright(© 2001-2004 Python Software Foundation. All rights reserved.

Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive Web browsers.

While thePPython Reference Manudescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file /O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which

may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutoriaj the Python Reference Manuatmains the highest authority on syntactic and semantic questions.
Finally, the manual entitleBxtending and Embedding the Python Interpretescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-In Objects 3
2.1 Built-in FUNCLiONS e e e 3
2.2 Non-essential Built-in Functions. L 15
2.3 BUIlt-iNTypes o e e 16
2.4 BUIlt-INEXCEPLIONS o o e e e e e e e e e 35
25 Bullt-inConstants. 39

3 Python Runtime Services 41
3.1 sys — System-specific parametersand functions. 41
3.2 gc — Garbage Collectorinterface. e 47
3.3 weakref —Weakreferences. 49
3.4 fpectl —Floating pointexceptioncontrol Lo 55
3.5 atexit —Exithandlers. 56
3.6 types — Namesforbuilt-intypes. e 57
3.7 UserDict — Class wrapper for dictionaryobjects 60
3.8 UserList —Classwrapperforlistobjects, 60
3.9 UserString — Classwrapper forstringobjects., 61
3.10 operator — Standard operatorsasfunctions.. Lo oL 61
3.11 inspect —Inspectliveobjects. e 66
3.12 traceback — Printorretrieve astacktraceback. oL 71
3.13 linecache —Randomaccesstotextlines. 72
3.14 pickle — Python objectserialization 73
3.15 cPickle — Afasterpickle 83
3.16 copy _reg — Registempickle supportfunctions. 83
3.17 shelve — Python objectpersistence. e 83
3.18 copy — Shallow anddeepcopyoperations 86
3.19 marshal — Internal Python object serialization. 87
3.20 warnings —Warningcontrol. L L e 88
3.21 imp — Accessthemport internals. 90
3.22 zipimport — Import modules from Ziparchives. 0. 93
3.23 pkgutii — Package extension utility oL 95
3.24 code — Interpreterbaseclasses e 95
3.25 codeop — Compile Pythoncode 97
3.26 pprint —Dataprettyprinter e 98
3.27 repr — Alternaterepr() implementation. 101
3.28 new — Creation of runtime internal objects., 102
3.29 site — Site-specific configurationhook L 103

3.30 user — User-specific configurationhook 104
3.31 __builtin __—Built-inobjects 105
3.32 __main __—Top-level script environment. 105
3.33 __future __ — Future statementdefinitions o oo oL 105
String Services 107
4.1 string —Commonstringoperations e 107
4.2 re —Regularexpressionoperations.o 112
4.3 struct — Interpret strings as packed binarydata, 122
4.4 difflib — Helpers forcomputingdeltas 124
45 fpformat — Floating pointconversions. e 133
4.6 StringlO — Read and write stringsasfiles. o oL o o 133
4.7 cStringlO — Faster version oBtringlO L 134
4.8 textwrap — Textwrappingandfilling. 134
4.9 codecs — Codecregistryandbaseclasses. 136
4.10 unicodedata — Unicode Database. 145
4.11 stringprep — Internet String Preparation. 146
Miscellaneous Services 149
5.1 pydoc — Documentation generator and online help system. 149
5.2 doctest — Testinteractive Pythonexamples. 150
5.3 unittest —Unittestingframework. 174
5.4 test — Regression tests packageforPython. 186
5.5 test.test _support — Utility functionsfortests. 188
5.6 decimal — Decimal floating pointarithmetic 189
5.7 math — Mathematical functions. e 204
5.8 cmath — Mathematical functions for complexnumbers 206
5.9 random — Generate pseudo-randomnumbers. oo 207
5.10 whrandom — Pseudo-random numbergenerator. o 210
5.11 bisect — Array bisectionalgorithm 211
5.12 collections — High-performance container datatypes 212
5.13 heapg — Heap queue algorithm. L 215
5.14 array — Efficientarraysof numericvalues oo 217
5.15 sets — Unordered collections of unique elements. 220
5.16 itertools — Functions creating iterators for efficientlooping. 223
5.17 ConfigParser — Configurationfileparser. 232
5.18 fileinput — Iterate over lines from multiple input streams 235
5.19 calendar — General calendar-related functions. 236
5.20 cmd— Support for line-oriented command interpreters. 237
5.21 shlex — Simplelexicalanalysis e 240
Generic Operating System Services 245
6.1 o0s — Miscellaneous operating systeminterfaces. L oL 245
6.2 os.path — Common pathname manipulations. 264
6.3 dircache —Cacheddirectorylistings. 266
6.4 stat — Interpretingstat() results. 267
6.5 statcache — Anoptimization ofos.stat() L L 269
6.6 statvfs — Constants used withs.statvfs() Lo 270
6.7 filecmp —Fileand Directory Comparisons v i it i 270
6.8 subprocess — Subprocessmanagement 272
6.9 popen2 — Subprocesses with accessiblel/Ostreams. 277
6.10 datetime —Basicdate andtimetypes. 279
6.11 time — Timeaccessand CoNVerSioNS v i i ittt e e e 297
6.12 sched —Eventscheduler. e 302

6.13 mutex — Mutual exclusion support. e e e 303
6.14 getpass — Portable passwordinput. 304
6.15 curses — Terminal handling for character-cell displays. 304
6.16 curses.textpad — Text input widget for curses programs 319
6.17 curses.wrapper — Terminal handler for cursesprograms 320
6.18 curses.ascii — Utilities for ASCllcharacters 321
6.19 curses.panel — A panelstack extensionforcurses.. 323
6.20 getopt — Parser forcommand lineoptions. oo 324
6.21 optparse — More powerful command line optionparser 326
6.22 tempfile — Generate temporary files and directories., 353
6.23 errno — Standard errnosystemsymbols. L oL L oo 355
6.24 glob — UNIX style pathname patternexpansion 361
6.25 fnmatch — UNIX filename patternmatching o oL 362
6.26 shutii — High-levelfile operations 362
6.27 locale — Internationalizationservices 364
6.28 gettext — Multilingual internationalizationservices. 369
6.29 logging — Logging facility forPython. 379
6.30 platform — Access to underlying platform’s identifyingdata. 400
Optional Operating System Services 403
7.1 signal — Sethandlersforasynchronousevents. 403
7.2 socket — Low-level networkinginterface. Lo 405
7.3 select — Waiting for I/O completion. 415
7.4 thread — Multiplethreadsofcontrol. 416
7.5 threading — Higher-level threadinginterface. 418
7.6 dummy_thread — Drop-inreplacement fortharead module 425
7.7 dummy_threading — Drop-in replacement for ththreading module 426
7.8 Queue —Asynchronizedqueueclass. 426
7.9 mmap— Memory-mapped file support L 427
7.10 anydbm — Generic access to DBM-styledatabases 428
7.11 dbhash — DBM-style interface to the BSD database libraty. 429
7.12 whichdb — Guess which DBM module created adatabase. 430
7.13 bsddb — Interface to Berkeley DB library 430
7.14 dumbdbm— Portable DBM implementation 433
7.15 zlib — Compression compatiblewithzipo L 434
7.16 gzip — Supportforgzipfiles 436
7.17 bz2 — Compression compatible witheip2 o 437
7.18 zipfile — Work with ZIP archives. 439
7.19 tarfile — Read and write tar archivefiles. o oo oL 442
7.20 readline — GNUreadlineinterface. L 447
7.21 rlcompleter — Completion function for GNU readline. 450
Unix Specific Services 453
8.1 posix — The mostcommon POSIX systemcalls., 453
8.2 pwd—Thepassworddatabase. 454
8.3 grp —Thegroupdatabase 455
8.4 crypt — Functionto check MIX passwords. 456
8.5 dIl —CallCfunctionsinsharedobjects 456
8.6 dbm— Simple “database”interface. 457
8.7 gdbm— GNU's reinterpretationofdbom. o L 458
8.8 termios — POSIXstylettycontrol. 459
8.9 tty — Terminalcontrolfunctions. 460
8.10 pty — Pseudo-terminal utilities e 461
8.11 fentl — Thefentl() andioctl() systemecalls. 461

10

11

12

8.12 pipes — Interfacetoshellpipelines 463

8.13 posixfile — File-like objects with lockingsupport 464
8.14 resource — Resource usage information. L 466
8.15 nis —Interface to Sun’s NIS (YellowPages) 468
8.16 syslog — UNix sysloglibraryroutines. 469
8.17 commands— Utilities forrunningcommands e 470
The Python Debugger 471
9.1 DebuggerCommands e e e 472
9.2 HOowWItWOrKS e e e 475
The Python Profiler 477
10.1 Introductiontothe profiler e 477
10.2 How Is This Profiler Different From The Old Profiler?. 477
10.3 InstantUsers Manual. e e e e 478
10.4 What Is Deterministic Profiling?. 480
10.5 Reference Manual 480
10.6 Limitations. o . e 483
10.7 Calibration. e e 483
10.8 Extensions — Deriving Better Profilers. 484
10.9 hotshot — High performance logging profiler 485
10.10timeit — Measure execution time of small code snippets 486
Internet Protocols and Support 491
11.1 webbrowser — Convenient Web-browsercontroller. 491
11.2 cgi — Common Gateway Interface support.. 493
11.3 cgitb — Traceback managerfor CGlscripts. 500
11.4 urlib —OpenarbitraryresourcesbyURL 501
11.5 urllib2 —extensible library foropeningURLs 506
11.6 httplib — HTTP protocolclient. 516
11.7 ftplib —FTP protocolclient. e 520
11.8 gopherlib — Gopher protocolclient 524
11.9 poplib —POP3protocolclient. e 524
11.10imaplib — IMAP4 protocolclient e 526
11.11nntplib — NNTP protocol client. 531
11.12smtplib — SMTP protocolclient. 535
11.13smtpd — SMTP Server. o e 538
11.14telnetlib — Telnetclient e 539
11.15urlparse — Parse URLsintocomponents. i i i it 542
11.16SocketServer — A framework for networkservers. Lo oL 543
11.17BaseHTTPServer —BasicHTTP server et ettt 546
11.18SimpleHTTPServer — Simple HTTP requesthandler 548
11.19CGIHTTPServer — CGl-capable HTTP requesthandler 549
11.20cookielib — Cookie handling for HTTP clients. 550
11.21Cookie — HTTP state management. i i i i i e e e e e 557
11.22xmlrpclib — XML-RPCclientaccess i 561
11.23SimpleXMLRPCServer — Basic XML-RPCserver. 565
11.24DocXMLRPCServer — Self-documenting XML-RPC server. 567
11.25asyncore — Asynchronous sockethandler. 568
11.26asynchat — Asynchronous socket command/response handler. 571
Internet Data Handling 575
12.1 formatter = — Generic outputformatting 575
12.2 email — An email and MIME handlingpackage 579
12.3 mailcap — Mailcap file handling.. 608

13

14

15

16

12.4 mailbox — Read various mailboxformats 608

12.5 mhlib —Accessto MH mailboxes e 610
12.6 mimetools — Tools for parsing MIME messages v 612
12.7 mimetypes — Map filenamesto MIME types. 614
12.8 MimeWriter — Generic MIME filewriter L o 616
12.9 mimify — MIME processingof mailmessages. e 617
12.10multifile — Support for files containing distinctparts. o oL 618
12.11rfc822 —Parse RFC 2822 mailheaders. i i 620
12.12base64 — RFC 3548: Basel6, Base32, Base64 Data Encodings 624
12.13binascii — Convert between binaryamdsCil 625
12.14binhex — Encode and decode binhex4files L. 627
12.15quopri — Encode and decode MIME quoted-printabledata 628
12.16uu — Encode and decode uuencodefiles L Lo o 628
12.17xdrlib —Encode and decode XDRdata. 629
12.18netrc —nnetrcfile processing. L 632
12.19robotparser ~ — Parserforrobots.txt 633
12.20csv — CSV File Readingand Writing. o i i i i e e e 633
Structured Markup Processing Tools 639
13.1 HTMLParser — Simple HTML and XHTML parser. v i v v v v .. 639
13.2 sgmllib — Simple SGML parser. 0 e e e e e e 641
13.3 htmllib — AparserforHTMLdocuments i v v i i 644
13.4 htmlentitydefs — Definitions of HTML general entities 645
13.5 xml.parsers.expat — Fast XML parsingusingExpat oL 645
13.6 xml.dom — The Document Object Model APL. 654
13.7 xml.dom.minidom — Lightweight DOM implementation. 664
13.8 xml.dom.pulldom — Support for building partial DOMtrees 669
13.9 xml.sax — Supportfor SAX2 parsers. o o 669
13.10xml.sax.handler — BaseclassesforSAXhandlers L. 671
13.11 xml.sax.saxutils — SAXUtilities L 675
13.12xml.sax.xmlreader — Interface for XML parsers. e 676
13.13xmllib — A parserfor XML documents. 680
Multimedia Services 685
14.1 audioop — Manipulaterawaudiodata 685
14.2 imageop — Manipulaterawimagedata. 688
14.3 aifc — Read and write AIFFand AIFCfiles. oo 689
14.4 sunau — Read and write Sun AUfiles oL 691
14.5 wave — Read and write WAV files. 694
14.6 chunk —Read IFFchunkeddata. 695
14.7 colorsys — Conversions betweencolorsystems. 697
14.8 rghimg — Read and write “SGIRGB"files 697
14.9 imghdr — Determine thetypeofanimage e 698
14.10sndhdr — Determine type of soundfile L L 699
14.11ossaudiodev — Access to OSS-compatible audiodevices. 699
Cryptographic Services 705
15.1 hmac — Keyed-Hashing for Message Authentication. 705
15.2 md5— MD5 message digestalgorithm. L 705
15.3 sha — SHA-1 message digest algorithm. o 707
Graphical User Interfaces with Tk 709
16.1 Tkinter — Pythoninterfaceto Tcl/Tk. .. 709
16.2 Tix —ExtensionwidgetsforTK. e 721
16.3 ScrolledText ~ — Scrolled TextWidget. 725

17

18

19

20

21

22

16.4 turtle —TurtlegraphicsforTk e
16.5 Idle
16.6 Other Graphical User Interface Packages i

Restricted Execution 733
17.1 rexec — Restricted executionframework L oo
17.2 Bastion — Restrictingaccesstoobjects o
Python Language Services 739

18.1 parser — Access Pythonparsetrees. e
18.2 symbol — Constants used with Python parsetrees
18.3 token — Constants used with Python parsetrees
18.4 keyword — Testing for Pythonkeywords,
18.5 tokenize — Tokenizer for Pythonsource. e
18.6 tabnanny — Detection of ambiguous indentation L.
18.7 pyclbr — Python class browser support L
18.8 py_compile — Compile Pythonsourcefiles.
18.9 compileall — Byte-compile Python libraries,
18.10dis — Disassembler for Pythonbytecode.,
18.11 pickletools — Tools for pickle developers..
18.12distutils — Building and installing Python modules.

Python compiler package 763

19.1 Thebasicinterface L e
19.2 LIiMiItations. o o e e e
19.3 Python Abstract Syntax. o
19.4 Using Visitorsto Walk ASTS o e e
19.5 Bytecode Generation. i e e e e e e e

SGI IRIX Specific Services 771

20.1 al —Audiofunctionsonthe SGl e
20.2 AL— Constantsused withtted module
20.3 cd — CD-ROM access on SGIsystems i i i i i e e
20.4 fl — FORMS library for graphical userinterfaces.

20.5 FL — Constants used withtife module Lo
20.6 flp — Functions for loading stored FORMS designs.

20.7 fm — Font Managefinterface. e e e
20.8 gl — Graphics Libraryinterface e
20.9 DEVICE— Constantsused withtlgd module

20.10GL— Constants used withthgg module oL
20.11imgfile — Support for SGlimglibfiles oL
20.12jpeg — Read andwrite JPEGfiles. e

SunOS Specific Services 789

21.1 sunaudiodev — AccesstoSunaudiohardware.
21.2 SUNAUDIODEW- Constants used witbunaudiodev

MS Windows Specific Services 791

22.1 msvcrt —Useful routines from the MS VE€Fruntime oL
22.2 _winreg —WIiNdOWS registry aCCeSS v« v v v v e e e e e e e e
22.3 winsound — Sound-playing interface for Windows.

Undocumented Modules 799

Al Frameworks o e e e e e e
A.2 Miscellaneous useful utilities. e

Vi

A.3 Platformspecificmodules e 799

A4 Multimedia. e e 799
A5 Obsolete 800
A.6 SGl-specific Extension modules. 801
B Reporting Bugs 803
C History and License 805
C.1 Historyofthesoftware e 805
C.2 Terms and conditions for accessing or otherwise using Python 806
C.3 Licenses and Acknowledgements for Incorporated Software. 808
Module Index 817
Index 821

Vii

viii

CHAPTER
ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of anmport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’haveto read it like a novel — you can also browse the table of contents (in front of the manual),

or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see maddten) and read a section or two. Regardless of

the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

CHAPTER
TWO

Built-In Objects

Names for built-in exceptions and functions and a number of constants are found in a separate symbol table. This
table is searched last when the interpreter looks up the meaning of a name, so local and global user-defined names can
override built-in names. Built-in types are described together here for easy reférence.

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manufdr the complete picture on operator priorities.

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

—_import __(name[, globals[, Iocals[, fromlist]]])
This function is invoked by thenport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semanticsiofghg statement. For examples
of why and how you would do this, see the standard library modhtesks andrexec . See also the built-in
moduleimp, which defines some useful operations out of which you can build your_awmport __()

function.

For example, the statemenimport spam ’ results in the following call: __import __('spam’,
globals(), locals(), [I) ; the statement ffom spam.ham import eggs ' results in
‘__import __('spam.ham’, globals(), locals(), ['eggs’]) . Note that even though

locals() and['eggs’] are passed in as arguments, thémport __() function does not set the local
variable nameckggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not uséoitals argument at all, and uses bfobalsonly to determine the
package context of thenport statement.)

When thenamevariable is of the fornpackage.module , normally, the top-level package (the name up till the
first dot) is returnedpotthe module named bhyame However, when a non-empigomlistargument is given, the
module named byameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when usingnport spam.ham.eggs ', the top-level packagepam must be
placed in the importing namespace, but when usfrgm spam.ham import eggs ', the spam.ham
subpackage must be used to find dggs variable. As a workaround for this behavior, ugtattr() to
extract the desired components. For example, you could define the following helper:

IMost descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.

def my_import(hame):
mod = __import__(name)
components = name.split(".")
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

basestring ()
This abstract type is the superclass $&r andunicode . It cannot be called or instantiated, but it can be

used to test whether an object is an instancstiof or unicode . isinstance(obj, basestring) is
equivalent tasinstance(obj, (str, unicode)) . New in version 2.3.
bool ([x])

Convert a value to a Boolean, using the standard truth testing procedwés fiilse or omitted, this returns
False ; otherwise it returnJrue . bool is also a class, which is a subclassmif . Classbool cannot be
subclassed further. Its only instances baégse andTrue .

New in version 2.2.1. Changed in version 2.3: If no argument is given, this function rétalses .

callable (objec)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havecall __() method.

chr (i)
Return a string of one character whosgcil code is the integer For examplechr(97) returns the string
'a’ . Thisis the inverse ofrd() . The argument must be in the range [0..255], inclusiXedueError will
be raised ifi is outside that range.

classmethod (function
Return a class method féunction

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...): ..

The @classmethod form is a function decorator — see the description of function definitions in chapter 7 of
the Python Reference Manufdr details.

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class. If a class method is called for a derived class, the derived class object is passed as
the implied first argument.

Class methods are different tharr€or Java static methods. If you want those, stagicmethod() in this
section. New in version 2.2. Changed in version 2.4: Function decorator syntax added.

cmp(X, Y)
Compare the two objectsandy and return an integer according to the outcome. The return value is negative if
X <y, zeroifx == yand strictly positive ifx > .

compile (string, filename, kinEi flags[, donLinherit]])
Compile thestringinto a code object. Code objects can be executed lBxaa statement or evaluated by a call
toeval() . Thefilenameargument should give the file from which the code was read; pass some recognizable

4 Chapter 2. Built-In Objects

value if it wasn't read from a file'€string>’ is commonly used). Thkind argument specifies what kind of
code must be compiled; it can lexec’ if string consists of a sequence of statemetagal’ if it consists

of a single expression, &ingle’ if it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else Mame will be printed).

When compiling multi-line statements, two caveats apply: line endings must be represented by a single newline
character'fn’), and the input must be terminated by at least one newline character. If line endings are
represented br\n’ , use the stringeplace() = method to change them into’

The optional argumenttagsanddont_inherit (which are new in Python 2.2) control which future statements
(see PEP 236) affect the compilationstfing. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile. flagfsargument is given and
dont_inheritis not (or is zero) then the future statements specified bjldgsargument are used in addition to
those that would be used anywaydtint_inherit is a non-zero integer then tflagsargument is it — the future
statements in effect around the call to compile are ignored.

Future statements are specified by bits which can be bitwise or-ed together to specify multiple statements. The
bitfield required to specify a given feature can be found astmepiler _flag attribute on the_Feature
instance in the__future __ module.

complex ([real[, imag]])
Create a complex number with the valgal + imagtj or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). Ifimagis omitted, it defaults to zero and the function serves as a numeric conversion
function likeint() ,long() andfloat() . If both arguments are omitted, retui@s.

delattr (object, namg
This is a relative oetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(%, ' foobar) is equivalenttalel x. foobar.

dict ([mapping—or—sequenc]e)
Return a new dictionary initialized from an optional positional argument or from a set of keyword arguments.
If no arguments are given, return a new empty dictionary. If the positional argument is a mapping object, return
a dictionary mapping the same keys to the same values as does the mapping object. Otherwise the positional
argument must be a sequence, a container that supports iteration, or an iterator object. The elements of the
argument must each also be of one of those kinds, and each must in turn contain exactly two objects. The first
is used as a key in the new dictionary, and the second as the key’s value. If a given key is seen more than once,
the last value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their associated values are added as items to the
dictionary. If a key is specified both in the positional argument and as a keyword argument, the value associated
with the keyword is retained in the dictionary. For example, these all return a dictionary edtaihéd:

2, "two" 3}

edict({'one: 2, 'two: 3}

edict({'one: 2, 'two: 3}.items())
edict({'one”. 2, 'two". 3}.iteritems())
edict(zip((one’, 'two’), (2, 3)))
edict([['two’, 3], ['one’, 2]])

edict(one=2, two=3)

edict([([one’, 'two’][i-2], i) for i in (2, 3)])

New in version 2.2. Changed in version 2.3: Support for building a dictionary from keyword arguments added.

2.1. Built-in Functions 5

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts to
return a list of valid attributes for that object. This information is gleaned from the objeatict __ attribute,
if defined, and from the class or type object. The list is not necessarily complete. If the object is a module object,
the list contains the names of the module’s attributes. If the object is a type or class object, the list contains the
names of its attributes, and recursively of the attributes of its bases. Otherwise, the list contains the object’s
attributes’ names, the names of its class’s attributes, and recursively of the attributes of its class’s base classes.
The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

[__builtins__’, °__doc__’, '__name__’, ’struct]

>>> dir(struct)

[__doc_', '__name__’, ’'calcsize’, 'error’, 'pack’, 'unpack’]

Note: Becausalir() is supplied primarily as a convenience for use at an interactive prompt, it tries to supply
an interesting set of names more than it tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using long division. With mixed operand types, the rules for binary arithmetic operators apply.
For plain and long integers, the result is the samgad b, a % b) . For floating point numbers the result
is(q, a % b),whereqis usuallymath.floor(a / b) butmay be 1 less than that. Inany cgsé b +
a % bisverycloset@, if a % bis non-zero it has the same signasand0 <= abs(a % b) < abs(b).

Changed in version 2.3: Usirdivmod() with complex numbers is deprecated.

enumerate (iterable
Return an enumerate objeciterable must be a sequence, an iterator, or some other object which supports
iteration. Thenext() method of the iterator returned l®numerate() returns a tuple containing a count
(from zero) and the corresponding value obtained from iterating ibeble enumerate() is useful for
obtaining an indexed serie€, seq[0]) , (1, seq[l]) , (2, seq[2]) ,.... New in version 2.3.

eval (expressio[1, globals[, Iocals]])
The arguments are a string and optional globals and locals. If prowgzhlsmust be a dictionary. If provided,
localscan be any mapping object. Changed in version 2.4: formecgiswas required to be a dictionary.

Theexpressiorargument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using theglobalsandlocals dictionaries as global and local name space. Ifglabalsdictionary is present

and lacks ”__builtins__’, the current globals are copied inggobalsbeforeexpressioris parsed. This means

that expressiomormally has full access to the standardbuiltin -~ __ module and restricted environments

are propagated. If thiecalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment wéneaik is called. The return value is the result of

the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1’)
2

This function can also be used to execute arbitrary code objects (such as those creatagdit®()). In this
case pass a code object instead of a string. The code object must have been compiledgva$singas the
kind argument.

Hints: dynamic execution of statements is supported byettex statement. Execution of statements from

a file is supported by thexecfile() function. Theglobals() andlocals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for esaly or
execfile()

6 Chapter 2. Built-In Objects

execfile (fiIenameE, gIobaIs[, Iocals]])
This function is similar to thexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new modufe.

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using ghebalsandlocals dictionaries as global and local names-

pace. If provided]ocalscan be any mapping object. Changed in version 2.4: fornledsls was required

to be a dictionary. If thdocalsdictionary is omitted it defaults to thglobalsdictionary. If both dictionaries

are omitted, the expression is executed in the environment velxexcfile() is called. The return value is

None.

Warning: The defaultocalsact as described for functidacals() below: modifications to the defauticals
dictionary should not be attempted. Pass an exgbcils dictionary if you need to see effects of the code on
locals after functionexecfile() returns. execfile() cannot be used reliably to modify a function’s
locals.

file (filenamd, modd, bufsizd])
Return a new file object (described in section 2.3MI¢'Objects). The first two arguments are the same as for
stdio 's fopen() : filenameis the file name to be openemhodeindicates how the file is to be opened:
for reading,w’ for writing (truncating an existing file), arid’ opens it for appending (which @omeUnNix
systems means thall writes append to the end of the file, regardless of the current seek position).

Modes’r+' ,'w+’ and’'a+’ open the file for updating (note that+' truncates the file). Appentd’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opend@Error s raised.

In addition to the standartbpen() valuesmodemay be’U’ or'rU’ . If Python is built with universal
newline support (the default) the file is opened as a text file, but lines may be terminated by\any ofthe

Unix end-of-line convention\r’ , the Macintosh convention dwr\n’ , the Windows convention. All of
these external representations are seetnas by the Python program. If Python is built without universal
newline suppormode’U’ is the same as normal text mode. Note that file objects so opened also have an
attribute callednewlines which has a value oNone (if no newlines have yet been seeflfy ,'\r ,

\nn’ , or a tuple containing all the newline types seen.

If modeis omitted, it defaults t&’ . When opening a binary file, you should appéodd to themodevalue

for improved portability. (It's useful even on systems which don't treat binary and text files differently, where

it serves as documentation.) The optiobafsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for tty devices and fully buffered
for other files. If omitted, the system default is used.

Thefile() constructor is new in Python 2.2 and is an aliasdpen() . Both spellings are equivalent. The
intent is foropen() to continue to be preferred for use as a factory function which returns dileew object.
The spellingfile is more suited to type testing (for example, writingjhistance(f, file)).

filter (function, lis)
Construct a list from those elementslidt for which functionreturns true.list may be either a sequence, a
container which supports iteration, or an iteratoridt is a string or a tuple, the result also has that type;
otherwise it is always a list. functionis None, the identity function is assumed, that is, all elementssbthat
are false (zero or empty) are removed.

Note that filter(function, list) is equivalent to [item for item in list if
function(item)] if function is notNone and[item for item in list if item] if function is
None.

2|t is used relatively rarely so does not warrant being made into a statement.

3Specifying a buffer size currently has no effect on systems that don’'tseveuf() . The interface to specify the buffer size is not done
using a method that calletvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.1. Built-in Functions 7

float ([x])
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed
decimal or floating point number, possibly embedded in whitespace. Otherwise, the argument may be a plain
or long integer or a floating point number, and a floating point number with the same value (within Python’s
floating point precision) is returned. If no argument is given, retOtis.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

frozenset ([iterable])
Return a frozenset object whose elements are taken itenable Frozensets are sets that have no update
methods but can be hashed and used as members of other sets or as dictionary keys. The elements of a frozenset
must be immutable themselves. To represent sets of sets, the inner sets shouldralseniset objects. If
iterableis not specified, returns a new empty $edzenset([]) . New in version 2.4.

getattr (object, namE, default])
Return the value of the named attributedafiject namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For examgpgiattr(x, 'foobar’)

is equivalent tax.foobar . If the named attribute does not exidgfaultis returned if provided, otherwise
AttributeError is raised.
globals ()

Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, namg
The arguments are an object and a string. The res(ltus if the string is the name of one of the object’s
attributes,False if not. (This is implemented by callingetattr(object namg and seeing whether it
raises an exception or not.)

hash (objec)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated. New in
version 2.2,

hex (X)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression.
Changed in version 2.4: Formerly only returned an unsigned literal..

id (objec)
Return the “identity” of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects with non-overlapping lifetimes may have the same
id() value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent teeval(raw _input(prompd) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically val®irgaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, thenput() will use it to provide elaborate line editing and history

8 Chapter 2. Built-In Objects

features.
Consider using theaw _input() function for general input from users.

int ([x[radix]])

Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespaadiXfia@ameter gives

the base for the conversion and may be any integer in the range [2, 36], or zeadlixlfs zero, the proper

radix is guessed based on the contents of string; the interpretation is the same as for integer litachisis|f
specified anc is not a string,TypeError is raised. Otherwise, the argument may be a plain or long integer

or a floating point number. Conversion of floating point numbers to integers truncates (towards zero). If the
argument is outside the integer range a long object will be returned instead. If no arguments are given, returns
0.

isinstance (object, classinfp

Return true if theobjectargument is an instance of tlekassinfoargument, or of a (direct or indirect) subclass
thereof. Also return true iflassinfois a type object andbjectis an object of that type. kbbjectis not a class
instance or an object of the given type, the function always returns falstasinfois neither a class object

nor a type object, it may be a tuple of class or type objects, or may recursively contain other such tuples (other
sequence types are not acceptedklafsinfois not a class, type, or tuple of classes, types, and such tuples, a
TypeError exception is raised. Changed in version 2.2: Support for a tuple of type information was added.

issubclass (class, classinfp

Return true ifclassis a subclass (direct or indirect) ofassinfo A class is considered a subclass of itself.
classinfomay be a tuple of class objects, in which case every entgjassinfowill be checked. In any other
case, aypeError exception is raised. Changed in version 2.3: Support for a tuple of type information was
added.

iter (o[, sentineﬂ)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argumentust be a collection object which supports the iteration protocol
(the __iter __() method), or it must support the sequence protocol (thgetitem __() method with

integer arguments starting @). If it does not support either of those protocolgjpeError s raised. If

the second argumensentine] is given, theno must be a callable object. The iterator created in this case
will call o with no arguments for each call to itext() method; if the value returned is equalgentine]
Stoplteration will be raised, otherwise the value will be returned. New in version 2.2.

len (9

Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list ([sequenc}e)
Return a list whose items are the same and in the same ordeigasncs items. sequencenay be either a
sequence, a container that supports iteration, or an iterator objeetqufncés already a list, a copy is made
and returned, similar teequendg] . For instanceljst('abc’) returng’a’, 'b’, 'c’] andlist(
1, 2, 3)) returns[1, 2, 3] . If noargumentis given, returns a new empty ljt,

locals ()

Update and return a dictionary representing the current local symbol ts#dening: The contents of this
dictionary should not be modified; changes may not affect the values of local variables used by the interpreter.

long ([x[radix]])

Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace. rHuix argument is interpreted in the same way as for

int() , and may only be given whenis a string. Otherwise, the argument may be a plain or long integer or a
floating point number, and a long integer with the same value is returned. Conversion of floating point numbers
to integers truncates (towards zero). If no arguments are given, ré&urns

map(function, list, ..)

2.1. Built-in Functions 9

Apply functionto every item oflist and return a list of the results. If additioni@t arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended wiitine items. Iffunctionis None, the identity function is assumed; if
there are multiple list argumentsiap() returns a list consisting of tuples containing the corresponding items
from all lists (a kind of transpose operation). Tl& arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single argumerg, return the largest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single argumerg, return the smallest item of a non-empty sequence (such as a string, tuple or list). With
more than one argument, return the smallest of the arguments.

object ()
Return a new featureless objeabject() is a base for all new style classes. It has the methods that are
common to all instances of new style classes. New in version 2.2.

Changed in version 2.3: This function does not accept any arguments. Formerly, it accepted arguments but
ignored them.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Changed in
version 2.4: Formerly only returned an unsigned literal..

open (filename{, mode{, bufsize]])
An alias for thefile() function above.

ord (¢
Return theascii value of a string of one character or a Unicode character. &@df’a’) returns the integer
97, ord(u\u2020") returns8224 . This is the inverse afhr() for strings and ofinichr() ~ for Unicode
characters.

pow(X, y[z])
Returnx to the powery; if zis present, returx to the powery, moduloz (computed more efficiently than
pow(x, Yy) % 2). The arguments must have numeric types. With mixed operand types, the coercion rules for
binary arithmetic operators apply. For int and long int operands, the result has the same type as the operands
(after coercion) unless the second argument is negative; in that case, all arguments are converted to float and
a float result is delivered. For exampl)**2 returns100, but 10**-2 returns0.01 . (This last feature
was added in Python 2.2. In Python 2.1 and before, if both arguments were of integer types and the second
argument was negative, an exception was raised.) If the second argument is negative, the third argument must
be omitted. Ifzis presentx andy must be of integer types, arydnust be non-negative. (This restriction was
added in Python 2.2. In Python 2.1 and before, floating 3-argupmf) returned platform-dependent results
depending on floating-point rounding accidents.)

property ([fget[, fse{, fdel[, doc]]]])
Return a property attribute for new-style classes (classes that deriveobjeat).

fgetis a function for getting an attribute value, likewikeetis a function for setting, anttlel a function for
del’ing, an attribute. Typical use is to define a managed attribute x:

class C(object):
def getx(self): return self._ x
def setx(self, value): self. _x = value
def delx(self): del self.__x
X = property(getx, setx, delx, "I'm the 'X’ property.")

New in version 2.2.

10 Chapter 2. Built-In Objects

range ([start,] stop{, step])

This is a versatile function to create lists containing arithmetic progressions. It is most often tmmedloops.
The arguments must be plain integers. If gtepargument is omitted, it defaults th. If the start argument
is omitted, it defaults t®. The full form returns a list of plain integefsstart, start + step start + 2

* step ...] . If stepis positive, the last element is the largestrt + i * stepless tharstop if stepis
negative, the last element is the largstrt + i * stepgreater tharstop stepmust not be zero (or else
ValueError s raised). Example:

>>> range(10)

[0, 1, 2, 3, 4,5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5,6, 7,8 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)

1

>>> range(1, 0)

raw _input ([prompt])

If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. &@irés read,
EOFError israised. Example:

>>> s = raw_input(’-->)

--> Monty Python’s Flying Circus
>>> S

"Monty Python’s Flying Circus”

If the readline module was loaded, theraw _input() will use it to provide elaborate line editing and
history features.

reduce (function, sequent{einitializer])

Apply function of two arguments cumulatively to the items sfquencefrom left to right, so as to reduce
the sequence to a single value. For exampdeluce(lambda x, y: x+y, [1, 2, 3, 4, 5]
calculateq(((1+2)+3)+4)+5) . The left argumenty, is the accumulated value and the right argument,
is the update value from treequencelf the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is emitiglizér is not given and
sequenceontains only one item, the first item is returned.

reload (modulg

Reload a previously importedodule The argument must be a module object, so it must have been successfully
imported before. This is useful if you have edited the module source file using an external editor and want to try
out the new version without leaving the Python interpreter. The return value is the module object (the same as
themoduleargument).

Whenreload(module) is executed:

ePython modules’ code is recompiled and the module-level code reexecuted, defining a new set of objects
which are bound to nhames in the module’s dictionary. Trtie function of extension modules is not
called a second time.

eAs with all other objects in Python the old objects are only reclaimed after their reference counts drop to

2.1. Built-in Functions 11

zero.
eThe names in the module namespace are updated to point to any new or changed objects.

oOther references to the old objects (such as names external to the module) are not rebound to refer to the
new objects and must be updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the firsiport statement for it does not bind
its name locally, but does store a (partially initialized) module objesysimodules . To reload the module
you must firsimport it again (this will bind the name to the partially initialized module object) before you
canreload() it

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — wigh atatement it can test

for the table’s presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically loaded modules, exceptfor
__main __and__builtin ~ __. In many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usirgm ... import ..., callingreload() for the
other module does not redefine the objects imported from it — one way around this is to re-exefuamthe
statement, another is to ugeport and qualified namesr(odulenamg instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (objec)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed teval()

reversed (seq
Return a reverse iteratosegmust be an object which supports the sequence protocol (then__() method
and the__getitem __() method with integer arguments startingddat New in version 2.4,

round (x[, n])
Return the floating point valuerounded ton digits after the decimal point. Hi is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the powenminus
if two multiples are equally close, rounding is done away from 0 (so. for exammled(0.5) is1.0 and
round(-0.5) is-1.0).

set ([iterable])
Return a set whose elements are taken fitenable The elements must be immutable. To represent sets of sets,
the inner sets should Beozenset objects. Ifiterableis not specified, returns a new empty sti([])
New in version 2.4.

setattr (object, name, valye
This is the counterpart @fetattr() . The arguments are an object, a string and an arbitrary value. The string

12 Chapter 2. Built-In Objects

may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For exampleetattr(%, ' foobar, 123) is equivalent tox. foobar = 123.

slice ([start,] sto;{, step])
Return a slice object representing the set of indices specifiedrimye(start, stop step. Thestartand
steparguments default tblone. Slice objects have read-only data attribusest , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used. For exampla]start:stop:step] " or ‘a[start:stop, i] "

sorted (iterable[, cm[{, ke)[, reverse]]])
Return a new sorted list from the itemsifarable The optional argumentsnp key, andreversehave the same
meaning as those for thist.sort() method. New in version 2.4.

staticmethod (function
Return a static method fdunction

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ..): ...

The @staticmethod form is a function decorator — see the description of function definitions in chapter 7 of
the Python Reference Manufdr details.

It can be called either on the class (suchCaf)) or on an instance (such &).f()). The instance is
ignored except for its class.

Static methods in Python are similar to those found in Java ‘ot. CFor a more advanced concept, see
classmethod() in this section. New in version 2.2. Changed in version 2.4: Function decorator syntax
added.

str ([object])
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference witliepr(objec) is thatstr(objec) does not always attempt to return a string that is
acceptable teval() ; its goal is to return a printable string. If no argument is given, returns the empty string,

sum(sequenc[a start])
Sumsstart and the items of aequencefrom left to right, and returns the totalstart defaults to0. The
sequencs items are normally numbers, and are not allowed to be strings. The fast, correct way to concatenate
sequence of strings is by callingjoin(sequence. Note thatsum(range(n), m) is equivalent to
reduce(operator.add, range(n), m) New in version 2.3.

super (type[, object—or-typd)
Return the superclass tfpe If the second argument is omitted the super object returned is unbound. If the
second argument is an objed@jnstance(obj, type must be true. If the second argument is a type,
issubclass(type2 type must be truesuper() only works for new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

Note thatsuper is implemented as part of the binding process for explicit dotted attribute lookups such as
‘super(C, self). __getitem __(name) '. Accordingly, super is undefined for implicit lookups using
statements or operators such sisger(C, self)[name] . New in version 2.2.

2.1. Built-in Functions 13

tuple ([sequenc}a)
Return a tuple whose items are the same and in the same oslEEENCS items.sequencenay be a sequence,
a container that supports iteration, or an iterator objeedfuencés already a tuple, it is returned unchanged.
For instancetuple(’abc’) returns('a’, 'b’, 'c’) andtuple([1, 2, 3]) returns(l, 2,
3) . If no argument is given, returns a new empty tugle,

type (objec)
Return the type of anbject The return value is a type object. The standard motjgdes defines names for
all built-in types that don’t already have built-in names. For instance:

>>> jmport types
>>> x = ’abc’
>>> if type(x) is str: print "It's a string"

It's a string
>>> def f(): pass

>>> if type(f) is types.FunctionType: print "It's a function”
It's a function

Theisinstance() built-in function is recommended for testing the type of an object.

unichr (i)
Return the Unicode string of one character whose Unicode code is the intdgarexampleunichr(97)
returns the string'a’ . This is the inverse ofrd() for Unicode strings. The argument must be in the range
[0..65535], inclusiveValueError s raised otherwise. New in version 2.0.

unicode ([objec{, encoding{, errors]]])
Return the Unicode string version olbjectusing one of the following modes:

If encodingand/orerrors are given,unicode() will decode the object which can either be an 8-bit string
or a character buffer using the codec &rcoding The encodingparameter is a string giving the name of an
encoding; if the encoding is not knowhgokupError is raised. Error handling is done accordingetwors,
this specifies the treatment of characters which are invalid in the input encodiegons$ is 'strict’ (the
default), avalueError s raised on errors, while a value ‘@jnore’ causes errors to be silently ignored,
and a value ofreplace’ causes the official Unicode replacement charatteFFFD to be used to replace
input characters which cannot be decoded. See alsmtiiecs module.

If no optional parameters are givemnicode() will mimic the behaviour ofstr() except that it returns
Unicode strings instead of 8-bit strings. More preciselglfectis a Unicode string or subclass it will return
that Unicode string without any additional decoding applied.

For objects which provide a_unicode __() method, it will call this method without arguments to create a
Unicode string. For all other objects, the 8-bit string version or representation is requested and then converted
to a Unicode string using the codec for the default encodirigtiitt’ mode.

New in version 2.0. Changed in version 2.2: Support faunicode __() added.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that hasliat __ attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefirted.

xrange ([start,] stop{, step])
This function is very similar tdange() , but returns an “xrange object” instead of a list. This is an opaque

4In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

14 Chapter 2. Built-In Objects

sequence type which yields the same values as the corresponding list, without actually storing them all simul-
taneously. The advantage xfange() overrange() is minimal (sincexrange() still has to create the

values when asked for them) except when a very large range is used on a memory-starved machine or when all
of the range’s elements are never used (such as when the loop is usually terminataeaktl).

Note: xrange() is intended to be simple and fast. Implementations may impose restrictions to achieve this.
The C implementation of Python restricts all arguments to native C longs ("short” Python integers), and also
requires that the number of elements fit in a native C long.

zip ([seql, ..])
This function returns a list of tuples, where thth tuple contains théth element from each of the argument
sequences. The returned list is truncated in length to the length of the shortest argument sequence. When there
are multiple argument sequences which are all of the same lezigfl, is similar tomap() with an initial
argument oNone. With a single sequence argument, it returns a list of 1-tuples. With no arguments, it returns
an empty list. New in version 2.0.

Changed in version 2.4: Formerlgip() required at least one argument arig() raised aTypeError
instead of returning an empty list..

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or use in modern Python programming.
They have been kept here to maintain backwards compatability with programs written for older versions of Python.

Python programmers, trainers, students and bookwriters should feel free to bypass these functions without concerns
about missing something important.

apply (function, arg{, keyword§)
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargs argument must be a sequence. Tinectionis called withargs as the argument list; the number
of arguments is the length of the tuple. If the optiokeywordsargument is present, it must be a dictionary
whose keys are strings. It specifies keyword arguments to be added to the end of the argument list. Calling
apply() is different from just callingunctior(args) , since in that case there is always exactly one argument.
The use ofpply() is equivalent tdunction(* args ** keyword¥. Use ofapply() is not necessary since
the “extended call syntax,” as used in the last example, is completely equivalent.

Deprecated since release 2.RIse the extended call syntax instead, as described above.

buffer (objec{, offse[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which referencesdhgectargument. The buffer object will be a slice from
the beginning obbject(or from the specifiedffse). The slice will extend to the end abject(or will have a
length given by thaizeargument).

coerce (X,Y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations. If coercion is not possible, rBygpeError

intern (' string)
Enterstring in the table of “interned” strings and return the interned string — whidtriag itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup — if the keys in a dictionary are
interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and
the dictionaries used to hold module, class or instance attributes have interned keys. Changed in version 2.3:
Interned strings are not immortal (like they used to be in Python 2.2 and before); you must keep a reference to
the return value ointern() around to benefit from it.

2.2. Non-essential Built-in Functions 15

2.3 Built-in Types

The following sections describe the standard types that are built into the interpreter. Historically, Python’s built-in
types have differed from user-defined types because it was not possible to use the built-in types as the basis for object-
oriented inheritance. With the 2.2 release this situation has started to change, although the intended unification of
user-defined and built-in types is as yet far from complete.

The principal built-in types are numerics, sequences, mappings, files classes, instances and exceptions.

Some operations are supported by several object types; in particular, practically all objects can be compared, tested
for truth value, and converted to a string (with the .* notation, the equivalerepr() function, or the slightly
differentstr() function). The latter function is implicitly used when an object is written byghet statement.
(Information onprint statemenand other language statements can be found ifPthieon Reference Manuahd

the Python Tutorial)

2.3.1 Truth Value Testing

Any object can be tested for truth value, for use irifanor while condition or as operand of the Boolean operations
below. The following values are considered false:

e None

e False

e zero of any numeric type, for exampl#,OL, 0.0 , O] .

e any empty sequence, for examgle,, () ,[] -

e any empty mapping, for examplg, .

e instances of user-defined classes, if the class definesyanzero __() or __len __() method, when that

method returns the integer zerotmol valueFalse .°

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always rétarriFalse for false andl or True for
true, unless otherwise stated. (Important exception: the Boolean operatidrasd ‘and’ always return one of their
operands.)

2.3.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
x or y | if xis false, thery, elsex (2)
x and y | if xis false, therx, elsey (1)
not x if Xis false, therTrue , elseFalse (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operatorsped a == bis interpreted asot (a == b), and
a == not bisasyntax error.

5Additional information on these special methods may be found ifPthieon Reference Manual

16 Chapter 2. Built-In Objects

2.3.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for exampgley <= zis equivalenttx < y and

y <= z, except thay is evaluated only once (but in both cases not evaluated at all whex < y is found to be

false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
I= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:
(1) <> and!= are alternate spellings for the same operdtoris the preferred spellings> is obsolescent.

Objects of different types, except different numeric types and different string types, never compare equal; such objects
are ordered consistently but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of comparison where any two objects of that
type are unequal. Again, such objects are ordered arbitrarily but consistentlyg, ¥he> and>= operators will raise
aTypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class definesrtipe _() method. Refer to the
Python Reference Manufdr information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic prioritg, “and ‘not in ’, are supported only by sequence types
(below).

2.3.4 Numeric Types

There are four distinct numeric typeplain integers long integers floating point numbersandcomplex numbers

In addition, Booleans are a subtype of plain integers. Plain integers (also justioédigers are implemented using

long in C, which gives them at least 32 bits of precision. Long integers have unlimited precision. Floating point
numbers are implemented usidguble in C. All bets on their precision are off unless you happen to know the
machine you are working with.

Complex numbers have a real and imaginary part, which are each implementedasiodg in C. To extract these
parts from a complex numbeyrusezreal andzimag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers unless the value they denote is too large to be represented as a
plain integer, in which case they yield a long integer. Integer literals with.aor” | " suffix yield long integers (L’ is

preferred becausdl ’ looks too much like eleven!). Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appendinpg’or ‘J’ to a numeric literal yields a complex number with a zero real part.

A complex numeric literal is the sum of a real and an imaginary part.

2.3. Built-in Types 17

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where plain integer is narrower than long integer
is narrower than floating point is narrower than complex. Comparisons between numbers of mixed type use the same
rule® The constructorst() ,long() ,float() ,andcomplex() can be used to produce numbers of a specific

type.

All numeric types (except complex) support the following operations, sorted by ascending priority (operations in the
same box have the same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
X +y sum ofx andy
X -y difference ofx andy
X *y product ofx andy
x/ly quotient ofx andy QD
X %y remainderok / y (4)
-X X hegated
+X X unchanged
abs(x) absolute value or magnitude f
int(x) x converted to integer (2)
long(X) x converted to long integer (2)
float(Xx) x converted to floating point
complex(re, im) | a complex number with real pa#, imaginary partm. im defaults to zero.
c.conjugate() conjugate of the complex number
divmod(%, V) thepair(x / 'y, X %VY) 3)4)
pow(X,) x to the powely
X ¥y x to the powely

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2is 0, (-1)/2is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see furfttimn(s
andceil() inthemath module for well-defined conversions.

(3) See section 2.1, “Built-in Functions,” for a full description.

(4) Complex floor division operator, modulo operator, atimod()
Deprecated since release 2.3stead convert to float usiraps() if appropriate.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2's complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operatiofi* has the same priority as the other unary numeric operatiensfd ‘- *).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

6As a consequence, the ljdt, 2] is considered equal {d.0, 2.0] , and similarly for tuples.

18 Chapter 2. Built-In Objects

Operation | Result Notes
X| 'y bitwise or of x andy

X"y bitwise exclusive oof x andy
X &Yy bitwiseand of x andy

X << n | xshifted left byn bits 2), (2)
X >> n | xshifted right byn bits (), (3)
X the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and causéaueError to be raised.
(2) A left shift by n bits is equivalent to multiplication byow(2, n) without overflow check.

(3) Aright shift by n bits is equivalent to division bgow(2, n) without overflow check.

2.3.5 lterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration support:

__iter __()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for those
iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure which
supports both breadth-first and depth-first traversal.) This method correspondsto itex slot of the type
structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together fitematbie
protocot

__iter __()
Return the iterator object itself. This is required to allow both containers and iterators to be used Vigth the
andin statements. This method corresponds tottheiter slot of the type structure for Python objects in
the Python/C API.

next ()
Return the next item from the container. If there are no further items, raisgttipdteration exception.
This method corresponds to thg _iternext slot of the type structure for Python objects in the Python/C
API.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

The intention of the protocol is that once an iteratorext() method raiseStoplteration , it will continue to
do so on subsequent calls. Implementations that do not obey this property are deemed broken. (This constraint was
added in Python 2.3; in Python 2.2, various iterators are broken according to this rule.)

Python’s generators provide a convenient way to implement the iterator protocol. If a container ohjget's __()
method is implemented as a generator, it will automatically return an iterator object (technically, a generator object)
supplying the__iter __() andnext() methods.

2.3. Built-in Types 19

2.3.6 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

String literals are written in single or double quotesizzy’ |, “frobozz" . See chapter 2 of theython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceding U’ character:u’'abc’ , u"def' . Lists are constructed with square brackets, separating items with
commasia, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parenthesesasugch @s or () . A single

item tuple must have a trailing comma, suci{@&3

Buffer objects are not directly supported by Python syntax, but can be created by calling the builtin function
buffer() . They don’t support concatenation or repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create them, but they are created using the
xrange() function. They don’t support slicing, concatenation or repetition, and usingiot in , min() or
max() on them is inefficient.

Most sequence types support the following operations. Thé and ‘not in ' operations have the same priori-
ties as the comparison operations. Thédnd *’ operations have the same priority as the corresponding numeric
operations.

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the tables andt are sequences of the same typd;andj are integers:

Operation Result Notes
xin s True if an item ofsis equal tox, elseFalse (2)
X not in s | False ifanitem ofsis equal tox, elseTrue (1)
s+t the concatenation afandt (6)
s * n, n* s| nshallow copies o concatenated (2)
g i] i'th item of s, origin O 3)
g i:j] slice ofsfromi to] 3), @)
gi:j: K slice ofsfromi toj with stepk 3), (5)
len(9 length ofs
min(s) smallest item of
max(s) largest item of

Notes:

(1) Whensis a string or Unicode string object tlie andnot in operations act like a substring test. In Python
versions before 2.3 had to be a string of length 1. In Python 2.3 and beyarnday be a string of any length.

(2) Values ofn less tharD are treated a8 (which yields an empty sequence of the same typ®.dsote also that the
copies are shallow; nested structures are not copied. This often haunts new Python programmers; consider:

>>> lists = [[]] * 3
>>> lists

i, 0 0
>>> |ists[0].append(3)
>>> |ists

(3], [3 31

What has happened is thfli is a one-element list containing an empty list, so all three elemerjff of
* 3 are (pointers to) this single empty list. Modifying any of the elementsstf modifies this single list.
You can create a list of different lists this way:

"They must have since the parser can't tell the type of the operands.

20 Chapter 2. Built-In Objects

>>> lists = [[] for i in range(3)]
>>> lists[0].append(3)

>>> |ists[1].append(5)

>>> |ists[2].append(7)

>>> |ists

(3], 58], [71

(3) If i orj is negative, the index is relative to the end of the strieg(s) + iorlen(s) + |jis substituted. But
note thatO is still 0.

(4) The slice ofsfromi toj is defined as the sequence of items with inkexich that <= k < |j. If i orj is greater
thanlen(s), uselen(s). If i is omitted, usd. If j is omitted, usden(s). If i is greater than or equal {p
the slice is empty.

(5) The slice ofs from i to j with stepk is defined as the sequence of items with index i + n*k such that
0<n< % In other words, the indices arg i+k , i+2*k , i+3*k and so on, stopping wheris reached
(but never including). If i orj is greater thamen(s), uselen(s). If i orj are omitted then they become
“end” values (which end depends on the sigrkpfNote,k cannot be zero.

(6) If sandt are both strings, some Python implementations such as CPython can usually perform an in-place op-
timization for assignments of the forsrs+t or st=t. When applicable, this optimization makes quadratic
run-time much less likely. This optimization is both version and implementation dependent. For performance
sensitive code, it is preferable to use #tejoin() method which assures consistent linear concatenation
performance across versions and implementations. Changed in version 2.4: Formerly, string concatenation
never occurred in-place.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:
capitalize 0

Return a copy of the string with only its first character capitalized.

For 8-bit strings, this method is locale-dependent.
center (width[, fillichar])

Return centered in a string of lengtidth. Padding is done using the specifiitchar (default is a space).
Changed in version 2.4: Support for tfikchar argument.

count (sut{, starl[, end]])
Return the number of occurrences of substsngin string § start end . Optional argumentstart andend
are interpreted as in slice notation.

decode ([encodingi, errors]])
Decodes the string using the codec registeredefaroding encodingdefaults to the default string encoding.

errorsmay be given to set a different error handling scheme. The defdsttiis’ , meaning that encoding
errors raisdJnicodeError . Other possible values alignore’ |, 'replace’ and any other name regis-
tered viacodecs.register _error . Newinversion2.2. Changed in version 2.3: Support for other error

handling schemes added.

encode ([encodingi,errors]])
Return an encoded version of the string. Default encoding is the current default string encod-
ing. errors may be given to set a different error handling scheme. The defaultefamrs is

'strict’ , meaning that encoding errors rais&JaicodeError . Other possible values atignore’
replace’ , 'xmlcharrefreplace’ , 'backslashreplace’ and any other name registered via
codecs.register _error . For a list of possible encodings, see section 4.9.2. New in version 2.0.

2.3. Built-in Types 21

Changed in version 2.3: Support famicharrefreplace’ and’backslashreplace’ and other error
handling schemes added.

endswith (suffi>{, starl{, end]])
ReturnTrue if the string ends with the specifiesliffix otherwise returrFalse . With optionalstart, test
beginning at that position. With optionahd stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spéatesizés not given, a tab size
of 8 characters is assumed.

find (sut{, starl{, end]])
Return the lowest index in the string where substgngis found, such thatubis contained in the rangstart,
end). Optional argumentstartandendare interpreted as in slice notation. Retttnif subis not found.

index (sut{, starl{, end]])
Like find() , but raiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

For 8-bit strings, this method is locale-dependent.
isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.
isdigit ()
Return true if all characters in the string are digits and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

isspace ()
Return true if there are only whitespace characters in the string and there is at least one character, false otherwise.
For 8-bit strings, this method is locale-dependent.

istitle 0

Return true if the string is a titlecased string and there is at least one character, for example uppercase characters
may only follow uncased characters and lowercase characters only cased ones. Return false otherwise.

For 8-bit strings, this method is locale-dependent.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

For 8-bit strings, this method is locale-dependent.

join (seq
Return a string which is the concatenation of the strings in the seqsencéhe separator between elements is
the string providing this method.

ljust (width[, fillichar])
Return the string left justified in a string of lengthdth. Padding is done using the speciffdithar (default is
a space). The original string is returneahiidth is less thaden(s). Changed in version 2.4: Support for the
fillchar argument.

22 Chapter 2. Built-In Objects

lower ()
Return a copy of the string converted to lowercase.

For 8-bit strings, this method is locale-dependent.

Istrip ([chars])
Return a copy of the string with leading characters removechdfsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.2: Supportébatkargument.

replace (old, neV\[, count])
Return a copy of the string with all occurrences of substoltyeplaced bynew If the optional argumertount
is given, only the firstountoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substsinigis found, such thagubis contained within s[start,end].
Optional argumentstartandendare interpreted as in slice notation. Retttnon failure.

rindex (sul{, starl{, end]])
Like rfind() but raises/alueError when the substringubis not found.

rjust (width[, fillichar])
Return the string right justified in a string of lengthdth. Padding is done using the specifidtthar (default
is a space). The original string is returnedaviflth is less tharlen(s). Changed in version 2.4: Support for
thefillchar argument.

rsplit ([sep[,maxsplit]])
Return a list of the words in the string, usiegpas the delimiter string. Iinaxsplitis given, at mostaxsplit
splits are done, theghtmostones. Ifsepis not specified oNone, any whitespace string is a separator. Except
for splitting from the right,rsplit() behaves likesplit() which is described in detail below. New in
version 2.4.

rstrip ([chars])
Return a copy of the string with trailing characters removedh#rsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.2: Support ébrattsargument.

split ([sep[,maxsplit]])
Return a list of the words in the string, usiegpas the delimiter string. Ifnaxsplitis given, at mosmaxsplit
splits are done. (thus, the list will have at mosixsplit-1 elements). Imaxsplitis not specified, then there is no
limit on the number of splits (all possible splits are made). Consecutive delimiters are not grouped together and

are deemed to delimit empty strings (for examplg,,2".split(’,’) "returns T'1’, 7, '27] .
The separgument may consist of multiple characters (for example, 2, 3'.split(, ") ' returns
‘1, 2, '3). Splitting an empty string with a specified separator returns an empty list.

If sepis not specified or idlone, a different splitting algorithm is applied. First, whitespace characters (spaces,
tabs, newlines, returns, and formfeeds) are stripped from both ends. Then, words are separated by arbitrary
length strings of whitespace characters. Consecutive whitespace delimiters are treated as a single delimiter
('1 2 3.split() "returns 1’1, '2', '3). Splitting an empty string or a string consisting of
just whitespace will return(®] ’

splitlines ([keepend];)

Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependss given and true.

startswith (prefix[, starl{, end]])
ReturnTrue if string starts with thegorefix otherwise returdralse . With optionalstart, test string beginning
at that position. With optionand stop comparing string at that position.

strip ([chars])
Return a copy of the string with leading and trailing characters removebattis omitted oiNone, whitespace

2.3. Built-in Types 23

characters are removed. If given and MNiine, chars must be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.2: Support for the
charsargument.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

For 8-bit strings, this method is locale-dependent.

tittle ()
Return a titlecased version of the string: words start with uppercase characters, all remaining cased characters
are lowercase.

For 8-bit strings, this method is locale-dependent.

translate (table[, deletechari)
Return a copy of the string where all characters occurring in the optional argulaletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

For Unicode objects, thiganslate() method does not accept the optiodaletecharargument. Instead,

it returns a copy of the where all characters have been mapped through the given translation table which must
be a mapping of Unicode ordinals to Unicode ordinals, Unicode stringd$ooe. Unmapped characters are

left untouched. Characters mapped\tone are deleted. Note, a more flexible approach is to create a custom
character mapping codec using ttelecs module (seencodings.cpl251 for an example).

upper ()
Return a copy of the string converted to uppercase.

For 8-bit strings, this method is locale-dependent.

zfill (width)
Return the numeric string left filled with zeros in a string of lengttth. The original string is returned fidth
is less thalen(s). New in version 2.2.2.

String Formatting Operations

String and Unicode objects have one unique built-in operation%bperator (modulo). This is also known as the
string formatting or interpolationoperator. Giverformat %values(whereformatis a string or Unicode objecto
conversion specifications iformat are replaced with zero or more elementsvafues The effect is similar to the
usingsprintf() in the C language. fiormatis a Unicode object, or if any of the objects being converted using the
%sconversion are Unicode objects, the result will also be a Unicode object.

If formatrequires a single argumentluesmay be a single non-tuple objetDtherwiseyaluesmust be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The % character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for exsonp@ame)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as ah’(asterisk), the actual width is read from the next element
of the tuple invalues and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a’‘ (dot) followed by the precision. If specified as’*(an asterisk), the actual
width is read from the next element of the tuplevadues and the value to convert comes after the precision.

8To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

24 Chapter 2. Built-In Objects

6. Length modifier (optional).

7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in thenstratigclude a paren-
thesised mapping key into that dictionary inserted immediately afteffheharacter. The mapping key selects the
value to be formatted from the mapping. For example:

>>> print '%(language)s has %(#)03d quote types.” % \
{language’: "Python", "#": 2}
Python has 002 quote types.

In this case nd specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

‘#' | The value conversion will use the “alternate form” (where defined below).

‘0’ | The conversion will be zero padded for numeric values.

‘-’ | The converted value is left adjusted (overrides ®lecbnversion if both are given).

‘' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+” | Asign character ¢’ or ‘- ") will precede the conversion (overrides a "space” flag).

The length modifier may bk, | , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion | Meaning Notes

‘o’ Signed integer decimal.
i’ Signed integer decimal.
‘0’ Unsigned octal. Q)
‘u’ Unsigned decimal.
‘X’ Unsigned hexadecimal (lowercase). (2)
‘X Unsigned hexadecimal (uppercase). (2)
‘e’ Floating point exponential format (lowercase).
‘B Floating point exponential format (uppercase).
‘“fr Floating point decimal format.
‘F Floating point decimal format.
‘9’ Same asé’ if exponent is greater than -4 or less than precisibhptherwise.
‘G Same asE’ if exponent is greater than -4 or less than precisiéfhptherwise.
‘c’ Single character (accepts integer or single character string).
‘r’ String (converts any python object usirepr()). 3)
‘s’ String (converts any python object usisiy()). 4)
‘% No argument is converted, results in% tharacter in the result.

Notes:

(1) The alternate form causes a leading ze@)(fo be inserted between left-hand padding and the formatting of the
number if the leading character of the result is not already a zero.

(2) The alternate form causes a leadifg’ or’0X’ (depending on whether th&™or ‘ X' format was used) to be
inserted between left-hand padding and the formatting of the number if the leading character of the result is not
already a zero.

2.3. Built-in Types 25

(3) The%r conversion was added in Python 2.0.

(4) If the object or format provided isanicode string, the resulting string will also henicode .

Since Python strings have an explicit lendg¥bs conversions do not assume tA@t is the end of the string.

For safety reasons, floating point precisions are clipped t&/&G;onversions for numbers whose absolute value is
over 1e25 are replaced Bggconversions. All other errors raise exceptions.

Additional string operations are defined in standard modstlésy andre .

XRange Type

Thexrange type is an immutable sequence which is commonly used for looping. The advantageraiithe type
is that anxrange object will always take the same amount of memory, no matter the size of the range it represents.
There are no consistent performance advantages.

XRange objects have very little behavior: they only support indexing, iteration, anerif)e function.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. Other mutable sequence types
(when added to the language) should also support these operations. Strings and tuples are immutable sequence types:
such objects cannot be modified once created. The following operations are defined on mutable sequence types (where
X is an arbitrary object):

Operation Result Notes
gi] = x itemi of sis replaced by
qgi:j] = t slice ofsfromi toj is replaced by
del di:j] same ag i: j] = []
gi:j:k =t the elements off i: j: k] are replaced by those bf Q)
del g i:j: K] removes the elements dfi: j: k] from the list
sappend(X) same asllen(9s)elen(9] = [X (2)
sextend(X) same agllen(s)len(9] = X 3)
s.count(X) return number of’'s for whichg[i] == X
sindex(X[, i[, i]D return smallesk such thag{ k] == xandi <= k < j (4)
sinsert(i, X) sameasi:i] = [X (5)
s.pop([i]) same ax = di]; del di]; return X (6)
sremove(X) same aslel 4 s.index(X)] (4)
sreverse() reverses the items afin place (7
s.sort([cmp{, ke){, reversd]]) sort the items o§in place (7), (8), (9), (10)

Notes:

(1) t must have the same length as the slice it is replacing.

(2) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(3) xcan be any iterable object.

9These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

26 Chapter 2. Built-In Objects

(4) RaisesvalueError whenxis not found ins. When a negative index is passed as the second or third parameter
totheindex() method, the list length is added, as for slice indices. If it is still negative, it is truncated to zero,
as for slice indices. Changed in version 2.3: Previousbjex() didn't have arguments for specifying start
and stop positions.

(5) When a negative index is passed as the first parameter tngée() method, the list length is added, as for
slice indices. Ifitis still negative, it is truncated to zero, as for slice indices. Changed in version 2.3: Previously,
all negative indices were truncated to zero.

(6) Thepop() method is only supported by the list and array types. The optional argurdefaults to-1 , so that
by default the last item is removed and returned.

(7) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. To remind you that they operate by side effect, they don't return the sorted or reversed list.

(8) Thesort() method takes optional arguments for controlling the comparisons.

cmpspecifies a custom comparison function of two arguments (list items) which should return a negative, zero
or positive number depending on whether the first argument is considered smaller than, equal to, or larger than
the second argumentcrp=lambda x, y: cmp(x.lower(), y.lower()) '

key specifies a function of one argument that is used to extract a comparison key from each list element:
‘key=str.lower '

reverseis a boolean value. If set fbrue , then the list elements are sorted as if each comparison were reversed.

In general, thé&eyandreverseconversion processes are much faster than specifying an equisalpfitnction.
This is becausempis called multiple times for each list element whileyandreversetouch each element only
once.

Changed in version 2.3: Support fidone as an equivalent to omittingmpwas added.
Changed in version 2.4: Support feeyandreversewas added.

(9) Starting with Python 2.3, theort() = method is guaranteed to be stable. A sort is stable if it guarantees not to
change the relative order of elements that compare equal — this is helpful for sorting in multiple passes (for
example, sort by department, then by salary grade).

(10) While a list is being sorted, the effect of attempting to mutate, or even inspect, the list is undefined. The C
implementation of Python 2.3 and newer makes the list appear empty for the duration, andahis&sror
if it can detect that the list has been mutated during a sort.

2.3.7 Set Types

A setobject is an unordered collection of immutable values. Common uses include membership testing, removing
duplicates from a sequence, and computing mathematical operations such as intersection, union, difference, and sym-
metric difference. New in version 2.4.

Like other collections, sets supportin set len(se), andfor x in set Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two builtin set typeset andfrozenset . Theset type is mutable — the contents can be
changed using methods likeld() andremove() . Since it is mutable, it has no hash value and cannot be used

as either a dictionary key or as an element of another set.frobhenset type is immutable and hashable — its
contents cannot be altered after is created; however, it can be used as a dictionary key or as an element of another set.

Instances ofet andfrozenset provide the following operations:

2.3. Built-in Types 27

Operation Equivalent | Result
len() cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership is
sissubset(t) s <=t test whether every elementdnis int
s.issuperset(t) s >=t test whether every elementtiis in s
s.union(t) s—t new set with elements from boftandt
s.intersection(t) s&t new set with elements commongandt
s.difference(t) s-t new set with elements isbut not int
s.symmetric _difference(t) s™t new set with elements in eithsior t but not both
s.copy() new set with a shallow copy &f
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric _difference() ,issubset() , andissuperset() methods will accept any iterable as an argu-
ment. In contrast, their operator based counterparts require their arguments to be sets. This precludes error-prone con-
structions likeset('abc’) & ’chs’ in favor of the more readabket(’abc’).intersection('cbs’)

Bothset andfrozenset support set to set comparisons. Two sets are equal if and only if every element of each
set is contained in the other (each is a subset of the other). A set is less than another set if and only if the first set is a
proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and only if the first set
is a proper superset of the second set (is a superset, but is not equal).

Instances obet are compared to instancesfabzenset based on their members. For exampst(’abc’)
== frozenset('abc’) "returnsTrue .

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each othed] b the following returnFalse : a<b, a==b, or a>h.
Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output liftthert() method is undefined
for lists of sets.

Binary operations that miset instances withfrozenset return the type of the first operand. For example:
‘frozenset(’ab’) | set(’bc’) ' returns an instance dfozenset

The following table lists operations available &®t that do not apply to immutable instancedmaizenset

Operation Equivalent | Result
s.update(t) s—=t return ses with elements added fromn
s.intersection _update(t) S&=t return ses keeping only elements also foundtin
s.difference _update(t) s-=t return ses after removing elements found in
s.symmetric _difference _update(t) s"=t return ses with elements frons or t but not both
s.add(x) add elemenx to sets
s.remove(X) removex from sets; raises KeyError if not present
sdiscard(x) removes from setsif present
s.pop() remove and return an arbitrary element frgmaisesKeyError if e
s.clear() remove all elements from sst
Note, the non-operator versions of tingdate() , intersection _update() ,difference _update() ,and
symmetric _difference _update() methods will accept any iterable as an argument.

2.3.8 Mapping Types

A mappingobject maps immutable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, tbitionary. A dictionary’s keys are almost arbitrary values. Only values containing

28 Chapter 2. Built-In Objects

lists, dictionaries or other mutable types (that are compared by value rather than by object identity) may not be used
as keys. Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal
(such asl and1.0) then they can be used interchangeably to index the same dictionary entry.

Dictionaries are created by placing a comma-separated lidtepf value pairs within braces, for example:
{jack’: 4098, ’sjoerd: 4127} or{4098: ‘jack’, 4127: ’sjoerd’}

The following operations are defined on mappings (wlzeaedb are mappingsk is a key, ands andx are arbitrary
objects):

Operation Result Notes
len(a) the number of items ia
al K] the item ofa with key k Q)
akl = v seta[k] tov
del al K] removeal kK] froma (1)
a.clear() remove all items frona
a.copy() a (shallow) copy o
a.has _key(k) True if ahas a ke, elseFalse
kin a Equivalent toa.has _key(k) (2)
k notin a Equivalent tonot a.has key(k) (2)
a.items() a copy ofa’s list of (key, valug pairs 3)
a.keys() a copy ofa’s list of keys 3)
a.update(b]) updates (and overwrites) key/value pairs from 9)
a.fromkeys(sed, value]) Creates a new dictionary with keys frasagand values set tealue (7
a.values() a copy ofa’s list of values 3)
aget(K, x]) a[K ifk in a elsex 4
a.setdefault(K|, x]) a[K] if k in a, elsex (also setting it) (5)
a.pop(k[, x|) a[K] if k in a, elsex (and remove k) (8)
a.popitem() remove and return an arbitrargey, value pair (6)
a.iteritems() return an iterator ovekéy, value pairs 2), (3)
a.iterkeys() return an iterator over the mapping’s keys (2), (3)
a.itervalues() return an iterator over the mapping’s values (2), (3)

Notes:

(1) Raises KeyError exception ifk is not in the map.
(2) New in version 2.2.

(3) Keys and values are listed in an arbitrary order which is non-random, varies across Python implementations,
and depends on the dictionary’s history of insertions and deletionstenifs() , keys() , values() ,

iteritems() , iterkeys() , and itervalues() are called with no intervening modifications to
the dictionary, the lists will directly correspond. This allows the creation wélue key) pairs using
zip() :‘pairs = zip(avalues(), a.keys()) '. The same relationship holds for thierkeys()

and itervalues() methods: pairs = zip(a.tervalues(), a.iterkeys()) ' provides the

same value fopairs . Another way to create the same list {gairs = [(v, k) for (k, v) in
a.iteritems()] '

(4) Never raises an exceptionkfis not in the map, instead it returrsx is optional; wherx is not provided and is
not in the mapNone is returned.

(5) setdefault() is like get() , except that ik is missingx is both returned and inserted into the dictionary as
the value ok. x defaults toNone

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

(7) fromkeys() is a class method that returns a new dictionaajuedefaults toNone. New in version 2.3.

2.3. Built-in Types 29

(8) pop() raises &KeyError when no default value is given and the key is not found. New in version 2.3.

(9) update() accepts either another mapping object or an iterable of key/value pairs (as a tuple or other iterable of
length two). If keyword arguments are specified, the mapping is then is updated with those key/value pairs:
‘d.update(red=1, blue=2) . Changed in version 2.4: Allowed the argument to be an iterable of
key/value pairs and allowed keyword arguments.

2.3.9 File Objects

File objects are implemented using G&lio package and can be created with the built-in construfil()
described in section 2.1, “Built-in Function®” File objects are also returned by some other built-in functions and
methods, such ass.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/0O-related reason, the excep@&mror is raised. This includes situations where
the operation is not defined for some reason, $igek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written any more. Any operation which requires that the file be
open will raise a/alueError after the file has been closed. Callidigse() = more than once is allowed.

flush ()
Flush the internal buffer, liketdio s fflush() . This may be a no-op on some file-like objects.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from
the operating system. This can be useful for other, lower level interfaces that use file descriptors, such as the
fcntl module oros.read() and friends.Note: File-like objects which do not have a real file descriptor
shouldnot provide this method!

isatty ()
ReturnTrue if the file is connected to a tty(-like) device, eBalse . Note: If a file-like object is not associated
with a real file, this method shoultbt be implemented.

next ()
A file object is its own iterator, for exampleer(f) returnsf (unlessf is closed). When a file is used as an
iterator, typically in aor loop (for examplefor line in f. print line), thenext() method is
called repeatedly. This method returns the next input line, or r&smsiteration whenEOF is hit. In

order to make dor loop the most efficient way of looping over the lines of a file (a very common operation),
thenext() method uses a hidden read-ahead buffer. As a consequence of using a read-ahead buffer, com-
biningnext() with other file methods (likeeadline()) does not work right. However, usirsgek() to
reposition the file to an absolute position will flush the read-ahead buffer. New in version 2.3.

read ([size])
Read at mossizebytes from the file (less if the read hit®F before obtainingizebytes). If thesizeargument
is negative or omitted, read all data urgibr is reached. The bytes are returned as a string object. An empty
string is returned whesoF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after aoOFis hit.) Note that this method may call the underlying C funcfi@ad() more than once
in an effort to acquire as close sizebytes as possible. Also note that when in non-blocking mode, less data
than what was requested may be returned, even sizeparameter was given.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string (but may be absent when a
file ends with an incomplete liné}. If the sizeargument is present and non-negative, it is a maximum byte count

1%file() is new in Python 2.2. The older built-mpen() is an alias foffile()
11The advantage of leaving the newline on is that returning an empty string is then an unamigigedngication. It is also possible (in cases
where it might matter, for example, if you want to make an exact copy of a file while scanning its lines) to tell whether the last line of a file ended

30 Chapter 2. Built-In Objects

(including the trailing newline) and an incomplete line may be returned. An empty string is returtyaghen
EOFis encountered immediatelote: Unlike stdio 's fgets() , the returned string contains null characters
(\0’) if they occurred in the input.

readlines ([sizehinr])
Read untilEoF using readline() and return a list containing the lines thus read. If the opti@mehint
argument is present, instead of reading ugd®, whole lines totalling approximatelsizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
This method returns the same thingites(f) . New in version 2.1. Deprecated since release 2.3Jse
‘for line in file’ instead.

seek (offse{, Whencd)
Set the file’s current position, liketdio 's fseek() . Thewhenceargument is optional and defaults @
(absolute file positioning); other values drdseek relative to the current position) abdseek relative to the
file’s end). There is no return value. Note that if the file is opened for appending (l@oder 'a+’), any
seek() operations will be undone at the next write. If the file is only opened for writing in append mode
(mode’a’), this method is essentially a no-op, but it remains useful for files opened in append mode with
reading enabled (moda+’). If the file is opened in text mode (mode), only offsets returned biell()
are legal. Use of other offsets causes undefined behavior.

Note that not all file objects are seekable.

tell ()
Return the file’s current position, likedio s ftell()

truncate ([size])
Truncate the file’s size. If the optionalzeargument is present, the file is truncated to (at most) that size.
The size defaults to the current position. The current file position is not changed. Note that if a specified
size exceeds the file's current size, the result is platform-dependent: possibilities include that file may remain
unchanged, increase to the specified size as if zero-filled, or increase to the specified size with undefined new
content. Availability: Windows, many NIX variants.

write (str)
Write a string to the file. There is no return value. Due to buffering, the string may not actually show up in the
file until theflush() orclose() method is called.

writelines (sequence
Write a sequence of strings to the file. The sequence can be any iterable object producing strings, typically a list
of strings. There is no return value. (The name is intended to matatiines() ; writelines() does
not add line separators.)

Files support the iterator protocol. Each iteration returns the same redilé.@adline() , and iteration ends
when thereadline() method returns an empty string.

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
bool indicating the current state of the file object. This is a read-only attributejdke() = method changes
the value. It may not be available on all file-like objects.

encoding
The encoding that this file uses. When Unicode strings are written to a file, they will be converted to byte strings
using this encoding. In addition, when the file is connected to a terminal, the attribute gives the encoding that
the terminal is likely to use (that information might be incorrect if the user has misconfigured the terminal). The
attribute is read-only and may not be present on all file-like objects. It may alSohe, in which case the file

in a newline or not (yes this happens!).

2.3. Built-in Types 31

uses the system default encoding for converting Unicode strings.
New in version 2.3.

mode
The I/O mode for the file. If the file was created using tipeen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usirapen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the fornx!..> . This is a read-only attribute and may not be present on all
file-like objects.

newlines
If Python was built with the-with-universal-newlinesoption toconfigure (the default) this read-only attribute
exists, and for files opened in universal newline read mode it keeps track of the types of newlines encountered
while reading the file. The values it cantake &re ,\n’ ,\r\n’ , None (unknown, no newlines read yet)
or a tuple containing all the newline types seen, to indicate that multiple newline conventions were encountered.
For files not opened in universal newline read mode the value of this attribute Wiibbe.

softspace
Boolean that indicates whether a space character needs to be printed before another value wherptising the
statement. Classes that are trying to simulate a file object should also have a vetifdpace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control thgint statement, but to allow the
implementation oprint to keep track of its internal state.

2.3.10 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute acaassiame wheremis a module anthameaccesses a name
defined inm's symbol table. Module attributes can be assigned to. (Note thatpert statement is not, strictly
speaking, an operation on a module objénport foo does not require a module object nanfedto exist, rather
it requires an (externafefinitionfor a module nametbo somewhere.)

A special member of every module is dict __. This is the dictionary containing the module’'s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thiet
attribute is not possible (you can write __dict __['a] = 1 , which definesn.a to bel, but you can’t write

m. __dict __ = {}). Modifying __dict __ directly is not recommended.

Modules built into the interpreter are written like thismodule ’sys’ (built-in)> . If loaded from a file,
they are written asmodule 'os’ from ’/usr/local/lib/python2.4/0s.pyc’>

Classes and Class Instances

See chapters 3 and 7 of tRgthon Reference Manufdr these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
fund argument-lis} .

32 Chapter 2. Built-In Objects

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See thePython Reference Manufdr more information.

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methioals_self is the object on
which the method operates, antim _func is the function implementing the method. Calling arg-1, arg-2,
.., arg-n) is completely equivalent to calling.im _func(m.im _self, arg-1, arg-2, ..., arg-n).

Class instance methods are eitheundor unboundreferring to whether the method was accessed through an instance
or a class, respectively. When a method is unboundmitsself attribute will beNone and if called, an explicit

self object must be passed as the first argument. In this satfe, must be an instance of the unbound method’s
class (or a subclass of that class), otherwiSgpeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function objeotgth.im _func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute resul®y/jpe&rror being raised. In order

to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):
pass

¢ =C(
c.method.im_func.whoami = 'my name is ¢’

See thePython Reference Manufdr more information.

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don't contain a reference to their global execution envi-
ronment. Code objects are returned by the builtémpile() function and can be extracted from function objects
through theifunc _code attribute.

A code object can be executed or evaluated by passing it (instead of a source stringgtechstatement or the
built-in eval() function.

See thePython Reference Manufdr more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in fiypetipn . There
are no special operations on types. The standard moghies defines names for all standard built-in types.

Types are written like thisstype 'int’>

2.3. Built-in Types 33

The Null Object
This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedione (a built-in name).

It is written asNone.

The Ellipsis Object
This object is used by extended slice notation (se€”tftbon Reference Manyallt supports no special operations.
There is exactly one ellipsis object, nanteldipsis (a built-in name).

It is written asEllipsis

Boolean Values

Boolean values are the two constant objdeadse andTrue . They are used to represent truth values (although

other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in fupatigh can be used to

cast any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing above).

They are written afalse andTrue , respectively.

Internal Objects

See thePython Reference Manu#or this information. It describes stack frame objects, traceback objects, and slice
objects.

2.3.11 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the() built-in function.

__dict __
A dictionary or other mapping object used to store an object’s (writable) attributes.

__methods __
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__members__
Deprecated since release 2.2Use the built-in functiordir() to get a list of an object’s attributes. This
attribute is no longer available.

__class __
The class to which a class instance belongs.

__bases __
The tuple of base classes of a class object. If there are no base classes, this will be an empty tuple.

__name__
The name of the class or type.

34 Chapter 2. Built-In Objects

2.4 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the readefetions . This module never
needs to be imported explicitly: the exceptions are provided in the built-in namespace as wekkssethtéons
module.

Note: In past versions of Python string exceptions were supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are encouraged to do the same. String exceptions will raise
aPendingDeprecationWarning . In future versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-
in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, intay statement with amxcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes fronit wehibdrived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theaise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument ofékeept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard rootEkasption , the associated value is present as

the exception instance&rgs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions; programmers are encouraged to at least
derive new exceptions from thexception base class. More information on defining exceptions is available in the
Python Tutorialunder the heading “User-defined Exceptions.”

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforcedstffje function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exc8poplteration and SystemExit . StandardError
itself is derived from the root clagsxception

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic @verstowError
ZeroDivisionError , FloatingPointError

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly tsys.setdefaultencoding()

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python sy®termor , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instarce® attribute (it is assumed

2.4. Built-in Exceptions 35

to be an error number), and the second item is available osttbror attribute (it is usually the associated
error message). The tuple itself is also available oratigs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on tllename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 argumentsefihe and
strerror attributes are alsblone when the instance was created with other than 2 or 3 arguments. In this
last caseargs contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anssert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or
attribute assignments at allypeError is raised.)

exceptionEOFError
Raised when one of the built-in functionsgut() or raw _input()) hits an end-of-file conditiongoF)
without reading any data. (N.B.: thead() andreadline() methods of file objects return an empty string
when they hiteOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with thewith-fpectl option, or theWANTSIGFPE_HANDLERsymbol is defined in the
‘pyconfig.h’ file.

exceptionlOError
Raised when an I/O operation (such gt statement, the built-iopen() function or a method of a file
object) fails for an I/O-related reason, e.qg., “file not found” or “disk full”.

This class is derived frorenvironmentError . See the discussion above for more information on exception
instance attributes.

exceptionimportError
Raised when aimport statement fails to find the module definition or whefi@an ... import fails to
find a name that is to be imported.

exceptionindexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integdiypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardinterrupt
Raised when the user hits the interrupt key (norm@ibntrol-C or Delete). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in fundtipot() orraw _input() is waiting
for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (@dloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value

36 Chapter 2. Built-In Objects

is an error message that includes the name that could not be found.

exceptionNotimplementedError
This exception is derived froRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived froenvironmentError and is used primarily as thies module’sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
15.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiddemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’'t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

exceptionReferenceError
This exception is raised when a weak reference proxy, created byethleref .proxy() function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see theweakref module. New in version 2.2: Previously known as theakref .ReferenceError
exception.

exceptionRuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exceptionStoplteration
Raised by an iteratorsext() method to signal that there are no further values. This is derived from
Exception rather thanStandardError , since this is not considered an error in its normal application.
New in version 2.2.

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occurimpant statement, in amexec
statement, in a call to the built-in functi@val() orinput() , or when reading the initial script or standard
input (also interactively).
Instances of this class have attributiésname , lineno , offset andtext for easier access to the details.
str() of the exception instance returns only the message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version of

the Python interpretesys.version it is also printed at the start of an interactive Python session), the exact
error message (the exception’s associated value) and if possible the source of the program that triggered the
error.

exceptionSystemExit

This exception is raised by tsys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
Crsexit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributede which is set to the proposed exit status or error message (defaulthot).
Also, this exception derives directly froException and notStandardError , since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handferally clauses otry

2.4. Built-in Exceptions 37

statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. _exit() function can be used if it is absolutely positively necessary to exit immediately (for
example, in the child process after a calfook()).

exceptionTypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass BameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subladsairror . New in
version 2.0.

exceptionUnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subcldsscofleError . New in
version 2.3.

exceptionUnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subcldsscofleError . New in
version 2.3.

exceptionUnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subcldsgcotieError . New in
version 2.3.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception sinctegError

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not corresporatrte an

value. Theerrno andstrerror values are created from the return values of@sLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclas©O&Error . New in
version 2.0.

exceptionZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; seedirengs module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionPendingDeprecationWarning
Base class for warnings about features which will be deprecated in the future.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

exceptionFutureWarning

38 Chapter 2. Built-In Objects

Base class for warnings about constructs that will change semantically in the future.

The class hierarchy for built-in exceptions is:

Exception

+-- SystemExit

+-- Stoplteration

+-- StandardError
+-- Keyboardinterrupt
+-- ImportError
+-- EnvironmentError

| +-- IOError

| +-- OSError

| +-- WindowsError
+-- EOFError

I
I
I
I
I
I
I
| +-- RuntimeError
| | +-- NotimplementedError
| +-- NameError
| | +-- UnboundLocalError
| +-- AttributeError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- TypeError
| +-- AssertionError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- ArithmeticError
| | +-- OverflowError
| | +-- ZeroDivisionError
| | +-- FloatingPointError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeTranslateError
| +-- ReferenceError
| +-- SystemError
| +-- MemoryError
+---Warning
+-- UserWarning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- SyntaxWarning
+-- OverflowWarning (not generated in 2.4; won't exist in 2.5)
+-- RuntimeWarning
+-- FutureWarning

2.5 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of thbool type. New in version 2.3.

2.5. Built-in Constants

True
The true value of theool type. New in version 2.3.

None

The sole value ofypes .NoneType . None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function.

Notimplemented
Special value which can be returned by the “rich comparison” special methoés(_() , __It __() , and
friends), to indicate that the comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

40 Chapter 2. Built-In Objects

CHAPTER
THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys
gc
weakref
fpectl
atexit
types
UserDict
UserList
UserString
operator
inspect
traceback
linecache
pickle
cPickle

copy _reg
shelve

copy
marshal
warnings
imp
zipimport
pkguti
code
codeop
pprint
repr

new

site

user
__builtin
__main __
__future

Access system-specific parameters and functions.
Interface to the cycle-detecting garbage collector.
Support for weak references and weak dictionaries.
Provide control for floating point exception handling.
Register and execute cleanup functions.

Names for built-in types.

Class wrapper for dictionary objects.

Class wrapper for list objects.

Class wrapper for string objects.

All Python’s standard operators as built-in functions.
Extract information and source code from live objects.
Print or retrieve a stack traceback.

This module provides random access to individual lines from text files.
Convert Python objects to streams of bytes and back.
Faster version gpickle , but not subclassable.
Registempickle support functions.

Python object persistence.

Shallow and deep copy operations.

Convert Python objects to streams of bytes and back (with different constraints).
Issue warning messages and control their disposition.
Access the implementation of timaport statement.
support for importing Python modules from ZIP archives.
Utilities to support extension of packages.

Base classes for interactive Python interpreters.
Compile (possibly incomplete) Python code.

Data pretty printer.

Alternaterepr() implementation with size limits.
Interface to the creation of runtime implementation objects.
A standard way to reference site-specific modules.

A standard way to reference user-specific modules.

The module that provides the built-in namespace.

The environment where the top-level script is run.

Future statement definitions

3.1 sys — System-specific parameters and functions

41

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv
The list of command line arguments passed to a Python saigiv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed usingth@and
line option to the interpreteargv[0] is set to the stringc’ . If no script name was passed to the Python
interpreterargv has zero length.

byteorder
An indicator of the native byte order. This will have the valbig' on big-endian (most-signigicant byte first)
platforms, andlittle’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin ~ _module _names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way modules.keys() only lists the imported modules.)

copyright

A string containing the copyright pertaining to the Python interpreter.
dilhandle

Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value
If valueis notNone, this function prints it tesys.stdout , and saves it in__builtin

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook

excepthook (type, value, tracebagk
This function prints out a given traceback and exceptiosygstderr

When an exception is raised and uncaught, the interpreter sy@lexcepthook with three arguments,

the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook

__displayhook

__excepthook __
These objects contain the original valuesdigplayhook andexcepthook at the start of the program.
They are saved so thdisplayhook andexcepthook can be restored in case they happen to get replaced
with broken objects.

exc _info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containingNloree values is returned.
Otherwise, the values returned drype value tracebach . Their meaning istypegets the exception type

of the exception being handled (a class object)uegets the exception parameter @ssociated valuer the

second argument t@ise , which is always a class instance if the exception type is a class oljjacg®pack

gets a traceback object (see the Reference Manual) which encapsulates the call stack at the point where the
exception originally occurred.

If exc _clear() is called, this function will return threlone values until either another exception is raised
in the current thread or the execution stack returns to a frame where another exception is being handled.

42 Chapter 3. Python Runtime Services

Warning: Assigning thetracebackreturn value to a local variable in a function that is handling an exception

will cause a circular reference. This will prevent anything referenced by a local variable in the same function
or by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the
best solution is to use something likectype, value = sys.exc _info()[:2] to extract only the
exception type and value. If you do need the traceback, make sure to delete it after use (best dotry with a

... finally statement) or to caltxc _info() in a function that does not itself handle an exceptiNote:
Beginning with Python 2.2, such cycles are automatically reclaimed when garbage collection is enabled and
they become unreachable, but it remains more efficient to avoid creating cycles.

exc _clear ()
This function clears all information relating to the current or last exception that occurred in the current thread.
After calling this functiongxc _info() will return threeNone values until another exception is raised in the
current thread or the execution stack returns to a frame where another exception is being handled.

This function is only needed in only a few obscure situations. These include logging and error handling systems
that report information on the last or current exception. This function can also be used to try to free resources
and trigger object finalization, though no guarantee is made as to what objects will be freed, if any. New in
version 2.3.

exc _type
exc _value
exc _traceback
Deprecated since release 1.%Jseexc _info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being hand&d, type is set toNone and the other two are

undefined.

exec _prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is alsd/usr/local’ . This can be set at build time with theexec-prefixargument to the
configure script. Specifically, all configuration files (e.g. th®c¢onfig.h’ header file) are installed in the di-
rectoryexec _prefix + '/lib/python versioriconfig’ , and shared library modules are installed in
exec _prefix + '/lib/python versiorlib-dynload’ , Whereversionis equal toversion[:3]

executable

A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising tBgstemExit exception, so cleanup actions specified by
finally clauses otry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumerarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdevelopeaix) programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is pasdedne is equivalent to passing zero, and any other
object is printed tesys.stderr and results in an exit code of 1. In particulgys.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use tlegexit module.Note: The exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or wosen_exit() is called.Deprecated since
release 2.4Useatexit instead.

getcheckinterval 0

3.1. sys — System-specific parameters and functions 43

Return the interpreter’s “check interval”; ssetcheckinterval() . New in version 2.3.

getdefaultencoding 0
Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getdlopenflags 0
Return the current value of the flags that are usedilligoen() calls. The flag constants are defined in dhe
andDLFCNmodules. Availability: WNix. New in version 2.2.

getfilesystemencoding 0
Return the name of the encoding used to convert Unicode filenames into system file naidesg df the
system default encoding is used. The result value depends on the operating system:
¢On Windows 9x, the encoding is “mbcs”.
¢On Mac OS X, the encoding is “utf-8".

¢On Unix, the encoding is the user’s preference according to the resultlahglinfo(CODESET), or None
if the nl_langinfo(CODESET) failed.

eOn Windows NT+, file names are Unicode natively, so no conversion is performed.

getfilesystemencoding still returns “mbcs”, as this is the encoding that applications should
use when they explicitly want to convert Unicode strings to byte strings that are equivalent when used as
file names.

New in version 2.3.

getrefcount (objec)
Return the reference count of tleject The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argumgettrésicount()

getrecursionlimit 0
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit()

_getframe ([depth])
Return a frame object from the call stack. If optional intedepthis given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stéakieError s raised. The default for
depthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

getwindowsversion ()
Return a tuple containing five components, describing the Windows version currently running. The elements
aremajor, minor, build, platform, andtext textcontains a string while all other values are integers.

platformmay be one of the following values:

Constant | Platform
VER_PLATFORMWIN32s Win32s on Windows 3.1
VER_PLATFORMWIN32_WINDOWS Windows 95/98/ME
VER_PLATFORMWIN32_NT Windows NT/2000/XP
VER_PLATFORMWIN32_CE Windows CE

This function wraps the Win3&etVersionEx() function; see the Microsoft documentation for more infor-
mation about these fields.

Availability: Windows. New in version 2.3.

hexversion
The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

44 Chapter 3. Python Runtime Services

if sys.hexversion >= 0x010502FO:
use some advanced feature

else:
use an alternative implementation or warn the user

This is called hexversion ' since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion _info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last _type

last _value

last _traceback
These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use ismport pdb; pdb.pm() ' to enter the post-mortem debugger; see chapter 9, “The
Python Debugger,” for more information.)

The meaning of the variables is the same as that of the return valuegfoninfo() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unéke fdype etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer ismaxint-1 — the asymmetry results from the use of 2's complement binary arithmetic.
maxunicode

An integer giving the largest supported code point for a Unicode character. The value of this depends on the
configuration option that specifies whether Unicode characters are stored as UCS-2 or UCS-4.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionaty is
the same as callinggload() on the corresponding module object.

path

A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, plus an installation-dependent default.

As initialized upon program startup, the first item of this |gath[0] , is the directory containing the script

that was used to invoke the Python interpreter. If the script directory is not available (e.g. if the interpreter is
invoked interactively or if the script is read from standard inpp&th[0] is the empty string, which directs
Python to search modules in the current directory first. Notice that the script directory is insefoeethe
entries inserted as a result of PYTHONPATH.

A program is free to modify this list for its own purposes.
Changed in version 2.3: Unicode strings are no longer ignored.

platform
This string contains a platform identifier, elgunos5’ or’linuxl’ . This can be used to append platform-
specific components feath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed,;
by default, this is the stringustr/local’ . This can be set at build time with theprefix argument to
the configure script. The main collection of Python library modules is installed in the direqiogfix +
‘llib/python versiori while the platform independent header files (all exceptdnfig.h’) are stored in
prefix + ’'/linclude/python versiori , whereversionis equal toversion[:3]

3.1. sys — System-specific parameters and functions 45

psl

ps2
Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter
is in interactive mode. Their initial values in this case &®> ' and'... . If a non-string object is
assigned to either variable, gtr() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The defa0ld jsmeaning the check is performed every
100 Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a valuee= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (namg
Set the current default string encoding used by the Unicode implementatialmmiédoes not match any
available encodingd,.ookupError is raised. This function is only intended to be used bydive module
implementation and, where needed difecustomize . Once used by theite module, it is removed from
thesys module’s namespace. New in version 2.0.

setdlopenflags (n
Set the flags used by the interpreter fliopen() calls, such as when the interpreter loads extension
modules. Among other things, this will enable a lazy resolving of symbols when importing a mod-
ule, if called assys.setdlopenflags(0) . To share symbols across extension modules, call as
sys.setdlopenflags(dl.RTLD _NOW | dI.RTLD _GLOBAL). Symbolic names for the flag modules
can be either found in the! module, or in thdDLFCNmodule. IfDLFCNis not available, it can be generated
from ‘/usr/include/difcn.h’ using theh2py script. Availability: UNiX. New in version 2.2.

setprofile (profilefung
Set the system’s profile function, which allows you to implement a Python source code profiler in Python. See
chapter 10 for more information on the Python profiler. The system’s profile function is called similarly to the
system’s trace function (seettrace()), but it isn’t called for each executed line of code (only on call and
return, but the return event is reported even when an exception has been set). The function is thread-specific,
but there is no way for the profiler to know about context switches between threads, so it does not make sense
to use this in the presence of multiple threads. Also, its return value is not used, so it can simpliXogtern

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stackmd. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefung
Set the system’s trace function, which allows you to implement a Python source code debugger in Python.
See section 9.2, “How It Works,” in the chapter on the Python debugger. The function is thread-specific; for a
debugger to support multiple threads, it must be registered ssitigice() for each thread being debugged.
Note: The settrace() function is intended only for implementing debuggers, profilers, coverage tools and
the like. Its behavior is part of the implementation platform, rather than part of the language definition, and thus
may not be available in all Python implementations.

settscdump (on_flag)
Activate dumping of VM measurements using the Pentium timestamp counter, fieg is true. Deactivate
these dumps ibn_flag is off. The function is available only if Python was compiled withvith-tsc. To
understand the output of this dump, re&githon/ceval.c’ in the Python sources. New in version 2.4.

stdin
stdout
stderr

46 Chapter 3. Python Runtime Services

File objects corresponding to the interpreter’s standard input, output and error stre@tims. is used for

all interpreter input except for scripts but including calldriput() andraw _input() . stdout is used

for the output ofprint and expression statements and for the promptemit() andraw _input()

The interpreter’s own prompts and (almost all of) its error messages gléor . stdout andstderr

needn’t be built-in file objects: any object is acceptable as long as it ha#e) method that takes a

string argument. (Changing these objects doesn’t affect the standard 1/0 streams of processes executed by
os.popen() ,os.system() ortheexec*() family of functions in theos module.)

__stdin __

__stdout

__stderr __
These objects contain the original valuesstfin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The defal008. When set td or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-
ber and compiler used. It has a value of the farmersion (# build_number build_date build_time)
[compilef’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:
>>> import sys
>>> sys.version
'1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bhit (Intel)]

api _version
The C API version for this interpreter. Programmers may find this useful when debugging version conflicts
between Python and extension modules. New in version 2.3.

version _info
Atuple containing the five components of the version numivegjor, minor, micro, releaselevelandserial. All
values excepteleaselevedire integers; the release levelaipha’ |, ’beta’ |, ’candidate’ , or’final
Theversion _info value corresponding to the Python version 2.QRis 0, 0, ‘final’, 0) . New
in version 2.0.

warnoptions
This is an implementation detail of the warnings framework; do not modify this value. Referwathéegs
module for more information on the warnings framework.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three charactereddion . Itis provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

See Also:

Modulesite (section 3.29):
This describes how to use .pth files to exteyd.path

3.2 gc — Garbage Collector interface

3.2. gc — Garbage Collector interface a7

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
calling gc.disable() . To debug a leaking program cajt.set _debug(gc.DEBUG _LEAK). Notice that this
includesgc. DEBUG_SAVEALL, causing garbage-collected objects to be saved in gc.garbage for inspection.

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set _debug (flag9
Set the garbage collection debugging flags. Debugging information will be writeyststderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get _debug ()
Return the debugging flags currently set.

get _objects ()
Returns a list of all objects tracked by the collector, excluding the list returned. New in version 2.2.

set _threshold (threshold(ﬁ, thresholdi, thresholdﬂ])
Set the garbage collection thresholds (the collection frequency). StttegholdOto zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (gene@tidhan object survives a collection it is moved

into the next older generation. Since generafiois the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations
and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedshresholdQ collection starts. Initially only generatidhis examined. If generatiobhas been examined

more thanthreshold1times since generatioh has been examined, then generatiois examined as well.
Similarly, threshold2controls the number of collections of generatibbefore collecting generatidh

get _threshold ()
Return the current collection thresholds as a tuplétbfesholdQ threshold]l threshold? .

get _referrers (*objs)
Return the list of objects that directly refer to any of objs. This function will only locate those containers which
support garbage collection; extension types which do refer to other objects but do not support garbage collection
will not be found.

Note that objects which have already been dereferenced, but which live in cycles and have not yet been collected
by the garbage collector can be listed among the resulting referrers. To get only currently live objects, call
collect() before callingget _referrers()

Care must be taken when using objects returnegdty_referrers() because some of them could still be
under construction and hence in a temporarily invalid state. Avoid g referrers() for any purpose
other than debugging.

New in version 2.2.

get _referents (*objs)
Return a list of objects directly referred to by any of the arguments. The referents returned are those objects

48 Chapter 3. Python Runtime Services

visited by the arguments’ C-levig) _traverse methods (if any), and may not be all objects actually directly
reachabletp _traverse methods are supported only by objects that support garbage collection, and are only
required to visit objects that may be involved in a cycle. So, for example, if an integer is directly reachable from
an argument, that integer object may or may not appear in the result list.

New in version 2.3.
The following variable is provided for read-only access (you can mutate its value but should not rebind it):

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects). By
default, this list contains only objects with_del __() methods: Objects that have_del __() methods
and are part of a reference cycle cause the entire reference cycle to be uncollectable, including objects not
necessarily in the cycle but reachable only from it. Python doesn’t collect such cycles automatically because, in
general, itisn’'t possible for Python to guess a safe order in which to runttel __() methods. If you know
a safe order, you can force the issue by examiningydrbagelist, and explicitly breaking cycles due to your
objects within the list. Note that these objects are kept alive even so by virtue of beinggartiegelist, so
they should be removed frogarbagetoo. For example, after breaking cycles,all gc.garbagel[:] to
empty the list. It's generally better to avoid the issue by not creating cycles containing objects déth __()
methods, angarbagecan be examined in that case to verify that no such cycles are being created.

If DEBUGSAVEALLIs set, then all unreachable objects will be added to this list rather than freed.
The following constants are provided for use wsttt _debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to tewbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEr DEBUGUNCOLLECTABLIS set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLErDEBUGUNCOLLECTABLIE set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appendegdtioagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGNSTANCES | DEBUGOBJECTS
| DEBUG_SAVEALL.

3.3 weakref — Weak references

New in version 2.1.
Theweakref module allows the Python programmer to crea&ak reference® objects.

In the following, the ternreferentmeans the object which is referred to by a weak reference.

1Prior to Python 2.2, the list contained all instance objects in unreachable cycles, not only thosedeith__() methods.

3.3. weakref — Weak references 49

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a referent
are weak references, garbage collection is free to destroy the referent and reuse its memory for something else. A
primary use for weak references is to implement caches or mappings holding large objects, where it's desired that a
large object not be kept alive solely because it appears in a cache or mapping. For example, if you have a number of
large binary image objects, you may wish to associate a hame with each. If you used a Python dictionary to map names
to images, or images to names, the image objects would remain alive just because they appeared as values or keys in
the dictionaries. Th&VeakKeyDictionary = and WeakValueDictionary classes supplied by theeakref

module are an alternative, using weak references to construct mappings that don’t keep objects alive solely because
they appear in the mapping objects. If, for example, an image object is a valu&/gakValueDictionary)

then when the last remaining references to that image object are the weak references held by weak mappings, garbage
collection can reclaim the object, and its corresponding entries in weak mappings are simply deleted.

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed by
garbage collection. Most programs should find that using one of these weak dictionary types is all they need — it's not
usually necessary to create your own weak references directly. The low-level machinery used by the weak dictionary
implementations is exposed by thveakref module for the benefit of advanced uses.

Not all objects can be weakly referenced; those objects which can include class instances, functions written in Python

(but not in C), methods (both bound and unbound), sets, frozensets, file objects, generators, type objects, DBcursor
objects from théosddb module, sockets, arrays, deques, and regular expression pattern objects. Changed in version

2.4: Added support for files, sockets, arrays, and patterns.

Several builtin types such dist anddict do not directly support weak references but can add support through
subclassing:

class Dict(dict):
pass

obj = Dict(red=1, green=2, blue=3) # this object is weak referencable

Extension types can easily be made to support weak references; see section 3.3.3, “Weak References in Extension
Types,” for more information.

classref (objec{, callback])
Return a weak reference tibject The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will close to be
returned. Ifcallbackis provided and nolNone, it will be called when the object is about to be finalized,;
the weak reference object will be passed as the only parameter to the callback; the referent will no longer be
available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an ohjectd __() method.

Weak references are hashable if tigectis hashable. They will maintain their hash value even afteotject
was deleted. Ihash() is called the first time only after thabjectwas deleted, the call will raisEypeError

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless oélivack. If either referent has been deleted,
the references are equal only if the reference objects are the same object.

Changed in version 2.4: This is now a subclassable type rather than a factory function; it derivebjérom .
proxy (objec{, callback])

Return a proxy tmbjectwhich uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type

50 Chapter 3. Python Runtime Services

of eitherProxyType or CallableProxyType , depending on wheth@hbjectis callable. Proxy objects are

not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary kegdlbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount (objec)
Return the number of weak references and proxies which refajext

getweakrefs (objec)
Return a list of all weak reference and proxy objects which refebfject

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

Note: Caution: BecauseWeakKeyDictionary s built on top of a Python dictionary, it must not change size
when iterating over it. This can be difficult to ensure faMaakKeyDictionary = because actions performed

by the program during iteration may cause items in the dictionary to vanish "by magic” (as a side effect of
garbage collection).

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.

Note: Caution: Because\WeakValueDictionary is built on top of a Python dictionary, it must not change
size when iterating over it. This can be difficult to ensure fa/aakValueDictionary because actions
performed by the program during iteration may cause items in the dictionary to vanish "by magic” (as a side
effect of garbage collection).

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected. This is the same as
the standardReferenceError exception.

See Also:

PEP 0205, YWeak Referencés
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

3.3. weakref — Weak references 51

>>> import weakref
>>> class Object:

pass
>>> 0 = Object()
>>> r = weakref.ref(o)

>>> 02 = 1()
>>> 0 iS 02
True

If the referent no longer exists, calling the reference object retlome:

>>> del o, 02
>>> print r()
None

Testing that a weak reference object is still live should be done using the expresf§jois not None . Nor-
mally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o =r()
if o is None:
referent has been garbage collected
print "Object has been allocated; can't frobnicate."
else:
print "Object is still live!"
0.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded appli-
cations as well as single-threaded applications.

Specialized versions ok&f objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary to reduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclasseff can be used to store additional information about an object and affect the
value that's returned when the referent is accessed:

52 Chapter 3. Python Runtime Services

import weakref

class ExtendedRef(weakref.ref):
def __new__(cls, ob, callback=None, **annotations):
weakref.ref.__new__(cls, ob, callback)
self.__counter = 0

def __init_ (self, ob, callback=None, **annotations):
super(ExtendedRef, self).__init__(ob, callback)
for k, v in annotations:
setattr(self, k, v)

def _ call__(self):
""Return a pair containing the referent and the number of
times the reference has been called.

ob = super(ExtendedRef, self)()
if ob is not None:
self.__counter += 1
ob = (ob, self.__counter)
return ob

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
oid = id(obj)
_id2obj_dict[oid] = obj
return oid

def id2obj(oid):
return _id2obj_dict[oid]

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must incl@g©hject* field in the instance structure for
the use of the weak reference mechanism; it must be initializ&tUoL by the object’s constructor. It must also set
thetp _weaklistoffset field of the corresponding type object to the offset of the field. Also, it needs to add
Py_TPFLAGS HAVE WEAKREF® the tp flags slot. For example, the instance type is defined with the following
structure:

3.3. weakref — Weak references 53

typedef struct {
PyObject HEAD

PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PylnstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject Pylnstance_Type = {
PyObject HEAD_INIT(&PyType_Type)
0,
"module.instance",

[* Lots of stuff omitted for brevity... */

Py TPFLAGS_DEFAULT | Py TPFLAGS_HAVE_WEAKREFS /* tp_flags */

0, [* tp_doc */

0, [* tp_traverse */

0, [* tp_clear */

0, I* tp_richcompare */

offsetof(PyInstanceObject, in_weakreflist), /* tp_weaklistoffset */

The type constructor is responsible for initializing the weak reference ItioL:

static PyObject *
instance_new() {
[* Other initialization stuff omitted for brevity */

self->in_weakreflist = NULL;

return (PyObject *) self;

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred, but is only required if the weak reference
listis nonNULL:

static void
instance_dealloc(PylnstanceObject *inst)

[* Allocate temporaries if needed, but do not begin
destruction just yet.
*/

if (inst->in_weakreflist != NULL)
PyObiject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destruction normally. */

54 Chapter 3. Python Runtime Services

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

>>> jmport math

>>> math.exp(1000)

inf

>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) "Inf” is a special, non-numeric
value in IEEE-754 that stands for "infinity”, and "nan” means "not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Tiygectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the genera®iF®E whenever any of

the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python sySI6G#®PE is trapped and converted into the
PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon _sigfpe ()
Turn on the generation &IGFPE, and set up an appropriate signal handler.

turnoff _sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon _sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operationfpiegtte module.

3.4. fpectl — Floating point exception control 55

>>> import fpectl

>>> import fpetest

>>> fpectl.turnon_sigfpe()
>>> fpetest.test()

overflow PASS
FloatingPointError: Overflow

div by 0 PASS

FloatingPointError: Division by zero
[more output from test elided]

>>> jmport math

>>> math.exp(1000)

Traceback (most recent call last):
File "<stdin>", line 1, in ?

FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modifpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE_START_PROTECTand PyFPE_END PROTECTbe inserted into your code in an appropriate fash-
ion. Python itself has been modified to supportfipectt module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.
See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘Include/pyfpe.h’ discusses the implementation of this module at some lengtfodules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be fourbjexcts/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whes. _exit() is called.

This is an alternate interface to the functionality provided bystygexitfunc variable.

Note: This module is unlikely to work correctly when used with other code thatsystexitfunc . In partic-
ular, other core Python modules are free to asxit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to usgexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit ~ and register the function that had been bounsymexitfunc

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be pdssed to
must be passed as argumentsegister()

At normal program termination (for instance sijs.exit() is called or the main module’s execution com-

56 Chapter 3. Python Runtime Services

pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

If an exception is raised during execution of the exit handlers, a traceback is printed Gyd¢siExit is
raised) and the exception information is saved. After all exit handlers have had a chance to run the last exception
to be raised is re-raised.

See Also:

Modulereadline (section 7.20):
Useful example oétexit to read and writeeadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:

_count = int(open("/tmp/counter”).read())
except IOError:

—count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter”, "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

Positional and keyword arguments may also be passesyister() to be passed along to the registered function
when it is called:

def goodbye(name, adjective):
print 'Goodbye, %s, it was %s to meet you.'” % (name, adjective)

import atexit
atexit.register(goodbye, 'Donny’, ’nice’)

or:
atexit.register(goodbye, adjective="nice’, name='Donny’)

3.6 types — Names for built-in types

This module defines names for some object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. Also, it does not include some of the types that arise during processing such
thelistiterator type. It is safe to usdrom types import * ' — the module does not export any names
besides the ones listed here. New names exported by future versions of this module will allByykih *

Typical use is for functions that do different things depending on their argument types, like the following:

3.6. types — Names for built-in types 57

from types import *
def delete(mylist, item):
if type(item) is IntType:
del mylist[item]
else:
mylist.remove(item)

Starting in Python 2.2, built-in factory functions suchiag) andstr() are also names for the corresponding
types. This is now the preferred way to access the type instead of usitygpp®e module. Accordingly, the example
above should be written as follows:

def delete(mylist, item):
if isinstance(item, int):
del mylist[item]
else:
mylist.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returnedype()).
BooleanType

The type of thebool valuesTrue andFalse ; this is an alias of the built-itbool() function. New in
version 2.3.

IntType
The type of integers (e.d.).

LongType
The type of long integers (e.gL).

FloatType
The type of floating point numbers (e.5.0).

ComplexType
The type of complex numbers (e.d.0j). This is not defined if Python was built without complex number
support.

StringType
The type of character strings (e!§pam’).
UnicodeType

The type of Unicode character strings (euSpam’). This is not defined if Python was built without Unicode
support.

TupleType

The type of tuples (e.d1, 2, 3, 'Spam’)).
ListType

The type of lists (e.g[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g'Bacon’. 1, 'Ham’: 0}).

58 Chapter 3. Python Runtime Services

DictionaryType
An alternate name fdDictType

FunctionType

The type of user-defined functions and lambdas.
LambdaType

An alternate name fdfunctionType
GeneratorType

The type of generator-iterator objects, produced by calling a generator function. New in version 2.2.
CodeType

The type for code objects such as returnec¢bmpile()
ClassType

The type of user-defined classes.
InstanceType

The type of instances of user-defined classes.
MethodType

The type of methods of user-defined class instances.
UnboundMethodType

An alternate name fdvlethodType .

BuiltinFunctionType
The type of built-in functions likéen() or sys.exit()

BuiltinMethodType
An alternate name fdBuiltinFunction

ModuleType
The type of modules.

FileType
The type of open file objects suchsgs.stdout

XRangeType
The type of range objects returnedxnange()

SliceType
The type of objects returned Ilsjice()

EllipsisType
The type ofEllipsis

TracebackType
The type of traceback objects such as foundyis.exc _traceback

FrameType
The type of frame objects such as foundbrtb _frame if tb is a traceback object.

BufferType
The type of buffer objects created by theffer() function.

StringTypes
A sequence containingtringType andUnicodeType used to facilitate easier checking for any string ob-
ject. Using this is more portable than using a sequence of the two string types constructed elsewhere since it only
containdJnicodeType if it has been built in the running version of Python. For exam@iestance(s,
types.StringTypes) . New in version 2.2.

3.6. types — Names for built-in types 59

3.7 UserDict — Class wrapper for dictionary objects

The module defines a miximictMixin , defining all dictionary methods for classes that already have a minimum
mapping interface. This greatly simplifies writing classes that need to be substitutable for dictionaries (such as the
shelve module).

This also module defines a clatkserDict |, that acts as a wrapper around dictionary objects. The need for this class
has been largely supplanted by the ability to subclass directly ffisin (a feature that became available starting
with Python version 2.2). Prior to the introductiondi€t , theUserDict class was used to create dictionary-like
sub-classes that obtained new behaviors by overriding existing methods or adding new ones.

TheUserDict module defines thEserDict class andictMixin

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifnitialdata is provided,data is initialized with its contents;
note that a reference tnitialdata will not be kept, allowing it be used for other purposes.

In addition to supporting the methods and operations of mappings (see section2s@i®)ict instances provide
the following attribute:

data
A real dictionary used to store the contents oftheerDict class.

classDictMixin ()
Mixin defining all dictionary methods for classes that already have a minimum dictionary interface including
__getitem __() ,__setitem __() ,__delitem __() ,andkeys()

This mixin should be used as a superclass. Adding each of the above methods adds progressively more func-

tionality. For instance, defining all but_delitem __ will preclude onlypop andpopitem from the full
interface.
In addition to the four base methods, progressively more efficiency comes with defingogtains ()

__iter __() , anditeritems()
Since the mixin has no knowledge of the subclass constructor, it does not define __() or copy()

3.8 UserList — Class wrapper for list objects

Note: This module is available for backward compatibility only. If you are writing code that does not need to work
with versions of Python earlier than Python 2.2, please consider subclassing directly from thelsiilt-itype.

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines thElserList class:

classUserList ([Iist])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessiblel@ia the
attribute ofUserList instances. The instance’s contents are initially set to a copigtofdefaulting to the
empty list[] . list can be either a regular Python list, or an instancdsdrList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see sectiods28.8) instances
provide the following attribute:

data
A real Python list object used to store the contents oltkerList class.

Subclassing requirements: Subclasses dfJserList are expect to offer a constructor which can be called with

60 Chapter 3. Python Runtime Services

either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabldata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.9 UserString — Class wrapper for string objects

Note: This UserString class from this module is available for backward compatibility only. If you are writing
code that does not need to work with versions of Python earlier than Python 2.2, please consider subclassing directly
from the built-instr type instead of usintyserString (there is no built-in equivalent telutableString).

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case foMutableString

TheUserString module defines the following classes:

classUserString ([sequenc})
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via tta#a attribute ofUserString instances. The instance’s
contents are initially set to a copy séquencesequencean be either a regular Python string or Unicode string,
an instance ofJserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

classMutableString ([sequenc})
This class is derived from thdserString above and redefines strings to tpeitable Mutable strings can't
be used as dictionary keys, because dictionaries reguiraitableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (overridedshe__()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.3.6, “String Meth-
ods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content diseeString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For examplepperator.add(x, Y) is equivalent to the expressiorty . The function names are those used for
special class methods; variants without leading and trailing are also provided for convenience.

The functions fall into categories that perform object comparisons, logical operations, mathematical operations, se-
guence operations, and abstract type tests.

The object comparison functions are useful for all objects, and are named after the rich comparison operators they
support:

3.9. UserString — Class wrapper for string objects 61

It (a, b

le (a, b

eq(a, b

ne(a,b)

ge(a, b

gt (a, b

_It __(a/b

_le __(a/b

__eqg__(ab

__ne__(ab

__ge__(a/b

_gt__(a/b
Perform “rich comparisons” betweenandb. Specifically,lt(a, b) is equivalenttea < b,le(a, b) is
equivalenttca <= b, eq(a, b) isequivalenttea == b, ne(a, b) isequivalentta = b, gt(a, b)
is equivalent tca > b andge(a b) is equivalent tca >= b. Note that unlike the built-icmp() , these
functions can return any value, which may or may not be interpretable as a Boolean value. Bgthtime
Reference Manudbr more information about rich comparisons. New in version 2.2.

The logical operations are also generally applicable to all objects, and support truth tests, identity tests, and boolean
operations:

not _(0)

__not __(0)
Return the outcome afot o. (Note that there is na_not __() method for object instances; only the inter-
preter core defines this operation. The result is affected by tienzero __() and__len __() methods.)

truth (0)
ReturnTrue if ois true, and~alse otherwise. This is equivalent to using theol constructor.
is _(a, b

Returna is b. Tests object identity. New in version 2.3.

is _not (a, b
Returna is not b. Tests object identity. New in version 2.3.

The mathematical and bitwise operations are the most numerous:

abs (0)
__abs__(0)
Return the absolute value of

add(a, b
__add__(a,b
Returna + b, for a andb numbers.

and _(a, b
__and__(a,b
Return the bitwise and a&f andb.

div (a, b
__div __(a,b
Returna/ bwhen__future __.division is not in effect. This is also known as “classic” division.
floordiv (a, b)
__floordiv. __(a,b)
Returna// b. New in version 2.2.

inv (0)
invert (0)
__inv __(0)

62 Chapter 3. Python Runtime Services

__invert __(0)
Return the bitwise inverse of the number This is equivalent to"o. The namesinvert() and
__invert __() were added in Python 2.0.

Ishift (a, b
__Ishift __(a,b
Returna shifted left byb.

mod(a, b)
__mod__(a,b
Returna %b.

mul (a, b)
__mul__(a,b
Returna* b, for aandb numbers.

neg(o)
__neg__(0)
Returno negated.

or (a, b
_or__(aMb
Return the bitwise or o andb.

pos (0)
__pos__(0)
Returno positive.

pow(a, b)
__pow__(a,b)
Returna** b, for aandb numbers. New in version 2.3.

rshift (a, b
__rshift __(a, b
Returna shifted right byb.

sub (a, b)
__sub__(a,b
Returna- b.

truediv (a, b
__truediv __(a,b)
Returna/ bwhen__future __.division is in effect. This is also known as division. New in version 2.2.

xor (a, b)
__xor __(a,b
Return the bitwise exclusive or afandb.

Operations which work with sequences include:

concat (a,b)
__concat __(a,b
Returna + b for a andb sequences.

contains (a,b)

__contains __(a,b
Return the outcome of the tdsin a. Note the reversed operands. The nameontains __() was added
in Python 2.0.

countOf (a,b)
Return the number of occurrencesah a.

3.10. operator — Standard operators as functions. 63

delitem (a, b
__delitem __(a,b)
Remove the value daf at indexb.

delslice (a, b, 9
__delslice __(a,b,9
Delete the slice oa from indexb to indexc-1 .

getitem (a, b
__getitem __(a,b)
Return the value o at indexb.

getslice (a,b,9
__getslice __(a,b,9
Return the slice o& from indexb to indexc-1 .

indexOf (a, b
Return the index of the first of occurrenceloi a.

repeat (a, b
__repeat __(a,b
Returna* b whereais a sequence artilis an integer.

sequencelncludes (..)
Deprecated since release 2.Qsecontains() instead.

Alias for contains()

setitem (a, b, 9
__setitem __(a,b,9
Set the value o at indexb to c.

setslice (a,b,c,y
__setslice __(a,b,c,V
Set the slice o from indexb to indexc-1 to the sequence

Theoperator module also defines a few predicates to test the type of objdote: Be careful not to misinterpret
the results of these functions; ongCallable() has any measure of reliability with instance objects. For example:

>>> class C:
pass

>>> import operator

>>> 0 = C()

>>> operator.isMappingType(0)
True

isCallable (0)
Deprecated since release 2.Qse thecallable() built-in function instead.

Returns true if the objectcan be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which suppodzate __() method.

isMappingType (0)
Returns true if the objeat supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (0)
Returns true if the objea represents a number. This is true for all numeric types implemented in C, and for

64 Chapter 3. Python Runtime Services

all instance objectsWarning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (0)
Returns true if the objeai supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objestfarning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals fr@rto 256 to their character equivalents.

>>> import operator

>>>d = {}

>>> keys = range(256)

>>> vals = map(chr, keys)

>>> map(operator.setitem, [d]*len(keys), keys, vals)

Theoperator module also defines tools for generalized attribute and item lookups. These are useful for making
fast field extractors as arguments foap() , sorted() , itertools.groupby() , or other functions that expect
a function argument.

attrgetter (attr)
Return a callable object that fetcha#tr from its operand. After, f=attrgetter('name’) ', the call
‘f(b) ’returns b.name’. New in version 2.4.

itemgetter (item)
Return a callable object that fetchigem from its operand. After,f=itemgetter(2) ', the call f(b) ’
returns b[2] '. New in version 2.4.

Examples:

>>> from operator import *

>>> inventory = [(‘apple’, 3), (banana’, 2), (‘pear’, 5), (orange’, 1)]
>>> getcount = itemgetter(1)

>>> map(getcount, inventory)

[3, 2, 5, 1]

>>> sorted(inventory, key=getcount)

[Corange’, 1), (banana’, 2), (‘apple’, 3), (pear’, 5)]

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

3.10. operator — Standard operators as functions. 65

Operation Syntax Function
Addition a+b add(a, b)
Concatenation seql + seq2 | concat(seql seq3l
Containment Test 0 in seq contains(seq O0)
Division al b div(a, b) # without__future __.division
Division al b truediv(a, b) # with __future __.division
Division all b floordiv(a, b)
Bitwise And aé&hb and_(a, b)
Bitwise Exclusive Or a" b xor(a, b)
Bitwise Inversion | invert(a)
Bitwise Or al b or _(a b)
Exponentiation a** b pow(a, b)
Identity ais b is _(a b)
Identity aisnot b is _not(a, b)
Indexed Assignment o[kl = v setitem(o, k, V)
Indexed Deletion del o[K] delitem(o, K)
Indexing o[K] getitem(o, k)
Left Shift a<<b Ishift(&, b)
Modulo a%b mod(a, b)
Multiplication a* b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not _(a)
Right Shift a>>b rshift(a, b)
Sequence Repitition seq* i repeat(seq i)
Slice Assignment seq i: j] =values| setslice(seq i, j, valueg
Slice Deletion del seqi:|j] delslice(seq i, j)
Slicing seq i: j] getslice(seq i, j)
String Formatting s %o mod(s, 0)
Subtraction a-»b sub(a, b)
Truth Test o] truth(o)
Ordering a<hb lt(a b)
Ordering a<=b le(a, b)
Equality a==b eq(a b)
Difference al=b ne(a, b)
Ordering a>=b ge(a, b)
Ordering a>hb gt(a, b)

3.11 inspect — Inspect live objects

New in version 2.1.

Theinspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

66 Chapter 3. Python Runtime Services

3.11.1 Types and members

The getmembers()

function retrieves the members of an object such as a class or module. The eleven functions
whose names begin with “is” are mainly provided as convenient choices for the second argugetmisimbers()
They also help you determine when you can expect to find the following special attributes:

Type Attribute Description Notes
module | __doc__ documentation string
__file__ filename (missing for built-in modules)
class | __doc__ documentation string
__module__ name of module in which this class was defined
method | __doc__ documentation string
__name__ name with which this method was defined
im_class class object that asked for this method Q)
im_func function object containing implementation of method
im_self instance to which this method is bound,Mone
function | __doc__ documentation string
__hame__ name with which this function was defined
func_code code object containing compiled function bytecode
func_defaults tuple of any default values for arguments
func_doc (same as__doc__)
func_globals global namespace in which this function was defined
func_name (same as__name__)
traceback| tb_frame frame object at this level
tb_lasti index of last attempted instruction in bytecode
tb_lineno current line number in Python source code
tb_next next inner traceback object (called by this level)
frame | f_back next outer frame object (this frame’s caller)
f_builtins built-in namespace seen by this frame
f_code code object being executed in this frame
f_exc_traceback| traceback if raised in this frame, bione
f_exc_type exception type if raised in this frame, Nione
f_exc_value exception value if raised in this frame, Wone
f_globals global namespace seen by this frame
f_lasti index of last attempted instruction in bytecode
f_lineno current line number in Python source code
f_locals local namespace seen by this frame
f_restricted 0 or 1 if frame is in restricted execution mode
f_trace tracing function for this frame, dione
code co_argcount number of arguments (not including * or ** args)
co_code string of raw compiled bytecode
co_consts tuple of constants used in the bytecode
co_filename name of file in which this code object was created
co_firstlineno number of first line in Python source code
co_flags bitmap: 1=optimized 2=newlocald 4=*arg| 8=**arg
co_Inotab encoded mapping of line numbers to bytecode indices
co_name name with which this code object was defined
co_names tuple of names of local variables
co_nlocals number of local variables
co_stacksize virtual machine stack space required
co_varnames tuple of names of arguments and local variables
builtin | __doc__ documentation string
__name__ original name of this function or method
__self__ instance to which a method is bound,Ndone

3.11. inspect

— Inspect live objects

67

Note:

(1) Changed in version 2.2n _class used to refer to the class that defined the method.

getmembers (objec{, predicatd)
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optexiehte
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path
Return a tuple of values that describe how Python will interpret the file identifigghtiyif it is a module, or
None if it would not be identified as a module. The return tupl¢ iame suffix mode mtypg , where
nameis the name of the module without the name of any enclosing packafjiis the trailing part of the file
name (which may not be a dot-delimited extensionpdeis theopen() mode that would be used’(or
rb’), andmtypeis an integer giving the type of the modulatypewill have a value which can be compared
to the constants defined in ti@p module; see the documentation for that module for more information on
module types.

getmodulename (path
Return the name of the module named by thegfdéh without including the names of enclosing packages. This
uses the same algorithm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s ruldspne is returned.

ismodule (objec)
Return true if the object is a module.

isclass (objec)
Return true if the object is a class.

ismethod (objec)
Return true if the object is a method.

isfunction (objec)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (objec)
Return true if the object is a traceback.

isframe (objec)
Return true if the object is a frame.

iscode (objec)
Return true if the object is a code.

isbuiltin (objec)
Return true if the object is a built-in function.

isroutine (objec)
Return true if the object is a user-defined or built-in function or method.

ismethoddescriptor (objech
Return true if the object is a method descriptor, but not if ismethod() or isclass() or isfunction() are true.

This is new as of Python 2.2, and, for example, is true of irhdd__. An object passing this test has aget__
attribute but not a__set__ attribute, but beyond that the set of attributes variesaame__ is usually sensible,
and__doc__ ofteniis.

Methods implemented via descriptors that also pass one of the other tests return false from the ismethoddescrip-
tor() test, simply because the other tests promise more — you can, e.g., count on havingftime iattribute
(etc) when an object passes ismethod().

isdatadescriptor (objec)
Return true if the object is a data descriptor.

68 Chapter 3. Python Runtime Services

Data descriptors have both_.a get _ and a__set__ attribute. Examples are properties (defined in Python)

and getsets and members (defined in C). Typically, data descriptors will alsa_haeee _ and __doc__

attributes (properties, getsets, and members have both of these attributes), but this is not guaranteed. New in
version 2.3.

3.11.2 Retrieving source code

getdoc (objec)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments (objec)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (objec)
Return the name of the (text or binary) file in which an object was defined. This will fail wiypaError if
the object is a built-in module, class, or function.

getmodule (objec)
Try to guess which module an object was defined in.

getsourcefile (objec)
Return the name of the Python source file in which an object was defined. This will fail WigheError if
the object is a built-in module, class, or function.

getsourcelines (objec)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError s raised if the source code cannot be retrieved.

getsource (objec)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single stril@Eror s raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classeg, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If thaiqueargument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (fung
Get the names and default values of a function’s arguments. A tuple of four things is refuangsl: varargs
varkw, defaultd . argsis a list of the argument names (it may contain nested ligtgargsandvarkware the
names of the¢ and** arguments oNone. defaultsis a tuple of default argument values or None if there are
no default arguments; if this tuple haglements, they correspond to the lagiements listed ilargs

getargvalues (frame
Get information about arguments passed into a particular frame. A tuple of four things is ret(argd:
varargs varkw, localg) . argsis a list of the argument names (it may contain nested listgyargs and
varkware the names of theand** arguments oNone. localsis the locals dictionary of the given frame.

3.11. inspect — Inspect live objects 69

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultfo}bnat
Format a pretty argument spec from the four values returnegebgrgspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, vaIuefoﬂmat
Format a pretty argument spec from the four values returnegbtargvalues() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

getmro (cls)
Return a tuple of class cls’s base classes, including cls, in method resolution order. No class appears more
than once in this tuple. Note that the method resolution order depends on cls’s type. Unless a very peculiar
user-defined metatype is in use, cls will be the first element of the tuple.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list.

Warning: Keeping references to frame objects, as found in the first element of the frame records these functions
return, can cause your program to create reference cycles. Once a reference cycle has been created, tje lifespan
of all objects which can be accessed from the objects which form the cycle can become much longerjeven if
Python’s optional cycle detector is enabled. If such cycles must be created, it is important to ensure they are
explicitly broken to avoid the delayed destruction of objects and increased memory consumption which ogcurs.
Though the cycle detector will catch these, destruction of the frames (and local variables) can be made dgtermin-
istic by removing the cycle in finally clause. This is also important if the cycle detector was disabled when
Python was compiled or usirgg .disable() . For example:

def handle_stackframe_without_leak():

frame = inspect.currentframe()

try:

do something with the frame
finally:

del frame

The optionakontextargument supported by most of these functions specifies the number of lines of context to return,
which are centered around the current line.

getframeinfo (frame{, context])
Get information about a frame or traceback object. A 5-tuple is returned, the last five elements of the frame’s
frame record.

getouterframes (frame[, contexﬂ)
Get a list of frame records for a frame and all outer frames. These frames represent the calls that lead to the
creation offrame The first entry in the returned list represefreame the last entry represents the outermost
call onframés stack.

getinnerframes (tracebacl{, contexﬂ)
Get a list of frame records for a traceback’s frame and all inner frames. These frames represent calls made
as a consequence fsthme The first entry in the list represertimceback the last entry represents where the
exception was raised.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([contexﬂ)

70 Chapter 3. Python Runtime Services

Return a list of frame records for the caller’s stack. The first entry in the returned list represents the caller; the
last entry represents the outermost call on the stack.

trace ([contexl])
Return a list of frame records for the stack between the current frame and the frame in which an exception
currently being handled was raised in. The first entry in the list represents the caller; the last entry represents
where the exception was raised.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, such as in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the vasyasldes _traceback
(deprecated) anslys.last _traceback and returned as the third item frosgs.exc _info()

The module defines the following functions:

print _tb (tracebacl{, Iimit[, file]])
Print up tolimit stack trace entries frormaceback If limit is omitted orNone, all entries are printed. file
is omitted orNone, the output goes teys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print _exception (type, value, traceba{klimit[, file]])
Print exception information and up tamit stack trace entries fronracebackto file. This differs from
print _tb() in the following ways: (1) iftracebackis notNone, it prints a headerTraceback (most
recent call last): " (2) it prints the exceptiorntype and value after the stack trace; (3) ifypeis
SyntaxError andvaluehas the appropriate format, it prints the line where the syntax error occurred with a
caret indicating the approximate position of the error.

print _exc ([limit[, file]])
This is a shorthand for print _exception(sys.exc _type, sys.exc _value,
sys.exc _traceback, limit, file). (In fact, it usessys.exc _info() to retrieve the same infor-
mation in a thread-safe way instead of using the deprecated variables.)

format _exc ([limit[, file]])
This is likeprint _exc(limit) but returns a string instead of printing to a file. New in version 2.4.

print _last ([limit[, file]])
This is a shorthand for print _exception(sys.last _type, sys.last _value,
sys.last _traceback, limit, file) .

print _stack ([f[, imit[, file]]])
This function prints a stack trace from its invocation point. The optidnatgument can be used to spec-
ify an alternate stack frame to start. The optiohalit and file arguments have the same meaning as for
print _exception()

extract _tb (tracebacl[, Iimit])
Return a list of up tdimit “pre-processed” stack trace entries extracted from the traceback trajeeback
It is useful for alternate formatting of stack traces.liffiit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadrufilename line number function nametexy representing the
information that is usually printed for a stack trace. Thxtis a string with leading and trailing whitespace
stripped; if the source is not available ithine.

extract _stack ([f[, Iimit]])
Extract the raw traceback from the current stack frame. The return value has the same format as for
extract _th() . The optionaF andlimit arguments have the same meaning apfoit _stack()

3.12. traceback — Print or retrieve a stack traceback 71

format _list (list)
Given a list of tuples as returned lextract _tb() orextract _stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format _exception _only (type, valug
Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last _type andsys.last _value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, 8mntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format _exception (type, value, tb, Iimit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments t@rint _exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint _exception()

format _tb (tb[, limit]

A shorthand foformat _list(extract _tb(th, limit)) .
format _stack ([f[,limit]])
A shorthand foformat _list(extract _stack(f, limit)) .

tb _lineno (th)
This function returns the current line number set in the traceback object. This function was necessary because
in versions of Python prior to 2.3 when th® flag was passed to Python tlietb _lineno was not updated
correctly. This function has no use in versions past 2.3.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refectaléhenodule.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")

try:
exec source in envdir
except:
print "Exception in user code:"
print ’-"*60
traceback.print_exc(file=sys.stdout)
print ’-*60
envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

72 Chapter 3. Python Runtime Services

Thelinecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is usedrbgd¢hack module to
retrieve source lines for inclusion in the formatted traceback.

Thelinecache module defines the following functions:

getline (filename, linenp
Get linelinenofrom file namedilename This function will never throw an exception — it will retuth on
errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search patys.path

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously reacdyesing()

checkcache ([filename])
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version. filenameis omitted, it will check the whole cache entries.

Example:

>>> jmport linecache
>>> linecache.getline('/etc/passwd’, 4)
'sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

Thepickle module implements a fundamental, but powerful algorithm for serializing and de-serializing a Python
object structure. “Pickling” is the process whereby a Python object hierarchy is converted into a byte stream, and
“unpickling” is the inverse operation, whereby a byte stream is converted back into an object hierarchy. Pickling (and
unpickling) is alternatively known as “serialization”, “marshallirfggt “flattening”, however, to avoid confusion, the
terms used here are “pickling” and “unpickling”.

This documentation describes both fliekle module and thePickle module.

3.14.1 Relationship to other Python modules

Thepickle module has an optimized cousin called 8itickle module. As its name impliesPickle is written

in C, so it can be up to 1000 times faster thmckle . However it does not support subclassing of Biekler()
andUnpickler() classes, because @ickle these are functions, not classes. Most applications have no need
for this functionality, and can benefit from the improved performancePidkle . Other than that, the interfaces of

the two modules are nearly identical; the common interface is described in this manual and differences are pointed
out where necessary. In the following discussions, we use the term “pickle” to collectively descntiektbe and

cPickle modules.

The data streams the two modules produce are guaranteed to be interchangeable.

Python has a more primitive serialization module caltedrshal , but in generabickle should always be the
preferred way to serialize Python objeatsarshal exists primarily to support Python'spyc’ files.

Thepickle module differs frommarshal several significant ways:

e Thepickle module keeps track of the objects it has already serialized, so that later references to the same
object won't be serialized agaimarshal doesn’t do this.

2Don’t confuse this with thenarshal module

3.14. pickle — Python object serialization 73

This has implications both for recursive objects and object sharing. Recursive objects are objects that contain
references to themselves. These are not handled by marshal, and in fact, attempting to marshal recursive objects
will crash your Python interpreter. Object sharing happens when there are multiple references to the same object
in different places in the object hierarchy being serializgidkle stores such objects only once, and ensures

that all other references point to the master copy. Shared objects remain shared, which can be very important
for mutable objects.

e marshal cannot be used to serialize user-defined classes and their instandds. can save and restore
class instances transparently, however the class definition must be importable and live in the same module as
when the object was stored.

e Themarshal serialization format is not guaranteed to be portable across Python versions. Because its primary
job in life is to support ‘pyc’ files, the Python implementers reserve the right to change the serialization format
in non-backwards compatible ways should the need arisepitkée serialization format is guaranteed to be
backwards compatible across Python releases.

Warning: Thepickle module is not intended to be secure against erroneous or maliciously constructegl data.
Never unpickle data received from an untrusted or unauthenticated source.

Note that serialization is a more primitive notion than persistence; althpiele reads and writes file objects, it

does not handle the issue of haming persistent objects, nor the (even more complicated) issue of concurrent access
to persistent objects. Thackle module can transform a complex object into a byte stream and it can transform

the byte stream into an object with the same internal structure. Perhaps the most obvious thing to do with these byte
streams is to write them onto a file, but it is also conceivable to send them across a network or store them in a database.
The moduleshelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

3.14.2 Data stream format

The data format used Ipickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can't represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printablescii representation. This is slightly more voluminous than a
binary representation. The big advantage of using printablell (and of some other characteristicspékle s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

There are currently 3 different protocols which can be used for pickling.

e Protocol version 0 is the original ASCII protocol and is backwards compatible with earlier versions of Python.
e Protocol version 1 is the old binary format which is also compatible with earlier versions of Python.

e Protocol version 2 was introduced in Python 2.3. It provides much more efficient pickling of new-style classes.

Refer to PEP 307 for more information.

If a protocolis not specified, protocol 0 is used.plifotocolis specified as a negative valueliGHEST_PROTOCQL
the highest protocol version available will be used.

Changed in version 2.3: THen parameter is deprecated and only provided for backwards compatibility. You should
use theprotocolparameter instead.

A binary format, which is slightly more efficient, can be chosen by specifying a true value foirtteggument to
the Pickler constructor or thelump() anddumps() functions. Aprotocolversion ¢= 1 implies use of a binary
format.

74 Chapter 3. Python Runtime Services

3.14.3 Usage

To serialize an object hierarchy, you first create a pickler, then you call the picitierip() method. To de-serialize
a data stream, you first create an unpickler, then you call the unpiclda) method. Thepickle module
provides the following constant:

HIGHEST_PROTOCOL
The highest protocol version available. This value can be passepra®aolvalue. New in version 2.3.

Thepickle module provides the following functions to make this process more convenient:

dump(obj, file[, protocol, bin]])
Write a pickled representation objto the open file objedtle. This is equivalent t®ickler(file, protocol
bin).dump(obj) .
If the protocol parameter is omitted, protocol 0 is used. pifotocol is specified as a negative value or
HIGHEST_PROTOCAQLthe highest protocol version will be used.

Changed in version 2.3: Th@otocolparameter was added. Thia parameter is deprecated and only provided
for backwards compatibility. You should use thi®tocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (for backwards compatibility, this is the default).

file must have avrite() method that accepts a single string argument. It can thus be a file object opened for
writing, aStringlO object, or any other custom object that meets this interface.

load (file)
Read a string from the open file objdité and interpret it as a pickle data stream, reconstructing and returning
the original object hierarchy. This is equivalentdapickler(file).load()

file must have two methodsread() method that takes an integer argument, areballine() method that
requires no arguments. Both methods should return a string. filagan be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

This function automatically determines whether the data stream was written in binary mode or not.

dumps(obj[, protoco[, bin]])
Return the pickled representation of the object as a string, instead of writing it to a file.

If the protocol parameter is omitted, protocol O is used. pifotocol is specified as a negative value or
HIGHEST_PROTOCAQIthe highest protocol version will be used.

Changed in version 2.3: Th®otocolparameter was added. Thia parameter is deprecated and only provided
for backwards compatibility. You should use thi@tocol parameter instead.

If the optionalbin argument is true, the binary pickle format is used; otherwise the (less efficient) text pickle
format is used (this is the default).

loads (string)
Read a pickled object hierarchy from a string. Characters in the string past the pickled object’s representation
are ignored.

Thepickle module also defines three exceptions:

exceptionPickleError
A common base class for the other exceptions defined below. This inherit&fcoaption

exceptionPicklingError
This exception is raised when an unpicklable object is passed tiuthe() method.

exceptionUnpicklingError
This exception is raised when there is a problem unpickling an object. Note that other exceptions may
also be raised during unpickling, including (but not necessarily limited\tt)outeError , EOFETrror ,
ImportError , andindexError

3.14. pickle — Python object serialization 75

Thepickle module also exports two callabfe®ickler andUnpickler

classPickler (file[, protoco[, bin]])
This takes a file-like object to which it will write a pickle data stream.

If the protocolparameter is omitted, protocol 0 is usedptbtocolis specified as a negative value, the highest
protocol version will be used.

Changed in version 2.3: THen parameter is deprecated and only provided for backwards compatibility. You
should use therotocolparameter instead.

Optionalbin if true, tells the pickler to use the more efficient binary pickle format, otherwisa $tmel format
is used (this is the default).

file must have avrite() =~ method that accepts a single string argument. It can thus be an open file object, a
StringlO object, or any other custom object that meets this interface.

Pickler objects define one (or two) public methods:

dump(obj)
Write a pickled representation objto the open file object given in the constructor. Either the binamysarii
format will be used, depending on the value of tieflag passed to the constructor.

clear _memd)
Clears the pickler's “memo”. The memo is the data structure that remembers which objects the pickler has
already seen, so that shared or recursive objects pickled by reference and not by value. This method is useful
when re-using picklers.

Note: Prior to Python 2.3¢clear _memo() was only available on the picklers createddsickle . In the
pickle module, picklers have an instance variable catfezimowhich is a Python dictionary. So to clear the
memo for apickle module pickler, you could do the following:

mypickler.memo.clear()

Code that does not need to support older versions of Python should simaliease _memo() .

It is possible to make multiple calls to tlteimp() method of the sam®ickler instance. These must then be
matched to the same number of calls toltheed() method of the correspondindnpickler instance. If the same
object is pickled by multiplelump() calls, theload() will all yield references to the same objéct.

Unpickler objects are defined as:

classUnpickler (file)
This takes a file-like object from which it will read a pickle data stream. This class automatically determines
whether the data stream was written in binary mode or not, so it does not need a flag &idkldre factory.

file must have two methodsraead() method that takes an integer argument, areballine() method that
requires no arguments. Both methods should return a string. fll@esan be a file object opened for reading, a
StringlO object, or any other custom object that meets this interface.

Unpickler objects have one (or two) public methods:

load ()
Read a pickled object representation from the open file object given in the constructor, and return the reconsti-
tuted object hierarchy specified therein.

3In thepickle module these callables are classes, which you could subclass to customize the behavior. HowevePidhlthe module
these callables are factory functions and so cannot be subclassed. One common reason to subclass is to control what objects can actually be
unpickled. See section 3.14.6 for more details.

4Warning this is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify an object
and then pickle it again using the safikler instance, the object is not pickled again — a reference to it is pickled andripekler
will return the old value, not the modified one. There are two problems here: (1) detecting changes, and (2) marshalling a minimal set of changes.
Garbage Collection may also become a problem here.

76 Chapter 3. Python Runtime Services

noload ()
This is just likeload() except that it doesn't actually create any objects. This is useful primarily for finding
what's called “persistent ids” that may be referenced in a pickle data stream. See section 3.14.5 below for more
details.

Note: thenoload() method is currently only available dinpickler objects created with thePickle
module.pickle moduleUnpickler s do not have theoload() method.

3.14.4 What can be pickled and unpickled?

The following types can be pickled:

e None, True , andFalse

e integers, long integers, floating point numbers, complex numbers
¢ normal and Unicode strings

e tuples, lists, sets, and dictionaries containing only picklable objects
¢ functions defined at the top level of a module

¢ built-in functions defined at the top level of a module

e classes that are defined at the top level of a module

e instances of such classes whasedict __ or __setstate __() is picklable (see section 3.14.5 for details)

Attempts to pickle unpicklable objects will raise tRecklingError exception; when this happens, an unspecified
number of bytes may have already been written to the underlying file.

Note that functions (built-in and user-defined) are pickled by “fully qualified” name reference, not by value. This
means that only the function name is pickled, along with the name of module the function is defined in. Neither the
function’s code, nor any of its function attributes are pickled. Thus the defining module must be importable in the
unpickling environment, and the module must contain the named object, otherwise an exception will be raised.

Similarly, classes are pickled by named reference, so the same restrictions in the unpickling environment apply. Note
that none of the class’s code or data is pickled, so in the following example the class a#ttibutés not restored in
the unpickling environment:

class Foo:
attr = 'a class attr’

picklestring = pickle.dumps(Foo)

These restrictions are why picklable functions and classes must be defined in the top level of a module.

Similarly, when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods to the class and still
load objects that were created with an earlier version of the class. If you plan to have long-lived objects that will see
many versions of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can
be made by the class’s setstate __() method.

5The exception raised will likely be dmportError or anAttributeError but it could be something else.

3.14. pickle — Python object serialization 77

3.14.5 The pickle protocol

This section describes the “pickling protocol” that defines the interface between the pickler/unpickler and the objects

that are being serialized. This protocol provides a standard way for you to define, customize, and control how your

objects are serialized and de-serialized. The description in this section doesn’t cover specific customizations that you
can employ to make the unpickling environment slightly safer from untrusted pickle data streams; see section 3.14.6
for more details.

Pickling and unpickling normal class instances

When a pickled class instance is unpickled, itsnit __() method is normallynotinvoked. If it is desirable that
the__init __() method be called on unpickling, an old-style class can define a methgetinitargs _ 0,
which should return &uple containing the arguments to be passed to the class constructor (irit __()). The
__getinitargs __() method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

New-style types can provide_.a getnewargs __() method that is used for protocol 2. Implementing this method

is needed if the type establishes some internal invariants when the instance is created, or if the memory allocation is
affected by the values passed to thenew__() method for the type (as it is for tuples and strings). Instances of a
new-style typeC are created using

obj = C._new_ (C, * arg9

whereargsis the result of calling__getnewargs __() on the original object; if there is no_getnewargs __() ,
an empty tuple is assumed.

Classes can further influence how their instances are pickled; if the class defines the megbtstate __() ,itis
called and the return state is pickled as the contents for the instance, instead of the contents of the instance’s dictionary.
If there is no__getstate __() method, the instance’s_dict __is pickled.

Upon unpickling, if the class also defines the methadetstate __() , it is called with the unpickled stafelf

there is no__setstate __() method, the pickled state must be a dictionary and its items are assigned to the new
instance’s dictionary. If a class defines bathgetstate __() and__setstate __() , the state object needn't

be a dictionary and these methods can do what they vant.

Warning: For new-style classes, if_getstate __() returns a false value, the setstate __() method
will not be called.

Pickling and unpickling extension types

When thePickler encounters an object of a type it knows nothing about — such as an extension type — it looks in
two places for a hint of how to pickle it. One alternative is for the object to implementaduce __() method. If
provided, at pickling time__reduce __() will be called with no arguments, and it must return either a string or a
tuple.

If a string is returned, it names a global variable whose contents are pickled as normal. The string returned by
__reduce __should be the object’s local name relative to its module; the pickle module searches the module names-
pace to determine the object’s module.

When a tuple is returned, it must be between two and five elements long. Optional elements can either be omitted, or
None can be provided as their value. The semantics of each element are:

6These methods can also be used to implement copying class instances.
"This protocol is also used by the shallow and deep copying operations definedirpthenodule.

78 Chapter 3. Python Runtime Services

e A callable object that will be called to create the initial version of the object. The next element of the tu-
ple will provide arguments for this callable, and later elements provide additional state information that will
subsequently be used to fully reconstruct the pickled date.

In the unpickling environment this object must be either a class, a callable registered as a “safe constructor
(see below), or it must have an attributesafe _for _unpickling __ with a true value. Otherwise, an
UnpicklingError will be raised in the unpickling environment. Note that as usual, the callable itself is
pickled by name.

e Atuple of arguments for the callable object,one. Deprecated since release 2.¥.this item isNone, then
instead of calling the callable directly, its basicnew __() method is called without arguments; this method
should also return the unpickled object. ProvidMgne is deprecated, however; return a tuple of arguments

instead.
e Optionally, the object’s state, which will be passed to the object'setstate __() method as described in
section 3.14.5. If the object has nosetstate __() method, then, as above, the value must be a dictionary

and it will be added to the object’s_dict

e Optionally, an iterator (and not a sequence) yielding successive list items. These list items will be pickled, and
appended to the object using eitludyj.append(item) or obj.extend(list_of_itemg . This is primarily
used for list subclasses, but may be used by other classes as long as theppeve() andextend()
methods with the appropriate signature. (Whetiqgpend() orextend() is used depends on which pickle
protocol version is used as well as the number of items to append, so both must be supported.)

e Optionally, an iterator (not a sequence) yielding successive dictionary items, which should be tuples of the form
(key, valug . These items will be pickled and stored to the object usinjfy key] = value Thisis primarily
used for dictionary subclasses, but may be used by other classes as long as they impleseiiiem __.

It is sometimes useful to know the protocol version when implementingduce __. This can be done by im-
plementing a method named_reduce _ex__ instead of__reduce __. __reduce _ex__, when it exists, is
called in preference over_reduce __ (you may still provide__reduce __ for backwards compatibility). The
__reduce _ex__ method will be called with a single integer argument, the protocol version.

The object class implements both _reduce __ and __reduce _ex__; however, if a subclass over-
rides __reduce __ but not __reduce _ex__, the __reduce _ex__ implementation detects this and calls
__reduce __.

An alternative to implementing a_reduce __() method on the object to be pickled, is to register the callable with
thecopy _reg module. This module provides a way for programs to register “reduction functions” and constructors
for user-defined types. Reduction functions have the same semantics and interface asduee __() method
described above, except that they are called with a single argument, the object to be pickled.

The registered constructor is deemed a “safe constructor” for purposes of unpickling as described above.

Pickling and unpickling external objects

For the benefit of object persistence, fiiekle module supports the notion of a reference to an object outside the
pickled data stream. Such objects are referenced by a “persistent id”, which is just an arbitrary string of printable
AsScll characters. The resolution of such names is not defined kyickke module; it will delegate this resolution

to user defined functions on the pickler and unpicRler.

To define external persistent id resolution, you need to segpehgistent _id attribute of the pickler object and
thepersistent _load attribute of the unpickler object.

8The actual mechanism for associating these user defined functions is slightly differ@ittkler andcPickle . The description given
here works the same for both implementations. Users opitide module could also use subclassing to effect the same results, overriding the
persistent _id() andpersistent _load() methods in the derived classes.

3.14. pickle — Python object serialization 79

To pickle objects that have an external persistent id, the pickler must have a @estsistent _id() method that

takes an object as an argument and returns eiMbeae or the persistent id for that object. Whislone is returned, the
pickler simply pickles the object as normal. When a persistent id string is returned, the pickler will pickle that string,
along with a marker so that the unpickler will recognize the string as a persistent id.

To unpickle external objects, the unpickler must have a cugtersistent _load() function that takes a persis-
tent id string and returns the referenced object.

Here’s a silly example thahightshed more light:

import pickle
from c¢StringlO import StringlO

src = StringlO()
p = pickle.Pickler(src)

def persistent_id(obj):
if hasattr(obj, 'X):
return 'the value %d’ % obj.x
else:
return None

p.persistent_id = persistent_id

class Integer:
def __init_ (self, x):
self.x = x
def __str_ (self):
return 'My name is integer %d’ % self.x

i = Integer(7)
print i
p.dump(i)

datastream = src.getvalue()
print repr(datastream)
dst = StringlO(datastream)

up = pickle.Unpickler(dst)

class Fancylnteger(Integer):
def __str__ (self):
return 'l am the integer %d’ % self.x

def persistent_load(persid):
if persid.startswith('the value °):
value = int(persid.split()[2])
return Fancylnteger(value)
else:
raise pickle.UnpicklingError, 'Invalid persistent id’

up.persistent_load = persistent_load

j = up.load()
print j
In the cPickle module, the unpickler'persistent _load attribute can also be set to a Python list, in which

80 Chapter 3. Python Runtime Services

case, when the unpickler reaches a persistent id, the persistent id string will simply be appended to this list. This
functionality exists so that a pickle data stream can be “sniffed” for object references without actually instantiating all
the objects in a pickl@. Settingpersistent _load to a list is usually used in conjunction with tmeload()

method on the Unpickler.

3.14.6 Subclassing Unpicklers

By default, unpickling will import any class that it finds in the pickle data. You can control exactly what gets unpickled
and what gets called by customizing your unpickler. Unfortunately, exactly how you do this is different depending on
whether you're usingickle orcPickle .10

In thepickle module, you need to derive a subclass fidnpickler , overriding thdoad _global() method.

load _global() should read two lines from the pickle data stream where the first line will the name of the module
containing the class and the second line will be the name of the instance’s class. It then looks up the class, possibly
importing the module and digging out the attribute, then it appends what it finds to the unpickler's stack. Later
on, this class will be assigned to the class __ attribute of an empty class, as a way of magically creating an
instance without calling its class’s_init __() . Your job (should you choose to accept it), would be to have

load _global() push onto the unpickler’'s stack, a known safe version of any class you deem safe to unpickle. It
is up to you to produce such a class. Or you could raise an error if you want to disallow all unpickling of instances. If
this sounds like a hack, you're right. Refer to the source code to make this work.

Things are a little cleaner wittPickle , but not by much. To control what gets unpickled, you can set the unpickler’s

find _global attribute to a function oNone. If it is None then any attempts to unpickle instances will raise an
UnpicklingError . If it is a function, then it should accept a module name and a class name, and return the
corresponding class object. It is responsible for looking up the class and performing any necessary imports, and it may
raise an error to prevent instances of the class from being unpickled.

The moral of the story is that you should be really careful about the source of the strings your application unpickles.

3.14.7 Example

Here’s a simple example of how to modify pickling behavior for a class. ThéReader class opens a text file, and
returns the line number and line contents each timeeislline() method is called. If &extReader instance

is pickled, all attributegxcepthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Theetstate __() and__getstate __() methods are used to
implement this behavior.

SWe'll leave you with the image of Guido and Jim sitting around sniffing pickles in their living rooms.
10A word of caution: the mechanisms described here use internal attributes and methods, which are subject to change in future versions of Python.
We intend to someday provide a common interface for controlling this behavior, which will work in pittkée or cPickle

3.14. pickle — Python object serialization 81

class TextReader:
""Print and number lines in a text file.""
def __init__ (self, file):
self.file = file
self.fh = open(file)
self.lineno = 0

def readline(self):
self.lineno = selflineno + 1
line = self.fh.readline()
if not line:
return None
if line.endswith("\n"):
line = line[:-1]
return "%d: %s" % (self.lineno, line)

def _ getstate_ (self):
odict = self.__dict__.copy() # copy the dict since we change it
del odict['fh’] # remove filehandle entry
return odict

def __ setstate__(self,dict):

fh = open(dict[’file’]) # reopen file
count = dict['lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1
self.__dict__.update(dict) # update attributes
self.th = fh # save the file object

A sample usage might be something like this:

>>> import TextReader

>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()

'1: #!/usr/local/bin/python’

>>> # (more invocations of obj.readline() here)

. obj.readline()

'7: class TextReader:’

>>> import pickle

>>> pickle.dump(obj,open('save.p’,'w’))

If you want to see thatickle works across Python processes, start another Python session, before continuing. What
follows can happen from either the same process or a new process.

>>> import pickle

>>> reader = pickle.load(open('save.p’))

>>> reader.readline()

'8: "Print and number lines in a text file."

See Also:

Modulecopy _reg (section 3.16):

82 Chapter 3. Python Runtime Services

Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; upiekle

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.15 cPickle — A faster pickle

ThecPickle module supports serialization and de-serialization of Python objects, providing an interface and func-
tionality nearly identical to theickle module. There are several differences, the most important being performance
and subclassability.

First, cPickle can be up to 1000 times faster thpickle because the former is implemented in C. Second, in

the cPickle module the callableRickler() and Unpickler() are functions, not classes. This means that

you cannot use them to derive custom pickling and unpickling subclasses. Most applications have no need for this
functionality and should benefit from the greatly improved performance afRiekle module.

The pickle data stream produced pickle andcPickle are identical, so it is possible to upéckle and
cPickle interchangeably with existing picklés.

There are additional minor differences in API betwe@ickle andpickle , however for most applications, they
are interchangeable. More documentation is provided ipitlde module documentation, which includes a list of
the documented differences.

3.16 copy _reg — Reqister pickle support functions

Thecopy _reg module provides support for thckle andcPickle modules. Theopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (objec)
Declaresobjectto be a valid constructor. bjectis not callable (and hence not valid as a constructor), raises
TypeError

pickle (type, functimﬁ, constructoﬂ)
Declares thafunction should be used as a “reduction” function for objects of tiyges type must not be a
“classic” class object. (Classic classes are handled differently; see the documentatiorpfokitne module
for details.)functionshould return either a string or a tuple containing two or three elements.

The optionakonstructorparameter, if provided, is a callable object which can be used to reconstruct the object
when called with the tuple of arguments returnedfioyctionat pickling time. TypeError will be raised if
objectis a class oconstructoris not callable.

See thepickle module for more details on the interface expecteflinttionandconstructor

3.17 shelve — Python object persistence

HSince the pickle data format is actually a tiny stack-oriented programming language, and some freedom is taken in the encodings of certain
objects, it is possible that the two modules produce different data streams for the same input objects. However it is guaranteed that they will always
be able to read each other’s data streams.

3.15. cPickle — A faster pickle 83

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)

in a shelf can be essentially arbitrary Python objects — anything thatithee module can handle. This includes

most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

open (filename[,flag:’c’ [,protocoI:None[,Writeback:FaIse [,binary:None]]]])
Open a persistent dictionary. The filename specified is the base filename for the underlying database. As a
side-effect, an extension may be added to the filename and more than one file may be created. By default, the
underlying database file is opened for reading and writing. The optilamgbarameter has the same interpreta-
tion as theflag parameter oinydbm.open .

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified
with the protocolparameter. Changed in version 2.3: Titetocolparameter was added. Thmary parameter
is deprecated and provided for backwards compatibility only.

By default, mutations to persistent-dictionary mutable entries are not automatically written back. If the optional
writebackparameter is set tdrue, all entries accessed are cached in memory, and written back at close time;
this can make it handier to mutate mutable entries in the persistent dictionary, but, if many entries are accessed,
it can consume vast amounts of memory for the cache, and it can make the close operation very slow since all
accessed entries are written back (there is no way to determine which accessed entries are mutable, nor which
ones were actually mutated).

Shelve objects support all methods supported by dictionaries. This eases the transition from dictionary based scripts
to those requiring persistent storage.

3.17.1 Restrictions

e The choice of which database package will be used (sudbrasgdbm or bsddb) depends on which interface
is available. Therefore it is not safe to open the database directly disingThe database is also (unfortunately)
subject to the limitations afbm, if it is used — this means that (the pickled representation of) the objects stored
in the database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

e Depending on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk. The__del __ method of theShelf class calls thelose method, so the programmer generally need
not do this explicitly.

e Theshelve module does not suppazbncurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. WX file locking can be used to solve this, but this differs acrossxUversions and
requires knowledge about the database implementation used.

classShelf (dict[, protocoI:None[, Writeback:FaIsé, binary:None]]])
A subclass ofserDict.DictMixin which stores pickled values in tlikct object.

By default, version 0 pickles are used to serialize values. The version of the pickle protocol can be specified with
the protocolparameter. See th@ckle documentation for a discussion of the pickle protocols. Changed in
version 2.3: Therotocolparameter was added. Thimary parameter is deprecated and provided for backwards
compatibility only.

If the writebackparameter i§rue , the object will hold a cache of all entries accessed and write them back to
thedict at sync and close times. This allows natural operations on mutable entries, but can consume much more
memory and make sync and close take a long time.

classBsdDbShelf (dict[, protocoI:None{, writeback:Falsé, binary:None]]])
A subclass oShelf which exposefirst , next ,previous ,last andset _location which are avail-
able in thebsddb module but not in other database modules. d@iceobject passed to the constructor must sup-
port those methods. This is generally accomplished by calling obsdifb.hashopen , bsddb.btopen

84 Chapter 3. Python Runtime Services

or bsddb.rnopen . The optionalprotocol writeback andbinary parameters have the same interpretation as
for theShelf class.

classDbfilenameShelf (filename{, flag="c’ [protocoI:None[, writeback:Falsé, binary:None]]]])
A subclass oShelf which accepts filenameinstead of a dict-like object. The underlying file will be opened
usinganydbm.open . By default, the file will be created and opened for both read and write. The opfiagal
parameter has the same interpretation as fooffen function. The optionaprotocol writeback andbinary
parameters have the same interpretation as fostedf class.

3.17.2 Example

To summarize the interfackdy is a stringdata is an arbitrary object):

import shelve

d = shelve.open(flename) # open -- file may get suffix added by low-level
library

dlkey] = data # store data at key (overwrites old data if
using an existing key)

data = dlkey] # retrieve a COPY of data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists

list = d.keys() # a list of all existing keys (slow!)

as d was opened WITHOUT writeback=True, beware:

d['xx] = range(4) # this works as expected, but...

d['xx’].append(5) # *this doesn’t’* -- d['xx] is STILL range(4)!!

having opened d without writeback=True, you need to code carefully:

temp = d['xx] # extracts the copy
temp.append(5) # mutates the copy
d['xx’] = temp # stores the copy right back, to persist it

or, d=shelve.open(filename,writeback=True) would let you just code
d['xx’].append(5) and have it work as expected, BUT it would also
consume more memory and make the d.close() operation slower.

d.close() # close it

See Also:

Moduleanydbm (section 7.10):
Generic interface tdbm-style databases.

Modulebsddb (section 7.13):
BSD db database interface.

Moduledbhash (section 7.11):
Thin layer around thésddb which provides ampen function like the other database modules.

Module dbm (section 8.6):
Standard Wix database interface.

Moduledumbdbm(section 7.14):
Portable implementation of thdbm interface.

Modulegdbm (section 8.7):

3.17. shelve — Python object persistence 85

GNU database interface, based ondhbeninterface.

Modulepickle (section 3.14):
Object serialization used tshelve .

ModulecPickle (section 3.15):
High-performance version gfickle

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy
X = copy.copy(y) # make a shallow copy of y
X = copy.deepcopy(y) # make a deep copy of y

For module specific errorsppy.error is raised.
The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):
e A shallow copyconstructs a new compound object and then (to the extent possible) mederéncesnto it to
the objects found in the original.
e A deep copyonstructs a new compound object and then, recursively, insgptssinto it of the objects found
in the original.
Two problems often exist with deep copy operations that don't exist with shallow copy operations:
e Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.
e Because deep copy copiegerythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

e keeping a “memao” dictionary of objects already copied during the current copying pass; and

e letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. Thepy module does not use tl@py _reg registration module.

In order for a class to define its own copy implementation, it can define special methadpy () and
__deepcopy __() . The former is called to implement the shallow copy operation; no additional arguments are
passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the __deepcopy __() implementation needs to make a deep copy of a component, it should cadlepeopy ()

function with the component as first argument and the memo dictionary as second argument.

See Also:

86 Chapter 3. Python Runtime Services

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Internal Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely doés).

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC
calls, see the modulgsckle andshelve . Themarshal module exists mainly to support reading and writing

the “pseudo-compiled” code for Python modules pf/¢’ files. Therefore, the Python maintainers reserve the right

to modify the marshal format in backward incompatible ways should the need arise. If you're serializing and de-
serializing Python objects, use thigkle module instead.

Warning: Themarshal module is not intended to be secure against erroneous or maliciously constructegl data.
Never unmarshal data received from an untrusted or unauthenticated source.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are suppsded; integers,

long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where Cleng int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. If such an integer is marshaled and read back in on a machine
where C’dlong int type has only 32 bits, a Python long integer object is returned instead. While of a different type,

the numeric value is the same. (This behavior is new in Python 2.2. In earlier versions, all but the least-significant 32
bits of the value were lost, and a warning message was printed.)

There are functions that read/write files as well as functions operating on strings.
The module defines these functions:

dump(value, file[, version])
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary modevp’ or
‘Wb’).
If the value has (or contains an object that has) an unsupported tyjadyeError exception is raised — but
garbage data will also be written to the file. The object will not be properly read baldaty)

New in version 2.4: Theersionargument indicates the data format tdatnp should use (see below).
load (file)

Read one value from the open file and return it. If no valid value is read, E&$eError , ValueError or
TypeError . The file must be an open file object opened in binary maté (or'r+b’).

Warning: If an object containing an unsupported type was marshalledduithp() , load() will substitute
None for the unmarshallable type.

dumps(valud, version])
Return the string that would be written to a file Bymp(value file) . The value must be a supported type.
Raise avalueError exception if value has (or contains an object that has) an unsupported type.

12The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.19. marshal — Internal Python object serialization 87

New in version 2.4: Theersionargument indicates the data format tdatmps should use (see below).

loads (string)
Convert the string to a value. If no valid value is found, rdig&@FError , ValueError or TypeError
Extra characters in the string are ignored.

In addition, the following constants are defined:

version
Indicates the format that the module uses. Version 0 is the historical format, version 1 (added in Python 2.4)
shares interned strings. The current version is 1.

New in version 2.4.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by callingween() function defined in this module. (C programmers use
PyErr _Warn() ; see thePython/C API Reference Manu@air details).

Warning messages are normally writtersye.stderr , but their disposition can be changed flexibly, from ignoring

all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by céltergvarnings() and reset to its default
state by callingesetwarnings()

The printing of warning messages is done by calkhgwwarning() , which may be overridden; the default im-
plementation of this function formats the message by caftingatwarning() , which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

Class Description

Warning This is the base class of all warning category classes. It is a subclesseyfition
UserWarning The default category fovarn() .

DeprecationWarning Base category for warnings about deprecated features.

SyntaxWarning Base category for warnings about dubious syntactic features.

RuntimeWarning Base category for warnings about dubious runtime features.

FutureWarning Base category for warnings about constructs that will change semantically in the future.

88 Chapter 3. Python Runtime Services

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of\i&rning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the foracfion messagecategory module lineno), where:

e actionis one of the following strings:

Value Disposition

“error" turn matching warnings into exceptions

"ignore" never print matching warnings

"always" always print matching warnings

"default” print the first occurrence of matching warnings for each location where the warning is issued
"module” print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

e messagés a string containing a regular expression that the warning message must match (the match is compiled
to always be case-insensitive)

e categoryis a class (a subclassWfarning) of which the warning category must be a subclass in order to match

e moduleis a string containing a regular expression that the module name must match (the match is compiled to
be case-sensitive)

¢ linenois an integer that the line number where the warning occurred must matetho onatch all line numbers

Since thewarning class is derived from the built-iBxception class, to turn a warning into an error we simply
raisecategory(message)

The warnings filter is initialized byW options passed to the Python interpreter command line. The interpreter saves
the arguments for alM options without interpretation isys.warnoptions ; thewarnings module parses these
when it is first imported (invalid options are ignored, after printing a messagpstetderr).

3.20.3 Available Functions

warn (messag[a categor)[, stackleve]])
Issue a warning, or maybe ignore it or raise an exception.categoryargument, if given, must be a warning
category class (see above); it defaultéJserWarning . Alternativelymessagean be aVarning instance,
in which casecategorywill be ignored andnessage. __class __ will be used. In this case the message text
will be str(message) . This function raises an exception if the particular warning issued is changed into an
error by the warnings filter see above. T$tacklevelargument can be used by wrapper functions written in
Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, stacklevel=2)

3.20. warnings — Warning control 89

This makes the warning refer tteprecation() 's caller, rather than to the source @é¢precation()
itself (since the latter would defeat the purpose of the warning message).

warn _explicit ~ (message, category, filename, Iinénmodul({, registry]])
This is a low-level interface to the functionality affarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the
__warningregistry __ dictionary of the module). The module name defaults to the filename.pjth
stripped; if no registry is passed, the warning is never suppressedsaganust be a string andategorya
subclass ofWarning or messagenay be aNarning instance, in which caseategorywill be ignored.

showwarning (message, category, flename, IinEnﬁ:Ie])
Write a warning to a file. The default implementation cdsmatwarning(message category file-
name lineng and writes the resulting string fde, which defaults tesys.stderr . You may replace this
function with an alternative implementation by assigningviynings.showwarning

formatwarning (message, category, filename, lingno
Format a warning the standard way. This returns a string which may contain embedded newlines and ends in a
newline.

filterwarnings (actior{, messag[a categor)[, module{, Iinent{, append]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by defaatipéndis true, it
is inserted at the end. This checks the types of the arguments, compiles the message and module regular expres-
sions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries inserted
earlier, if both match a particular warning. Omitted arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous cafikgovarnings() , including that
of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implememighe statement. It defines the follow-
ing constants and functions:

get _magic ()
Return the magic string value used to recognize byte-compiled code fipgs' files). (This value may be
different for each Python version.)

get _suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has thé $offrx mode
type , wheresuffixis a string to be appended to the module name to form the filename to searafobte,
is the mode string to pass to the builtépen() function to open the file (this can be for text files or
'rb’ for binary files), andypeis the file type, which has one of the value¥_SOURCHEY_COMPILED or
C_EXTENSION described below.

find _module (name[, path])
Try to find the modulenameon the search patpath If pathis a list of directory names, each directory is
searched for files with any of the suffixes returnedgey _suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings) pHthis omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name C_BUILTIN), then a frozen moduléPY_FROZEN, and on some systems some other places are
looked in as well (on the Mac, it looks for a resour€@/(RESOURQEon Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a tripfile, pathname descriptior) wherefile is an open file
object positioned at the beginningathnameis the pathname of the file found, adéscriptionis a triple as
contained in the list returned tget _suffixes() describing the kind of module found. If the module does

920 Chapter 3. Python Runtime Services

not live in a file, the returnefile is None, filenameis the empty string, and thaescriptiontuple contains empty
strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (hames containing dots). In ordeRtMfinkat
is, submoduléM of packageP, usefind _module() andload _module() to find and load packadge and
then usdind _module() with the pathargument set t. __path __. WhenP itself has a dotted name,
apply this recipe recursively.

load _module (name, file, filename, descriptipn
Load a module that was previously foundfioyd _module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to aeload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Tileargument is an open file, afitbnameis the corresponding
file name; these can kdone and” , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returnedgey _suffixes() , describing what kind of module
must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (uspatiError)
is raised.

Important: the caller is responsible for closing tfike argument, if it was noNone, even when an exception
is raised. This is best done usingra ... finally statement.

new_module (nam§
Return a new empty module object calleaime This object inotinserted insys.modules

lock _held ()
ReturnTrue if the import lock is currently held, elsEalse . On platforms without threads, always return
False .

On platforms with threads, a thread executing an import holds an internal lock until the import is complete.
This lock blocks other threads from doing an import until the original import completes, which in turn prevents
other threads from seeing incomplete module objects constructed by the original thread while in the process of
completing its import (and the imports, if any, triggered by that).

acquire _lock ()
Acquires the interpreter’s import lock for the current thread. This lock should be used by import hooks to ensure
thread-safety when importing modules. On platforms without threads, this function does nothing. New in
version 2.3.

release _lock ()
Release the interpreter’s import lock. On platforms without threads, this function does nothing. New in version
2.3.

The following constants with integer values, defined in this module, are used to indicate the search result of
find _module()

PY_SOURCE
The module was found as a source file.

PY_COMPILED
The module was found as a compiled code object file.

C_EXTENSION
The module was found as dynamically loadable shared library.

PY_RESOURCE
The module was found as a Mac OS 9 resource. This value can only be returned on a Mac OS 9 or earlier
Macintosh.

PKG.DIRECTORY
The module was found as a package directory.

3.21. imp — Access the import internals 91

C_BUILTIN
The module was found as a built-in module.

PY_FROZEN
The module was found as a frozen module (site _frozen()).

The following constant and functions are obsolete; their functionality is available thrhndjh _module() or
load _module() . They are kept around for backward compatibility:

SEARCHERROR
Unused.

init _builtin (nameg
Initialize the built-in module calledameand return its module object. If the module was already initialized, it
will be initialized again A few modules cannot be initialized twice — attempting to initialize these again will
raise anmportError exception. If there is no built-in module calledme None is returned.

init _frozen (namg
Initialize the frozen module calledameand return its module object. If the module was already initialized,
it will be initialized again If there is no frozen module callesthme None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python'freezeutility. See Tools/freeze/’ for now.)

is _builtin (namé
Returnl if there is a built-in module calledamewhich can be initialized again. Retush if there is a built-in
module callechamewhich cannot be initialized again (segt _builtin()). Return0 if there is no built-in
module callechame

is _frozen (nameg
ReturnTrue if there is a frozen module (seeit _frozen()) calledname or False if there is no such
module.

load _compiled (name, pathnamt{file])
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializeaigain The nameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Tifeargument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load _dynamic (name, pathnan{efile])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializethain Some modules don't like that and may raise
an exception. Thpathnameargument must point to the shared library. TlEeneargument is used to construct
the name of the initialization function: an external C function caliedt * nam€) ’ in the shared library is
called. The optiondiile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load _source (name, pathnan{e file])
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedgain The nameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffigy/c’ or * .pyo’) exists, it will be used instead of
parsing the given source file.

3.21.1 Examples

92 Chapter 3. Python Runtime Services

The following function emulates what was the standard import statement up to Python 1.4 (no hierarchical mod-
ule names). (Thismplementatiorwouldn’t work in that version, sincnd _module() has been extended and
load _module() hasbeenaddedin1.4.)

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:
return sys.modules[name]
except KeyError:
pass

If any of the following calls raises an exception,
there’s a problem we can't handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)
finally:
Since we may exit via an exception, close fp explicitly.
if fp:
fp.close()

A more complete example that implements hierarchical module names and inclielead() function can be
found in the moduléknee . The knee module can be found irDemo/imputil”’ in the Python source distribution.

3.22 zipimport — Import modules from Zip archives

New in version 2.3.

This module adds the ability to import Python modulespf/, * *.py[co]’) and packages from ZIP-format archives.
It is usually not needed to use tagimport module explicitly; it is automatically used by the builtimport
mechanism fosys.path items that are paths to ZIP archives.

Typically, sys.path is a list of directory names as strings. This module also allows an itegyopath to

be a string naming a ZIP file archive. The ZIP archive can contain a subdirectory structure to support package im-
ports, and a path within the archive can be specified to only import from a subdirectory. For example, the path
‘ tmp/example.zip/lib/’ would only import from the fib/’ subdirectory within the archive.

Any files may be present in the ZIP archive, but only filgs™and ‘.py[co]’ are available for import. ZIP import of
dynamic modules (pyd’, ‘ .s0’) is disallowed. Note that if an archive only containgy’ files, Python will not attempt
to modify the archive by adding the correspondimyc¢’ or ‘.pyo’ file, meaning that if a ZIP archive doesn't contain
‘.pyc’ files, importing may be rather slow.

Using the built-inreload() function will fail if called on a module loaded from a ZIP archive; it is unlikely that
reload() would be needed, since this would imply that the ZIP has been altered during runtime.

The available attributes of this module are:

exceptionZiplmporterError
Exception raised by zipimporter objects. It's a subclasslmoportError , so it can be caught as
ImportError | too.

3.22. zipimport — Import modules from Zip archives 93

classzipimporter
The class for importing ZIP files. Seeipimporter Objects(section 3.22.1) for constructor details.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)
Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

PEP 0273, Import Modules from Zip Archivés
Written by James C. Ahlstrom, who also provided an implementation. Python 2.3 follows the specification in
PEP 273, but uses an implementation written by Just van Rossum that uses the import hooks described in PEP
302.

PEP 0302, New Import HooKs
The PEP to add the import hooks that help this module work.

3.22.1 zipimporter Objects

classzipimporter (archivepath
Create a new zipimporter instancarchivepathmust be a path to a zipfileZipimportError is raised if
archivepathdoesn't point to a valid ZIP archive.

find _module (fullname[, path])
Search for a module specified fwllname fullnamemust be the fully qualified (dotted) module name. It returns
the zipimporter instance itself if the module was foundNamne if it wasn’t. The optionalpath argument is
ignored—it’s there for compatibility with the importer protocol.

get _code (fullname
Return the code object for the specified module. RAipmportError if the module couldn’t be found.

get _data (pathnamg
Return the data associated wgathname RaiselOError if the file wasn'’t found.

get _source (fullnamg
Return the source code for the specified module. RaiigknportError if the module couldn’t be found,
returnNone if the archive does contain the module, but has no source for it.

is _package (fullname
Return True if the module specified hyllnameis a package. Rais&plmportError if the module couldn’t
be found.

load _module (fullnameg
Load the module specified Hullname fullnamemust be the fully qualified (dotted) module name. It returns
the imported module, or rais&@splmportError if it wasn't found.

3.22.2 Examples

Here is an example that imports a module from a ZIP archive - note thaigimport module is not explicitly
used.

94 Chapter 3. Python Runtime Services

$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip
Length Date Time Name

8467 11-26-02 22:30 jwzthreading.py

$./python

Python 2.3 (#1, Aug 1 2003, 19:54:32)

>>> import sys

>>> sys.path.insert(0, '/tmp/example.zip’) # Add .zip file to front of path
>>> import jwzthreading

>>> jwzthreading._ file_

"ltmp/example.zip/jwzthreading.py’

3.23 pkgutii — Package extension utility

New in version 2.3.
This module provides a single function:

extend _path (path, namg
Extend the search path for the modules which comprise a package. Intended use is to place the following code
in a package’s__init__.py":

from pkgutil import extend_path
__path__ = extend_path(__path__, _ name_)

This will add to the package’s_path __ all subdirectories of directories @ys.path named after the pack-
age. This is useful if one wants to distribute different parts of a single logical package as multiple directories.

It also looks for *.pkg’ files beginning wheré matches theameargument. This feature is similar togth’ files
(see thesite module for more information), except that it doesn't special-case lines startingrgtbrt

A ‘*.pkg’ file is trusted at face value: apart from checking for duplicates, all entries found*ipkgfile are
added to the path, regardless of whether they exist the filesystem. (This is a feature.)

If the input path is not a list (as is the case for frozen packages) it is returned unchanged. The input path is not
modified; an extended copy is returned. Iltems are only appended to the copy at the end.

Itis assumed thays.path isasequence. Itemssys.path that are not (Unicode or 8-bit) strings referring
to existing directories are ignored. Unicode itemssga.path that cause errors when used as filenames may
cause this function to raise an exception (in line vathpath.isdir() behavior).

3.24 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classinteractivelnterpreter ([Iocals])
This class deals with parsing and interpreter state (the user's namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optimeels argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
" __name__' setto’ __console __' andkey __doc__' settoNone.

3.23. pkgutii — Package extension utility 95

classinteractiveConsole ([Iocals[, filenamd])

Closely emulate the behavior of the interactive Python interpreter. This class builds on
Interactivelnterpreter and adds prompting using the familiays.psl and sys.ps2 , and
input buffering.

interact ([bannel[, readfunc{, Iocal]]])
Convenience function to run a read-eval-print loop. This creates a new instalterattiveConsole
and setgeadfuncto be used as theaw _input() = method, if provided. [flocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run witAnnerpassed as the banner to use, if provided. The
console object is discarded after use.

compile _command source[, filenamé, symboﬂ])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This &limcisin
always makes the same decision as the real interpreter main loop.

sourceis the source stringfilenameis the optional filename from which source was read, defaulting to
<input>' ; andsymbols the optional grammar start symbol, which should be eiiegle’ (the default)
or’eval

Returns a code object (the samecampile(source filename symbo)) if the command is complete and
valid; None if the command is incomplete; rais8yntaxError if the command is complete and contains a
syntax error, or raise®verflowError or ValueError if the command contains an invalid literal.

3.24.1 Interactive Interpreter Objects

runsource (source[, filenameﬂ, symboﬂ])
Compile and run some source in the interpreter. Arguments are the samecasifite _command() ; the
default forfilenameis '<input>' , and forsymbolis 'single’ . One several things can happen:

eThe input is incorrect; compile _command() raised an exception SyntaxError or
OverflowError). A syntax traceback will be printed by calling thghowsyntaxerror()
method.runsource() returnsfalse .

eThe input is incomplete, and more input is requiredpmpile _command() returned None.
runsource() returnsTrue .

eThe input is completegompile _command() returned a code object. The code is executed by calling
theruncode() (which also handles run-time exceptions, exceptSgstemExit). runsource()
returnsFalse .

The return value can be used to decide whether taysgsl orsys.ps2 to prompt the next line.

runcode (code
Execute a code object. When an exception ocahiewtraceback() is called to display a traceback. All
exceptions are caught excepistemExit , which is allowed to propagate.

A note aboutKeyboardinterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filenamd)
Display the syntax error that just occurred. This does not display a stack trace because there isn't one for syntax
errors. Iffilenameis given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always usestring>’ when reading from a string. The output is written by wrie()
method.

96 Chapter 3. Python Runtime Services

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by theite() method.

write (data)
Write a string to the standard error streasyq.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.24.2 Interactive Console Objects

The InteractiveConsole class is a subclass titeractivelnterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
—since it's so close!).

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpretensource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid, the
buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was appended.
The return value iFrue if more input is requirediFalse if the line was dealt with in some way (this is the
same asunsource()).

resetbuffer 0
Remove any unhandled source text from the input buffer.

raw _input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequenceEOFError is raised. The base implementation uses the built-in functen_input() ;
a subclass may replace this with a different implementation.

3.25 codeop — Compile Python code

Thecodeop module provides utilities upon which the Python read-eval-print loop can be emulated, as is done in the
code module. As a result, you probably don’t want to use the module directly; if you want to include such a loop in
your program you probably want to use ttede module instead.

There are two parts to this job:

1. Being able to tell if a line of input completes a Python statement: in short, telling whether to>print ™ or
‘ " next.

2. Remembering which future statements the user has entered, so subsequent input can be compiled with these in
effect.

Thecodeop module provides a way of doing each of these things, and a way of doing them both.
To do just the former:

compile _command source[, filenam{, symbo]|])
Tries to compilesource which should be a string of Python code and return a code objscuifceis valid

3.25. codeop — Compile Python code 97

Python code. In that case, the filename attribute of the code object willdmame which defaults to
<input>' . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem witlsource an exception will be raise@®yntaxError is raised if there is invalid Python
syntax, andDverflowError or ValueError if there is an invalid literal.

The symbolargument determines wheth&urceis compiled as a statemensifigle’ , the default) or as an
expression’éval’). Any other value will caus®¥alueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

classCompile ()
Instances of this class havecall __() methods identical in signature to the built-in functimompile()
but with the difference that if the instance compiles program text containingfature __ statement, the
instance 'remembers’ and compiles all subsequent program texts with the statement in force.

classCommandCompiler ()
Instances of this class have call __() methods identical in signature mmpile _command() ; the
difference is that if the instance compiles program text containing fature __ statement, the instance
‘remembers’ and compiles all subsequent program texts with the statement in force.

A note on version compatibility: th€ompile and CommandCompiler are new in Python 2.2. If you want to
enable the future-tracking features of 2.2 but also retain compatibility with 2.1 and earlier versions of Python you can
either write

try:
from codeop import CommandCompiler
compile_command = CommandCompiler()
del CommandCompiler

except ImportError:
from codeop import compile_command

which is a low-impact change, but introduces possibly unwanted global state into your program, or you can write:

try:
from codeop import CommandCompiler
except ImportError:
def CommandCompiler():
from codeop import compile_command
return compile_command

and then calCommandCompiler every time you need a fresh compiler object.

3.26 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be

used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don't
fit within the allowed width. Construd®rettyPrinter objects explicitly if you need to adjust the width constraint.

98 Chapter 3. Python Runtime Services

Thepprint module defines one class:

classPrettyPrinter (..)
Construct &PrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using tereamkeyword; the only method used on the stream object is the file protocol's
write() method. If not specified, therettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywordiscena depth andwidth. The amount
of indentation added for each recursive level is specifietchdgnt the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth if the data structure being printed is too deep, the next contained level is replaced by
‘... '. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using theidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff[:])

>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)

[
'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
'lusr/local/lib/pythonl.5/sharedmodules’,
"fusr/local/lib/pythonl.5/tkinter’],

"lusr/local/lib/pythonl.5’,
"lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/pythonl.5/sunos5’,
"fusr/local/lib/python1.5/sharedmodules’,
"lusr/local/lib/pythonl.5/tkinter’]

>>>

>>> import parser

>>> tup = parser.ast2tuple(
parser.suite(open('pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)

>>> pp.pprint(tup)

(266, (267, (307, (287, (288, (...))N))

ThePrettyPrinter class supports several derivative functions:

pformat (objec{, inden{, width[, depth]]])
Return the formatted representation afject as a string. indent width and depthwill be passed to the
PrettyPrinter constructor as formatting parameters. Changed in version 2.4: The paramdens
width anddepthwere added.

pprint (objec{, strean[, inden{, Width[, depth]]]])
Prints the formatted representation olbject on stream followed by a newline. Ifstreamis omitted,
sys.stdout is used. This may be used in the interactive interpreter insteadpdhts statement for in-
specting valuesindent width and depthwill be passed to th@rettyPrinter constructor as formatting
parameters.

3.26. pprint — Data pretty printer 99

>>> stuff = sys.path[:]

>>> stuff.insert(0, stuff)

>>> pprint.pprint(stuff)

[<Recursion on list with id=869440>,

'lusr/local/lib/pythonl.5’,
'lusr/local/lib/pythonl.5/test’,
"lusr/local/lib/python1.5/sunos5’,
"lusr/local/lib/pythonl.5/sharedmodules’,
'lusr/local/lib/pythonl.5/tkinter’]

Changed in version 2.4: The parametedent width anddepthwere added.

isreadable (objec)
Determine if the formatted representationotijectis “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

>>> pprint.isreadable(stuff)
False

isrecursive (objec)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (objec)
Return a string representation object protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be representelexifsion on typename
with id= numbep’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)

"[<Recursion on list with id=682968>, ", '/usr/local/lib/pythonl1.5’, '/usr/loca
I/lib/pythonl.5/test’, '/usr/local/lib/pythonl.5/sunos5’, 'lusr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/pythonl.5/tkinter’]"

3.26.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (objec)
Return the formatted representation object This takes into Account the options passed to the
PrettyPrinter constructor.

pprint (objec)
Print the formatted representationalfjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since ResttyPrinter objects don't need to be created.

isreadable (objec)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. Ifdepthparameter of th€rettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (objec)
Determine if the object requires a recursive representation.

100 Chapter 3. Python Runtime Services

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of gaferepr() implementation.

format (object, context, maxlevels, leyel
Returns three values: the formatted versioplgEctas a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains tli) of objects that are part of the current presentation context
(direct and indirect containers fabjectthat are affecting the presentation) as the keys; if an object needs to
be presented which is already representedointext the third return value should be true. Recursive calls to
theformat() = method should add additional entries for containers to this dictionary. The fourth argument,
maxlevels gives the requested limit to recursion; this will Bdf there is no requested limit. This argument
should be passed unmodified to recursive calls. The fourth argutegatgives the current level; recursive
calls should be passed a value less than that of the current call. New in version 2.3.

3.27 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the brelpsif) ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance dRepr which is used to provide theepr() function described below. Changing the
attributes of this object will affect the size limits usedrepr() and the Python debugger.

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.27.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The defa@ilt is

maxdict

maxlist

maxtuple

maxset

maxfrozenset

maxdeque

maxarray
Limits on the number of entries represented for the named object type. The defaditirisnaxdict , 5 for
maxarray , and6 for the others. New in version 2.maxset , maxfrozenset , andset . .

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default i40.

maxstring

3.27. repr — Alternate repr() implementation 101

Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The def@dt is

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. Itis applied in a similar manner agxstring . The default i0.

repr (obj)
The equivalent to the built-irepr() that uses the formatting imposed by the instance.

reprl (obj, leve)
Recursive implementation used Bpr() . This uses the type @hbjto determine which formatting method to
call, passing ibbj andlevel The type-specific methods should a&prl() to perform recursive formatting,
with level - 1 for the value ofevelin the recursive call.

repr _typg obj, leve)
Formatting methods for specific types are implemented as methods with a name based on the type name. In the
method nametype is replaced bystring.join(string.split(type(obj). __name__, ') .
Dispatch to these methods is handledrégrl() . Type-specific methods which need to recursively format a
value should callself.repri(subobj level - 1) .

3.27.2 Subclassing Repr Objects

The use of dynamic dispatching Repr.repri() allows subclasses &tepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):
if obj.name in [<stdin>', '<stdout>', '<stderr>']:
return obj.name
else:
return ‘obj*

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints '<stdin>’

3.28 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module. It is
possible to supply non-sensical arguments which crash the interpreter when the object is used.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instance @sswith dictionarydict without calling the__init __() constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no

102 Chapter 3. Python Runtime Services

guarantees that the object will be in a consistent state.

instancemethod (function, instance, clays
This function will return a method object, bounditstance or unbound ifinstanceis None. functionmust be
callable.

function (code, gIobaIE, name[, argdefs]])
Returns a (Python) function with the given code and globailsatfieis given, it must be a string &fone. Ifitis
a string, the function will have the given name, otherwise the function name will be takeodasao _name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, Ino-

tab)
This function is an interface to tHfeyCode _New() C function.

module (namg
This function returns a new module object with nanane namemust be a string.

classobj (name, baseclasses, gdict
This function returns a new class object, with namaene derived frombaseclasse@vhich should be a tuple of
classes) and with namespatiet.

3.29 site — Site-specific configuration hook

This module is automatically imported during initialization. The automatic import can be suppressed using the
interpreter’'s-S option.

Importing this module will append site-specific paths to the module search path.

It starts by constructing up to four directories from a head and a tail part. For the head partsitsipesfix and
sys.exec _prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Windows) or it uses
first ‘lib/python2.4/site-packages’ and then lib/site-python’ (on UNIxand Macintosh). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, addssifdgath and also inspects the newly
added path for configuration files.

A path configuration file is a file whose name has the fopaickagepth’ and exists in one of the four directories
mentioned above; its contents are additional items (one per line) to be adsiggigath . Non-existing items are
never added teys.path , but no check is made that the item refers to a directory (rather than a file). No item is
added tesys.path more than once. Blank lines and lines beginning witire skipped. Lines starting witmport

are executed.

For example, suppossys.prefix andsys.exec _prefix are set to/usr/local’. The Python 2.4.1 library is
then installed in/usr/local/lib/python2.4’ (where only the first three characterssyfs.version are used to form the
installation path name). Suppose this has a subdirectasylbcal/lib/python2.4/site-packages’ with three subsubdi-
rectories, foo’, ‘ bar’ and ‘spam’, and two path configuration filesfoo.pth’ and ‘bar.pth’. Assume foo.pth’ contains
the following:

foo package configuration
foo

bar
bletch

and ar.pth’ contains:

3.29. site — Site-specific configuration hook 103

bar package configuration

bar

Then the following directories are addedsigs.path , in this order:

lusr/local/lib/python2.3/site-packages/bar
/usr/local/lib/python2.3/site-packages/foo

Note that bletch’ is omitted because it doesn't exist; theat’ directory precedes thddo’ directory becausebar.pth’
comes alphabetically beforéb.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module refeealstomize |, which can perform
arbitrary site-specific customizations. If this import fails withlarportError ~ exception, it is silently ignored.

Note that for some non-Mix systemssys.prefix andsys.exec _prefix are empty, and the path manipula-
tions are skipped; however the importsifecustomize is still attempted.

3.30 wuser — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

import user

Theuser module looks for a file.pythonrc.py’ in the user’'s home directory and if it can be opened, executes it (using

execfile()) in its own (the moduleiser 's) global namespace. Errors during this phase are not caught; that's up
to the program that imports theser module, if it wishes. The home directory is assumed to be named by the HOME
environment variable; if this is not set, the current directory is used.

The user’s ‘pythonrc.py’ could conceivably test fosys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in ygythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in thpjthonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variabfer.spam _verbose , as follows:

import user

verbose = bool(getattr(user, "spam_verbose", 0))

(The three-argument form dafetattr() is used in case the user has not defispdm_verbose in their
‘.pythonrc.py’ file.)

Programs with extensive customization needs are better off reading a program-specific customization file.

104 Chapter 3. Python Runtime Services

Programs with security or privacy concerns shaubdimport this module; a user can easily break into a program by
placing arbitrary code in thegythonrc.py’ file.

Modules for general use shoutdtimport this module; it may interfere with the operation of the importing program.
See Also:

Modulesite (section 3.29):
Site-wide customization mechanism.

3.31 __builtin __ — Built-in objects

This module provides direct access to all ‘built-in’ identifiers of Python; for examplépiltin -~ __.open is the
full name for the built-in functioropen() . See chapter 2, “Built-in Objects.”

This module is not normally accessed explicitly by most applications, but can be useful in modules that provide objects
with the same name as a built-in value, but in which the built-in of that name is also needed. For example, in a module
that wants to implement aspen() function that wraps the built-iopen() , this module can be used directly:

import __ builtin__

def open(path):
f = _ builtin__.open(path, 'r’)
return UpperCaser(f)

class UpperCaser:
""Wrapper around a file that converts output to upper-case.”

def __init_ (self, f):
self._f = f

def read(self, count=-1):
return self._f.read(count).upper()

.
As an implementation detail, most modules have the nammiiltins ~ __ (note the §’) made available as part of
their globals. The value of _builtins ~ __ is normally either this module or the value of this modules’slict __

attribute. Since this is an implementation detail, it may not be used by alternate implementations of Python.

3.32 __main __ — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter's main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if _name__ == "_main__"
main()

3.33 __future __ — Future statement definitions

3.31. __builtin __ — Built-in objects 105

__future __is areal module, and serves three purposes:

e To avoid confusing existing tools that analyze import statements and expect to find the modules they’re import-
ing.

e To ensure that futurestatements run under releases prior to 2.1 at least yield runtime exceptions (the import of
__future __ will fail, because there was no module of that name prior to 2.1).

e To document when incompatible changes were introduced, and when they will be — or were — made
mandatory. This is a form of executable documentation, and can be inspected programatically via importing
__future __ and examining its contents.

Each statement in__future__.py’ is of the form:

FeatureName = "_Feature(" OptionalRelease'," MandatoryReleasé',"
CompilerFlag)"

where, normally,OptionalReleasds less thanMandatoryReleaseand both are 5-tuples of the same form as
sys.version _info

(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int

PY_MICRO_VERSION, # the 0; an int

PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int

)

OptionalReleaseecords the first release in which the feature was accepted.

In the case of MandatoryReleast¢hat has not yet occurredijandatoryReleaseredicts the release in which the
feature will become part of the language.

ElseMandatoryReleasegecords when the feature became part of the language; in releases at or after that, modules no
longer need a future statement to use the feature in question, but may continue to use such imports.

MandatoryReleasmay also béNone, meaning that a planned feature got dropped.

Instances of class_Feature have two corresponding methodsgetOptionalRelease() and
getMandatoryRelease()

CompilerFlagis the (bitfield) flag that should be passed in the fourth argument to the builtin furoctiopile() to
enable the feature in dynamically compiled code. This flag is stored iccttmpiler _flag attribute on_Future
instances.

No feature description will ever be deleted framfuture

106 Chapter 3. Python Runtime Services

CHAPTER
FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.

re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.

difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringlO Read and write strings as if they were files.
cStringlO Faster version aBtringlO , but not subclassable.
textwrap Text wrapping and filling

encodings.idna Internationalized Domain Names implementation
unicodedata Access the Unicode Database.

stringprep String preparation, as per RFC 3453

Information on the methods of string objects can be found in section 2.3.6, “String Methods.”

4.1 string — Common string operations

Thestring module contains a number of useful constants and classes, as well as some deprecated legacy functions
that are also available as methods on strings. See the maddite string functions based on regular expressions.

4.1.1 String constants

The constants defined in this module are:

ascii _letters
The concatenation of thascii _lowercase andascii _uppercase constants described below. This
value is not locale-dependent.

ascii _lowercase
The lowercase lettefabcdefghijklmnopqgrstuvwxyz’ . This value is not locale-dependent and will not
change.

ascii _uppercase
The uppercase lettetABCDEFGHIJKLMNOPQRSTUVWXY Zhis value is not locale-dependent and will not
change.

digits
The string’0123456789’

hexdigits

107

The string'0123456789abcdefABCDEF

letters
The concatenation of the stringavercase anduppercase described below. The specific value is locale-
dependent, and will be updated wHenale.setlocale() is called.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the
string 'abcdefghijklmnopqgrstuvwxyz’ . Do not change its definition — the effect on the routines
upper() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

octdigits
The string'01234567"

punctuation
String of Ascli characters which are considered punctuation characters iCtlozale.

printable
String of characters which are considered printable. This is a combinatiodigdt , letters

punctuation , andwhitespace

uppercase
A string containing all the characters that are considered uppercase letters. On most systems this is the
string ’ABCDEFGHIJKLMNOPQRSTUVWXYDo not change its definition — the effect on the routines
lower() andswapcase() is undefined. The specific value is locale-dependent, and will be updated when
locale.setlocale() is called.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

4.1.2 Template strings

Templates provide simpler string substitutions as described in PEP 292. Instead of the A&taaéd substitutions,
Templates suppor$’-based substitutions, using the following rules:

e ‘$$’is an escape; it is replaced with a sing®.*

e ‘Sidentifier " names a substitution placeholder matching a mapping key of "identifier”. By default, "iden-
tifier” must spell a Python identifier. The first non-identifier character after $heHlaracter terminates this
placeholder specification.

o ‘${identifier} " is equivalent to $identifier ". It is required when valid identifier characters follow
the placeholder but are not part of the placeholder, suchfamif}ification”.

Any other appearance o$” in the string will result in avalueError being raised.
New in version 2.4.
Thestring module provides demplate class that implements these rules. The methodsaiplate are:

classTemplate (template
The constructor takes a single argument which is the template string.

substitute (mappind, **kws])
Performs the template substitution, returning a new strimgppingis any dictionary-like object with keys that
match the placeholders in the template. Alternatively, you can provide keyword arguments, where the keywords

108 Chapter 4. String Services

are the placeholders. When battappingandkwsare given and there are duplicates, the placeholderskmesn
take precedence.

safe _substitute (mapping{, **kws])
Like substitute() , except that if placeholders are missing fronappingand kws instead of raising a
KeyError exception, the original placeholder will appear in the resulting string intact. Also, unlike with
substitute() , any other appearances of ti# Wwill simply return ‘$’ instead of raising/alueError

While other exceptions may still occur, this method is called “safe” because substitutions always tries to return a
usable string instead of raising an exception. In another seafee, _substitute() may be anything other

than safe, since it will silently ignore malformed templates containing dangling delimiters, unmatched braces,
or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template
This is the object passed to the constructteimplateargument. In general, you shouldn’t change it, but read-
only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template('$who likes $what’)

>>> s.substitute(who="tim’, what="kung pao’)
'tim likes kung pao’

>>> d = dict(who="tim’)

>>> Template('Give $who $100’).substitute(d)
Traceback (most recent call last):

(]

ValueError: Invalid placeholder in string: line 1, col 10
>>> Template('$who likes $what’).substitute(d)
Traceback (most recent call last):

[-]

KeyError: 'what’

>>> Template('$who likes $what’).safe_substitute(d)
‘tim likes $what’

Advanced usage: you can derive subclassekeofiplate to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

e delimiter— This is the literal string describing a placeholder introducing delimiter. The default \&lulote
that this shoulchot be a regular expression, as the implementation will akscape() on this string as
needed.

e idpattern— This is the regular expression describing the pattern for non-braced placeholders (the braces will be
added automatically as appropriate). The default value is the regular exprdssion][_a-z0-9]* .

Alternatively, you can provide the entire regular expression pattern by overriding the class ataitbeite If you do
this, the value must be a regular expression object with four named capturing groups. The capturing groups correspond
to the rules given above, along with the invalid placeholder rule:

e escaped- This group matches the escape sequence,%$g.ih the default pattern.

e named- This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced- This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

4.1. string — Common string operations 109

e invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last in
the regular expression.

4.1.3 String functions

The following functions are available to operate on string and Unicode objects. They are not available as string
methods.

capwords (s)
Split the argument into words usirgplit() , capitalize each word usingapitalize() , and join the
capitalized words usingin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

maketrans (from, to
Return a translation table suitable for passingramslate() or regex.compile() , that will map each
character irffrominto the character at the same positionanfrom andto must have the same length.

Warning: Don’t use strings derived frodowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, alwayswee() andupper()

4.1.4 Deprecated string functions

The following list of functions are also defined as methods of string and Unicode objects; see “String Methods”
(section 2.3.6) for more information on those. You should consider these functions as deprecated, although they will
not be removed until Python 3.0. The functions defined in this module are:

atof (s)
Deprecated since release 2.Qse thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sigr-'('or ‘- ’). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, basd)
Deprecated since release 2.Qse theint() built-in function.

Convert strings to an integer in the givebbase The string must consist of one or more digits, optionally
preceded by a sign{' or ‘- ’). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the siglx’ ‘or ‘0OX’ means 16, 0’ means 8, anything else
means 10. Ibaseis 16, a leading0x’ or * 0X' is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioaval() .)

atol (9, basd])
Deprecated since release 2.Qse thelong() built-in function.
Convert strings to a long integer in the givebhase The string must consist of one or more digits, optionally
preceded by a sign{’ or ‘- ’). The baseargument has the same meaning asatoi() . Atrailing ‘I "or ‘L’
is not allowed, except if the base is 0. Note that when invoked withas¢or with baseset to 10, this behaves
identical to the built-in functiomong() when passed a string.

capitalize (word)
Return a copy ofvord with only its first character capitalized.

expandtabs (s[, tabsize])
Expand tabs in a string replacing them by one or more spaces, depending on the current column and the given

110 Chapter 4. String Services

tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sul{, start{,end]])
Return the lowest index iswhere the substringubis found such thasubis wholly contained ir§[start end .
Return-1 on failure. Defaults fostart andendand interpretation of negative values is the same as for slices.

rfind (s, suk[, starl{, end]])
Like find() but find the highest index.

index (s, sut{, starl{, end]])
Like find() butraiseValueError when the substring is not found.

rindex (s, sul{, starl{, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, suk{, starl[, end]])
Return the number of (non-overlapping) occurrences of substtib string g start end . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy o§, but with upper case letters converted to lower case.

split (s[, se;{, maxsplit]])
Return a list of the words of the strirgy If the optional second argumesépis absent oNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and nadtlone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumembaxsplitdefaults to 0. If it is nonzero, at mostaxsplithumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have ahenstlit-1
elements).

The behavior of split on an empty string depends on the valisepf If sepis not specified, or specified as
None, the result will be an empty list. Bepis specified as any string, the result will be a list containing one
element which is an empty string.

rsplit (s[, sep[, maxsplit]])
Return a list of the words of the strirgyscannings from the end. To all intents and purposes, the resulting list
of words is the same as returned split() , except when the optional third argumenéaxsplitis explicitly
specified and nonzero. Whenaxsplitis nonzero, at moshaxsplitnumber of splits — theightmostones —
occur, and the remainder of the string is returned as the first element of the list (thus, the list will have at most
maxsplit-l elements). New in version 2.4.

splitfields (s[, se;{, maxsplit]])
This function behaves identically split() . (In the pastsplit() was only used with one argument, while
splitfields() was only used with two arguments.)

join (word{, sep])
Concatenate a list or tuple of words with intervening occurrencegpfThe default value fosepis a single
space character. It is always true thatting.join(string.split(s, sep, sep’equalss.

joinfields (words[, sep])
This function behaves identically foin() . (In the pastjoin() was only used with one argument, while
joinfields() was only used with two arguments.) Note that there ifoidields() method on string
objects; use th@in() method instead.

Istrip (s[, chars])
Return a copy of the string with leading characters removethdfsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the beginning of the string this method is called on. Changed in version 2.2.8h@hgparameter was added.
Thecharsparameter cannot be passed in earlier 2.2 versions.

4.1. string — Common string operations 111

rstrip (s[, chars])
Return a copy of the string with trailing characters removedhérsis omitted oNone, whitespace characters
are removed. If given and ndtone, charsmust be a string; the characters in the string will be stripped from
the end of the string this method is called on. Changed in version 2.2.XhEigparameter was added. The
charsparameter cannot be passed in earlier 2.2 versions.

strip (s[, chars])
Return a copy of the string with leading and trailing characters removetaitis omitted oNone, whitespace
characters are removed. If given and hiine, charsmust be a string; the characters in the string will be
stripped from the both ends of the string this method is called on. Changed in version 2.2.&hdrke
parameter was added. Thiearsparameter cannot be passed in earlier 2.2 versions.

swapcase (9)
Return a copy 0§, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechari)
Delete all characters fromthat are indeletechargif present), and then translate the characters usihtg
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (9)
Return a copy o§, but with lower case letters converted to upper case.

ljust (s, width

rjust (s, width

center (s, width
These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leaswidth characters wide, created by padding the stamgth spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill (s, width
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, nev[, maxreplacé)
Return a copy of stringtr with all occurrences of substringld replaced bynew If the optional argument
maxreplacas given, the firsmaxreplaceoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte usifgitirebemotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit stringse Trhedule is always available.

Regular expressions use the backslash charas&tgrt@ indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have té\Wtite as the pattern

string, because the regular expression musi\be, ‘and each backslash must be expressed\asihside a regular

Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with*. So r"\n" is a two-character string containing’‘and ‘n’, while

"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O'Reilly. The second edition of the book no longer

112 Chapter 4. String Services

covers Python at all, but the first edition covered writing good regular expression patterns in great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressidrsidB are both regular expressions,
thenAB is also a regular expression. In general, if a stpngatchesA and another string matchesB, the string

pgwill match AB. This holds unlesé or B contain low precedence operations; boundary conditions betdeerl

B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book referenced above, or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fiiopy/www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary charactexs,’ Bkeor

‘0, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last ; matches the strindast’ . (In the rest of this section, we’'ll write RE’s iithis special style I

usually without quotes, and strings to be matchedsingle quotes’)

Some characters, lik¢ *or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

(Dot.) In the default mode, this matches any character except a newline. DIQRALLflag has been specified,
this matches any character including a newline.

(Caret.) Matches the start of the string, andbLTILINE mode also matches immediately after each newline.

‘$’ Matches the end of the string or just before the newline at the end of the string, BRJLIRILINE mode also
matches before a newlindoo ; matches both 'foo’ and *foobar’, while the regular expressfon$; matches
only *foo’. More interestingly, searching fdioo.$;in 'fool\nfoo2\n’ matches 'foo2’ normally, but 'fool’ in
MULTILINE mode.

‘*’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
fab* ; will match 'a’, 'ab’, or 'a’ followed by any number of 'b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the precedingtiREwill match 'a’ followed by any
non-zero number of 'b’s; it will not match just 'a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the precedingiE will match either 'a’ or 'ab’.

*?,+7?,?? The *’, '+, and *?’ qualifiers are allgreedy they match as much text as possible. Sometimes this
behaviour isn't desired; if the RE.*> | is matched agains&H1>title</H1>’ , it will match the entire
string, and not just<H1>" . Adding ‘?’ after the qualifier makes it perform the match rion-greedyor
minimal fashion; asew characters as possible will be matched. Using | in the previous expression will
match only'<H1>’

{m} Specifies that exactly copies of the previous RE should be matched; fewer matches cause the entire RE not to
match. For exampléa{6} ;will match exactly six &’ characters, but not five.

{m, n} Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For exampk3,5} will match from 3 to 5 &' characters. Omittingn specifies a
lower bound of zero, and omitting specifies an infinite upper bound. As an examf@&,}b ; will match
aaaab or a thousandd’ characters followed by &, but notaaab. The comma may not be omitted or the
modifier would be confused with the previously described form.

4.2. re — Regular expression operations 113

{m, n}? Causes the resulting RE to match fromto n repetitions of the preceding RE, attempting to matcfeas
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string’aaaaaa’ , 'a{3,5} will match 5 ‘a’ characters, whiléa{3,5}? ;will only match 3 characters.

‘\'" Either escapes special characters (permitting you to match characters’)ik@’; and so forth), or signals a
special sequence; special sequences are discussed below.

If you're not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it's highly
recommended that you use raw strings for all but the simplest expressions.

[Used to indicate a set of characters. Characters can be listed individually, or a range of characters can be indicated
by giving two characters and separating them by’a Special characters are not active inside sets. For exam-
ple, Takm$] ; will match any of the charactera”, ‘k’, ‘m, or ‘$’; Ta-z] ,will match any lowercase letter,
and[a-zA-Z0-9] matches any letter or digit. Character classes sudtvasr \S (defined below) are also
acceptable inside a range. If you want to includé¢'aor a ‘- ' inside a set, precede it with a backslash, or place
it as the first character. The pattéfiji ;will match’] , for example.

You can match the characters not within a rangedmymplementinghe set. This is indicated by including @'
as the first character of the set; ‘elsewhere will simply match the ° character. For exampld'5] | will
match any character except, and [] ;will match any character except™

‘| * AIB, where A and B can be arbitrary RES, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by thein this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated bgre tried from left to right. When one pattern completely
matches, that branch is accepted. This means thatdntatchesB will not be tested further, even if it would
produce a longer overall match. In other words, fheoperator is never greedy. To match a litefal,‘use\| |,
or enclose it inside a character class, a§jn ;.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group; the
contents of a group can be retrieved after a match has been performed, and can be matched later in the string
with the\ numberspecial sequence, described below. To match the litgrads ©) *, use\(jor\) ;, or enclose
them inside a character cladg] [)] .

(?..) This is an extension notation (2‘following a ‘(' is not meaningful otherwise). The first character after the
‘?’ determines what the meaning and further syntax of the construct is. Extensions usually do not create a new
group;(?P< name-...) is the only exception to this rule. Following are the currently supported extensions.

(?iLmsux) (One or more letters from the set’; ‘L’, ‘mi, ‘s’, ‘u’, ‘x".) The group matches the empty string; the
letters set the corresponding flags.[,re.L ,re.M ,re.S ,re.U ,re.X) for the entire regular expression.
This is useful if you wish to include the flags as part of the regular expression, instead of patajraygument
to thecompile() function.

Note that the(?x) ; flag changes how the expression is parsed. It should be used first in the expression string,
or after one or more whitespace characters. If there are non-whitespace characters before the flag, the results are
undefined.

(?:..) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the grmamqmotbe retrieved after performing a match or referenced later
in the pattern.

(?P< name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group namaame Group names must be valid Python identifiers, and each group name must be defined
only once within a regular expression. A symbolic group is also a numbered group, just as if the group were not
named. So the group named 'id’ in the example above can also be referenced as the numbered group 1.

For example, if the pattern i§?P<id>[a-zA-Z _]\w*) |, the group can be referenced by its name in argu-
ments to methods of match objects, sucmagroup(’id’) orm.end(id") , and also by name in pattern
text (for example(?P=id)) and replacement text (such\asid>).

114 Chapter 4. String Services

(?P=namé Matches whatever text was matched by the earlier group naiee

(?#..) A comment; the contents of the parentheses are simply ignored.

(?=...) Matchesiif... ;matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For examplellsaac (?=Asimov) will match’lsaac ' only if it's followed by ’'AsimoVv’
(?...) Matches if... | doesn’t match next. This is a negative lookahead assertion. For exaispkg

(?'Asimov) ;will match’lsaac only if it's notfollowed by’Asimov’

(?<=..) Matches if the current position in the string is preceded by a match.for, that ends at the current
position. This is called positive lookbehind assertiof{(?<=abc)def ;will find a match in abcdef ’, since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern must
only match strings of some fixed length, meaning that, or a|b ; are allowed, bua* ;and'a{3,4} ,are not.
Note that patterns which start with positive lookbehind assertions will never match at the beginning of the string
being searched; you will most likely want to use #earch() function rather than theatch() function:

>>> import re

>>> m = re.search('(?<=abc)def’, 'abcdef’)
>>> m.group(0)

‘def’

This example looks for a word following a hyphen:

>>> m = re.search(’(?<=-)\w+’, 'spam-egg’)
>>> m.group(0)
'egy

(?<!..) Matches if the current position in the string is not preceded by a match.for. This is called aegative
lookbehind assertianSimilar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(?(id/nam@yes-pattern|no-pattern) Will try to match with yes-pattern | if the group with givenid
or nameexists, and withno-pattern | if it doesn’t. |no-pattern | is optional and can be omitted. For
example (<)?2(\Ww+@\w+(?2:\.\w+)+)(?(1)>) Jis a poor email matching pattern, which will match with
'<user@host.com>’ as well as'user@host.com’ , but not with’<user@host.com’ . New in
version 2.4,

The special sequences consist\ofand a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For exariplenatches the characte$’:

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For example,
(.(+) \1 | matchesthe the’ or’55 55 | but not'the end’ (note the space after the group). This
special sequence can only be used to match one of the first 99 groups. If the first digitloéris O, ornumber
is 3 octal digits long, it will not be interpreted as a group match, but as the character with octahwaiber
Inside the ["and ‘] ’ of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric or underscore characters, so the end of a word is indicated by whitespace or a non-alphanumeric,
non-underscore character. Note thatis defined as the boundary between and\W, so the precise set of
characters deemed to be alphanumeric depends on the valuesWiIBODEand LOCALEflags. Inside a
character rangd\b | represents the backspace character, for compatibility with Python’s string literals.

4.2. re — Regular expression operations 115

\B Matches the empty string, but only when itriet at the beginning or end of a word. This is just the opposite of
\b , sois also subject to the settingslLédd CALEandUNICODE

\d Matches any decimal digit; this is equivalent to the e8]

\D Matches any non-digit character; this is equivalent to th€e8] .

\s Matches any whitespace character; this is equivalent to the &&t\r\fiv] b

\S Matches any non-whitespace character; this is equivalent to tfe sa&n\r\fiv] I

\w When thedeOCALEandUNICODHlags are not specified, matches any alphanumeric character and the underscore;
this is equivalent to the sda-zA-Z0-9 _],. With LOCALE it will match the set[0-9 _], plus whatever
characters are defined as alphanumeric for the current localNIEODESs set, this will match the characters
T0-9 _],plus whatever is classified as alphanumeric in the Unicode character properties database.

\W When theL OCALEandUNICODHlags are not specified, matches any non-alphanumeric character; this is equiv-
alent to the sefa-zA-Z0-9 _] . With LOCALE it will match any character not in the sf3-9 _] ;, and not
defined as alphanumeric for the current local&JNiCODEs set, this will match anything other thd8-9 _] |
and characters marked as alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\r \t \v \X
\\

Octal escapes are included in a limited form: If the first digit is a O, or if there are three octal digits, it is considered an
octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits in
length.

4.2.2 Matching vs Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl’s semantics, the search operation is what you're looking for. Sex=#lneh() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning WwitH ° matches only at the start

of the string, or iNMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by thepmgtional
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile(""a").search("ba", 1) # fails; 'a’ not at start
re.compile(""a").search("\na", 1) # fails; 'a’ not at start

re.compile("a", re.M).search("\na", 1) # succeeds
re.compile(""a", re.M).search("ba", 1) # fails; no preceding \n

4.2.3 Module Contents

116 Chapter 4. String Services

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

compile (patterr{, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifyifiggs value. Values can be any of the following
variables, combined using bitwise OR (th@perator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingompile() is more efficient when the expression will be used several times in a single
program.

I

IGNORECASE
Perform case-insensitive matching; expressions Tikez] ; will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE
Make \w, \W,, \b ;, and\B dependent on the current locale.
M
MULTILINE
When specified, the pattern characfer matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern chara®ematches at the end of the string and at
the end of each line (immediately preceding each newline). By defautnatches only at the beginning of the
string, and $’ only at the end of the string and immediately before the newline (if any) at the end of the string.
S
DOTALL
Make the ! ’ special character match any character at all, including a newline; without this.flagilt match
anythingexcepta newline.
U
UNICODE
Make \w, "W, \b , and\B, dependent on the Unicode character properties database. New in version 2.0.
X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line egBmtaitiea *

in a character class or preceded by an unescaped backslash, all characters from the leftm#sttaocigh

the end of the line are ignored.

search (pattern, string[, flags])
Scan througlstring looking for a location where the regular expresspatternproduces a match, and return a
correspondindgMatchObject instance. Returilone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

4.2. re — Regular expression operations 117

match (pattern, string[, flags])
If zero or more characters at the beginningting match the regular expressipattern return a corresponding
MatchObject instance. Returbone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywherestring, usesearch() instead.

split (pattern, string{, maxsplit = 0])
Split string by the occurrences gattern If capturing parentheses are usegattern then the text of all groups
in the pattern are also returned as part of the resulting lishalfsplitis nonzero, at moshaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 releasepaxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(\W+', 'Words, words, words.’)
[Words', 'words’, 'words’, "]

>>> re.split((\W+)', 'Words, words, words.")
[Words', ’, ', 'words’, ', ', 'words’, ", "]
>>> re.split(\W+', 'Words, words, words.’, 1)
[Words’, 'words, words.]

This function combines and extends the functionality of theefgub.split() andregsub.splitx()

findall (pattern, string{, flags])
Return a list of all non-overlapping matchespaitternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result unless they touch the beginning of another match. New in version 1.5.2. Changed in
version 2.4: Added the optional flags argument.

finditer (pattern, string[, flags])
Return an iterator over all non-overlapping matches for thepRiernin string. For each match, the iterator
returns a match object. Empty matches are included in the result unless they touch the beginning of another
match. New in version 2.2. Changed in version 2.4: Added the optional flags argument.

sub (pattern, repl, strin&, count])
Return the string obtained by replacing the leftmost non-overlapping occurrenpasterinin string by the
replacementepl. If the pattern isn’t foundstring is returned unchangedepl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That iss‘converted to a single newline character,
‘\r " is converted to a linefeed, and so forth. Unknown escapes such asre left alone. Backreferences,
such as\6 ’, are replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(rdefis+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):’,
r'static PyObject®\npy_\1(void)\n{’,

‘'def myfunc():’)

'static PyObject*\npy_myfunc(void)\n{’

If replis a function, it is called for every non-overlapping occurrenceaitern The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
if matchobj.group(0) == ’-": return ’ ’
else: return '~
>>> re.sub(’-{1,2}, dashrepl, 'pro----gram-files’)
‘pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a RE
object, or use embedded modifiers in a pattern; for examgpli(“(?i)b+", "x", "bbbb BBBB") '
returnsx x’

118 Chapter 4. String Services

The optional argumerttountis the maximum number of pattern occurrences to be replamaditmust be a
non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern are
replaced only when not adjacent to a previous matchssio('x*’, ’-', 'abc’) 'returns’-a-b-c-’

In addition to character escapes and backreferences as described &pavame> ' will use the substring
matched by the group namedame’, as defined by th§?P<name>...) | syntax. \g<number> ’ uses the
corresponding group numbeig<2> ' is therefore equivalent to\2 ', but isn’t ambiguous in a replacement
such as\g<2>0 . ‘\20 " would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal characte)’. The backreferencag<0> ’ substitutes in the entire substring matched by the RE.

subn (pattern, repl, strin@, count])
Perform the same operationsugh() , but return a tuplé new_string, number.of_subs madg .

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. Itis
never an error if a string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

match (string[, pos{, endpog])
If zero or more characters at the beginningstifing match this regular expression, return a corresponding
MatchObject instance. Returbone if the string does not match the pattern; note that this is different from

a zero-length match.
Note: If you want to locate a match anywheregtring, usesearch() instead.

The optional second paramefmsgives an index in the string where the search is to start; it defaults This
is not completely equivalent to slicing the string; thie pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parametemdpodimits how far the string will be searched; it will be as if the stringeisdpos
characters long, so only the characters fromsto endpos- 1 will be searched for a match. éindposs less
thanpos no match will be found, otherwise, ik is a compiled regular expression objestmatch(string,
0, 50) is equivalenttax.match(string:50], 0)

search (string[, pos[, endpoﬁ])
Scan througtstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. Returbone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionaposandendpogparameters have the same meaning as fomaeh() method.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (string[, pog, endpod])

Identical to thefindall() function, using the compiled pattern.
finditer (string[, po{, endpo§])
Identical to thefinditer() function, using the compiled pattern.

sub (repl, string{, count = 0])
Identical to thesub() function, using the compiled pattern.

4.2. re — Regular expression operations 119

subn (repl, string{, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compildtiifaro flags were provided.

groupindex
A dictionary mapping any symbolic group names defined(Bly< id>) ; to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

expand (templatg
Return the string obtained by doing backslash substitution on the templatetstriptate as done by theub()
method. Escapes such as ° are converted to the appropriate characters, and numeric backreferéices (*

‘\2 ') and named backreference$g&l> ’, ‘\g<name> ') are replaced by the contents of the corresponding
group.

group ([groupl,])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguyraums,
defaults to zero (the whole match is returned). raupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
anindexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result ione. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses tffgP< name»...) | syntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattetex&ror
exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", '3.14’)

After performing this matchm.group(1) is’3’ , asism.group(int’) , andm.group(2) is’'14’

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
Thedefaultargument is used for groups that did not participate in the match; it defallsrie. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all teamedsubgroups of the match, keyed by the subgroup namedéfalt
argument is used for groups that did not participate in the match; it defaultsrte.

start ([group])

end([group])
Return the indices of the start and end of the substring matchetolng, group defaults to zero (meaning the
whole matched substring). Retwh if groupexists but did not contribute to the match. For a match olject
and a groum that did contribute to the match, the substring matched by ggqeguivalent tan.group(g))
is

120 Chapter 4. String Services

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, after=
re.search(’b(c?)’, 'cba’) , m.start(0) is 1, mend(0) is 2, m.start(1) andm.end(1)
are both 2, andh.start(2) raises arindexError exception.

span ([group])
ForMatchObject m, return the 2-tuplé m.start(group), m.end(group) . Note that ifgroupdid not

contribute to the match, this(s1, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to tteearch() ormatch() method of theRegexObject . Thisis the
index into the string at which the RE engine started looking for a match.

endpos
The value ofendposvhich was passed to ttsearch() ormatch() method of theRegexObject . This is
the index into the string beyond which the RE engine will not go.

lastindex
The integer index of the last matched capturing groupName if no group was matched at all. For example, the
expressionga)b ;, ((@)(b)) J, and'((ab)) will have lastindex == if applied to the stringab’
while the expressioffa)(b) ;will have lastindex == , if applied to the same string.

lastgroup

The name of the last matched capturing groupNone if the group didn’t have a name, or if no group was
matched at all.

re
The regular expression object whasatch() orsearch() method produced thiglatchObject instance.

string
The string passed tmatch() or search()

4.2.6 Examples
Simulating scanf()

Python does not currently have an equivalerdédanf() . Regular expressions are generally more powerful, though
also more verbose, thastanf() format strings. The table below offers some more-or-less equivalent mappings
betweerscanf() format tokens and regular expressions.

scanf() Token | Regular Expression

%cC [.J

%5¢c {5} |

%d [-+]2\d+

%e %E %f, %g | T-+]?2(\d+(\\d*)?\d*\.\d+)([eE][-+]?\d+)?]
%i T-+]?(0[xX][\dA-Fa-f]+|0[0-7]*|\d+) |

%0 @[0-7]*]

%S [\S+J

%u r\CH'J

%X %X O[xX]N\dA-Fa-f]+]

To extract the filename and numbers from a string like

lusr/sbin/sendmail - 0 errors, 4 warnings

4.2. re — Regular expression operations 121

you would use a&canf() format like

%s - %d errors, %d warnings

The equivalent regular expression would be
(\S+) - (\d+) errors, (\d+) warnings

Avoiding recursion

If you create regular expressions that require the engine to perform a lot of recursion, you may encounter a RuntimeEr-
ror exception with the messaggximum recursion limit exceeded. For example,

>>> import re
>>> s = 'Begin ' + 1000*a very long string ' + 'end’
>>> re.match('Begin (\w|)*? end’, s).end()
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "/usr/local/lib/python2.3/sre.py”, line 132, in match

return _compile(pattern, flags).match(string)

RuntimeError: maximum recursion limit exceeded

You can often restructure your regular expression to avoid recursion.

Starting with Python 2.3, simple uses of th®, pattern are special-cased to avoid recursion. Thus, the above regular
expression can avoid recursion by being recasBagin [a-zA-Z0-9 _]*?end . As a further benefit, such
regular expressions will run faster than their recursive equivalents.

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python stringnitises
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1,v2,..)
Return a string containing the values v2, ... packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string
Unpack the string (presumably packed fgck(fmt, ...)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (en(string) must equatalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

122 Chapter 4. String Services

Format | C Type Python Notes
X’ pad byte no value
‘c’ char string of length 1
‘b’ signed char integer
‘B unsigned char integer
‘h’ short integer
‘H unsigned short integer
g int integer
1 unsigned int long
1 long integer
‘L unsigned long long
‘q long long long Q)
‘Q unsigned long long long (1)
“fr float float
d’ double float
‘s’ charf] string
‘p’ char[] string
‘P void * integer

Notes:

(1) The ‘g’ and ‘Q conversion codes are available in native mode only if the platform C compiler supptotgC
long , or, on Windows,__int64 . They are always available in standard modes. New in version 2.2.

A format character may be preceded by an integral repeat count. For example, the formadistrinmeans exactly
the same athhhh’

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 5§’ format character, the count is interpreted as the size of the string, not a repeat count like for the other format
characters; for exampl&,0s’ means a single 10-byte string, whiltDc’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special &&se, means a single, empty string (whilg&c’ means

0 characters).

The ‘p’ format character encodes a "Pascal string”, meaning a short variable-length string stored in a fixed number of
bytes. The count is the total number of bytes stored. The first byte stored is the length of the string, or 255, whichever
is smaller. The bytes of the string follow. If the string passed ipaok() is too long (longer than the count minus

1), only the leading count-1 bytes of the string are stored. If the string is shorter than count-1, it is padded with null
bytes so that exactly count bytes in all are used. Note thaidpack() , the ‘p’ format character consumes count
bytes, but that the string returned can never contain more than 255 characters.

Forthe1’,'L’, 'q’ and ‘Q format characters, the return value is a Python long integer.

For the P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer typeNWAL pointer will always be returned as the Python inte@er

When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

4.3. struct — Interpret strings as packed binary data 123

Character | Byte order Size and alignment
‘@ native native
= native standard
‘< little-endian standard
> big-endian standard
e network (= big-endian) standard

If the first character is not one of thes@ls assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Motorola and Sun pro-
cessors are big-endian; Intel and DEC processors are little-endian.

Native size and alignment are determined using the C compdimenf expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is2bytesjnt andlong are 4 bytestong long (__int64 on Windows) is 8 bytedloat anddouble
are 32-bit and 64-bit IEEE floating point numbers, respectively.

Note the difference betwee@ and ‘=": both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form 1’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of".

The ‘P’ format character is only available for the native byte ordering (selected as the default or withhlyee' order
character). The byte order character thooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, scRHermat is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *

>>> pack(hhl’, 1, 2, 3)
"\x00\x01\x00\x02\x00\x00\x00\x03’

>>> unpack(hhl’, "\x00\x01\x00\x02\x00\x00\x00\x03")

1, 2, 3)
>>> calcsize('hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code for
that type with a repeat count of zero. For example, the forfihal’ specifies two pad bytes at the end, assuming
longs are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size
and alignment does not enforce any alignment.

See Also:

Modulearray (section 5.14):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.17):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

124 Chapter 4. String Services

classSequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980's by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn't
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected caseSequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

classDiffer
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ usesSequenceMatcher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of aDiffer delta begins with a two-letter code:

Code | Meaning
line unique to sequence 1

+ line unique to sequence 2
T line common to both sequences
7 line not present in either input sequence

Lines beginning with? ' attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

classHtmIDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

—_init __([tabsize][, wrapcolumr][, Iinejunk][, charjunk])
Initializes instance oHtmIDIff .
tabsizes an optional keyword argument to specify tab stop spacing and defa@lts to
wrapcolumnis an optional keyword to specify column number where lines are broken and wrapped, de-
faults toNone where lines are not wrapped.
linejunk and charjunk are optional keyword arguments passed intiiff() (used byHtmIDiff to
generate the side by side HTML differences). &d#f() documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines[, fromdesd[, todesd[, contexﬂ[, numlineg)
Comparedromlinesand tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdescandtodescare optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

contextandnumlinesare both optional keyword arguments. Sehtextto True when contextual differ-
ences are to be shown, else the defaukatse to show the full files.numlinesdefaults to5. When
contextis True numlinescontrols the number of context lines which surround the difference highlights.
Whencontextis False numlinescontrols the number of lines which are shown before a difference high-
light when using the "next” hyperlinks (setting to zero would cause the "next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

4.4. difflib — Helpers for computing deltas 125

make_table (fromlines, tolines[, fromdesd[, todesd[, contexﬂ[, numlineg)
Comparedromlinesandtolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those fonake_file() method.
‘Tools/scripts/diff.py’ is a command-line front-end to this class and contains a good example of its use.
New in version 2.4.

context _diff (a, b[fromfile][\ tofile] [, fromfiledatd [, tofiledatd [, n][, Iineterm])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines isrsathigh defaults to three.

By default, the diff control lines (those witt¥* or ---) are created with a trailing newline. This is
helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument td" so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings fémomfile tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returned tiyie.ctime() . If not specified, the strings default to blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

get _close _matches (word, possibilitieg, n][cutoff])
Return a list of the best “good enough” matchesgord is a sequence for which close matches are desired
(typically a string), andpossibilitiesis a list of sequences against which to mavebrd (typically a list of
strings).

Optional argument (default3) is the maximum number of close matches to retarmust be greater thah

Optional argumentutoff (default0.6) is a float in the range [0, 1]. Possibilities that don't score at least that
similar toword are ignored.

The best (no more tham matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches('appel’, ['ape’, 'apple’, 'peach’, 'puppy’])
[apple’, 'ape’]

>>> import keyword

>>> get_close_matches('wheel’, keyword.kwlist)

['while’]

>>> get_close_matches('apple’, keyword.kwlist)

I

>>> get_close_matches('accept’, keyword.kwlist)
[except’]

ndiff (a, b[, linejunk][, charjunk])
Comparea andb (lists of strings); return ®iffer -style delta (a generator generating the delta lines).

Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default isNone), starting with Python 2.3. Before then, the default was the module-level function
IS _LINE _JUNK() , which filters out lines without visible characters, except for at most one pound character
(‘#)). As of Python 2.3, the underlyin§equenceMatcher class does a dynamic analysis of which lines are
so frequent as to constitute noise, and this usually works better than the pre-2.3 default.

126 Chapter 4. String Services

charjunk A function that accepts a character (a string of length 1), and returns if the character is junk, or false if
not. The default is module-level functid8 _CHARACTERIUNK() , which filters out whitespace characters
(a blank or tab; note: bad idea to include newline in this!).

‘Tools/scripts/ndiff.py’ is a command-line front-end to this function.

>>> diff = ndiff(one\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> print ”.join(diff),
- one

?
+ ore
s A

two

three
tree
emu

+ + 0

restore (sequence, whigh
Return one of the two sequences that generated a delta.

Given asequenc@roduced byDiffer.compare() or ndiff() , extract lines originating from file 1 or 2
(parametewhich), stripping off line prefixes.

Example:

>>> diff = ndiff(one\ntwo\nthree\n’.splitlines(1),
‘ore\ntree\nemu\n’.splitlines(1))
>>> diff = list(diff) # materialize the generated delta into a list
>>> print ".join(restore(diff, 1)),

one

two

three

>>> print ”.join(restore(diff, 2)),

ore

tree

emu

unified _diff (a, b[fromfile][, tofile][, fromfiledatd[, tofiledatd[, n][Iineterm])
Comparea andb (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a inline style (instead of separate before/after blocks). The number of context lines is set
by n which defaults to three.

By default, the diff control lines (those with- , +++, or @@are created with a trailing newline. This
is helpful so that inputs created frofile.readlines() result in diffs that are suitable for use with
file.writelines() since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, setlthetermargument td” so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings fdnomfile, tofile, fromfiledate andtofiledate The modification times are normally
expressed in the format returnedtiaye.ctime() . If not specified, the strings default to blanks.

‘Tools/scripts/diff.py’ is a command-line front-end for this function.
New in version 2.3.

4.4. difflib — Helpers for computing deltas 127

IS _LINE _JUNKline)
Return true for ignorable lines. The lifiee is ignorable ifline is blank or contains a singlét*, otherwise it is
not ignorable. Used as a default for paramétexjunkin ndiff() before Python 2.3.

IS _CHARACTERIUNK ch)
Return true for ignorable characters. The charachds ignorable ifchis a space or tab, otherwise it is not
ignorable. Used as a default for parametearjunkin ndiff()

See Also:

Pattern Matching: The Gestalt Approach

(http://www.ddj.com/documents/s=1103/ddj8807c/)
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was publistiad iDobb’s
Journalin July, 1988.

4.4.1 SequenceMatcher Objects

TheSequenceMatcher class has this constructor:

classSequenceMatcher ([isjunk[, a[b]]])
Optional argumenisjunkmust beNone (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Padsing for isjunkis equivalent
to passindambda x: 0 ;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don't want to synch up on blanks or hard tabs.
The optional argumen@andb are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

SequenceMatcher objects have the following methods:

set _segs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to com-
pare one sequence against many sequencesetiseseg?2() to set the commonly used sequence once and call
set _seql() repeatedly, once for each of the other sequences.

set _seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set _seq2(h)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find _longest _match (alo, ahi, blo, bh)
Find longest matching block ia[alo: ahi] andb[blo: bhi] .

If isjunkwas omitted oNone, get _longest _match() returns(i, j, k) suchtha@]i:i+k] is equal to
b[j: j+K] , wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi. Forall(i’, j, k') meeting
those conditions, the additional conditidks>= k', i <= i’,and ifi == i’,j <= | are also met. In other

words, of all maximal matching blocks, return one that starts earliesstamd of all those maximal matching
blocks that start earliest i return the one that starts earliestin

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
O, 4, 5)

128 Chapter 4. String Services

If isjunkwas provided, first the longest matching block is determined as above, but with the additional restriction
that no junk element appears in the block. Then that block is extended as far as possible by matching (only)
junk elements on both sides. So the resulting block never matches on junk except as identical junk happens to
be adjacent to an interesting match.

Here's the same example as before, but considering blanks to be junk. That ptesbots from matching
the’ abcd’ atthe tail end of the second sequence directly. Instead onlglied’ can match, and matches
the leftmostabcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
1, o, 4)

If no blocks match, this returnsalo, blo, 0) .

get _matching _blocks ()
Return list of triples describing matching subsequences. Each triple is of the formy n), and means that
ali:i+n] == Db[j: j+n] . The triples are monotonically increasingiiand;.
The last triple is a dummy, and has the vaflen(a), len(b), 0) . Itisthe only triple withn ==
>>> s = SequenceMatcher(None, "abxcd", "abcd")

>>> s.get_matching_blocks()
[(0, 0, 2), (3, 2, 2), (5, 4, 0)]

get _opcodes ()
Return list of 5-tuples describing how to tuannto b. Each tuple is of the fornitag, i1, i2, j1, j2). The
first tuple hasl == j1 == 0, and remaining tuples havé equal to the2 from the preceding tuple, and,
likewise,j1 equal to the previougR.

Thetag values are strings, with these meanings:

Value | Meaning
'replace’ al i1: i2] should be replaced 1y j1: j2] .
‘delete’ al il1: i2] should be deleted. Note thidt == j2 in this case.
'insert’ b[j1: j2] should be inserted af i1: i1] . Note thatl == i2 in this case.
‘'equal’ alil:i2] == b[j1:]2] (the sub-sequences are equal).
For example:

>>> a = "gabxcd"

>>> b = "abycdf"

>>> s = SequenceMatcher(None, a, b)

>>> for tag, il, i2, j1, j2 in s.get_opcodes():
print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %

(tag, i1, i2, ail:i2], j1, j2, b[j1:j2])
delete a[0:1] (q) b[0:0] ()

equal a[l1:3] (ab) b[0:2] (ab)
replace a[3:4] (x) b[2:3] (y)

equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

get _grouped _opcodes ([n])
Return a generator of groups with uprtéines of context.

Starting with the groups returned Igpet _opcodes() , this method splits out smaller change clusters and
eliminates intervening ranges which have no changes.

The groups are returned in the same formajets_opcodes() . New in version 2.3.

4.4. difflib — Helpers for computing deltas 129

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M / T.
Note that this isl.0 if the sequences are identical, ah@ if they have nothing in common.

This is expensive to compute et _matching _blocks() or get _opcodes() hasn't already been
called, in which case you may want to tquick _ratio() or real _quick _ratio() first to get an
upper bound.

quick _ratio ()
Return an upper bound aatio() relatively quickly.

This isn't defined beyond that it is an upper boundatio() , and is faster to compute.

real _quick _ratio ()
Return an upper bound aatio() very quickly.

This isn’'t defined beyond that it is an upper boundatin() , and is faster to compute than eithatio()
orquick _ratio()

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, althougfuick _ratio() andreal _quick _ratio() are always at least as largeratio()

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s ratio()

0.75

>>> s.quick_ratio()

0.75

>>> s.real_quick_ratio()

1.0

4.4.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thuiafip@ value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you're only interested in where the sequences mageh,_matching _blocks() is handy:

130 Chapter 4. String Services

>>> for block in s.get_matching_blocks():

. print "a[%d] and b[%d] match for %d elements" % block
a[0] and b[0] match for 8 elements

a[8] and b[17] match for 6 elements

a[14] and b[23] match for 15 elements

a[29] and b[38] match for O elements

Note that the last tuple returned gt _matching _blocks() s always a dummylen(a), len(b), 0) ,
and this is the only case in which the last tuple element (number of elements matobed) is

If you want to know how to change the first sequence into the secondetiseopcodes()

>>> for opcode in s.get_opcodes():

. print "%6s a[%d:%d] b[%d:%d]" % opcode
equal af0:8] b[0:8]

insert a[8:8] b[8:17]

equal a[8:14] b[17:23]

equal a[14:29] b[23:38]

See also the functioget _close _matches() in this module, which shows how simple code building on
SequenceMatcher can be used to do useful work.

4.4.3 Differ Objects

Note thatDiffer -generated deltas make no claim toméimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

TheDiffer class has this constructor:

classDiffer ([Iinejunk[, charjunk]])
Optional keyword parametelimejunkandcharjunkare for filter functions (oNone):

linejunk A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default idone, meaning that no character is considered junk.

Differ objects are used (deltas generated) via a single method:

compare (a, b
Compare two sequences of lines, and generate the delta (a sequence of lines).
Each sequence must contain individual single-line strings ending with newlines. Such sequences can be obtained
from thereadlines() method of file-like objects. The delta generated also consists of newline-terminated
strings, ready to be printed as-is via thdtelines() method of a file-like object.

4.4.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained frone#uines() method of file-like objects):

4.4. difflib — Helpers for computing deltas 131

>>> textl = " 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
.splitlines(1)
>>> |en(textl)
4
>>> text1[0][-1]
\n'
>>> text2 = " 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
. ".splitlines(1)

”

Next we instantiate a Differ object:

>>> d = Differ()

Note that when instantiating Biffer

object we may pass functions to filter out line and character “junk.” See the
Differ() constructor for details.

Finally, we compare the two:

>>> result = list(d.compare(textl, text2))

result is alist of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint(result)

[1. Beautiful is better than ugly.\n’,
2. Explicit is better than implicit.\n’,

- 3. Simple is better than complex.\n’,
3.

+ Simple is better than complex.\n’,

? ++ \n’,

- 4. Complex is better than complicated.\n’,

? " - " \n,
'+ 4. Complicated is better than complex.\n’,

? ++++ 7 “\n,
+

5. Flat is better than nested.\n’]

As a single multi-line string it looks like this:

132 Chapter 4. String Services

>>> import sys

>>> sys.stdout.writelines(result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.

3. Simple is better than complex.

+ 3. Simple is better than complex.
? ++
- 4. Complex is better than complicated.
" R A
+ 4. Complicated is better than complex.
? ++++ 7)
+ 5. Flat is better than nested.
4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done vi#g#teng interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x,dig9
Formatx as[-]ddd.ddd with digs digits after the point and at least one digit before.dijs <= 0, the
decimal point is suppressed.

X can be either a number or a string that looks like afigsis an integer.
Return value is a string.
sci (X, dig9

Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit beforedis <= 0,
one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like digsis an integer.
Return value is a string.

exceptionNotANumber
Exception raised when a string passetix) orsci() asthexparameter does not look like a number. This
is a subclass ofalueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> jmport fpformat
>>> fpformat.fix(1.23, 1)
1.2

4.6 StringlO — Read and write strings as files

This module implements a file-like clasStringlO , that reads and writes a string buffer (also knownresnory
fileg. See the description of file objects for operations (section 2.3.9).

4.5. fpformat — Floating point conversions 133

classStringlO ([buffer])
When aStringlO object is created, it can be initialized to an existing string by passing the string to the
constructor. If no string is given, ti&tringlO will start empty.

TheStringlO object can accept either Unicode or 8-bit strings, but mixing the two may take some care. If both
are used, 8-bit strings that cannot be interpreted asAskit (that use the 8th bit) will causelinicodeError
to be raised whegetvalue() s called.

The following methods o8tringlO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time beforeShinglO object’'sclose() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raiseUnicodeError

close ()
Free the memory buffer.

4.7 cStringl0O — Faster version of StringlO

The modulecStringlO provides an interface similar to that of thetringlO module. Heavy use of
StringlO.StringlO objects can be made more efficient by using the func8timglO() from this mod-
ule instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the origiSainglO module in that case.

Unlike the memory files implemented by tB&inglO module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as piaiall strings.

Another difference from th&tringlO module is that callingtringlO() with a string parameter creates a read-
only object. Unlike an object created without a string parameter, it does not have write methods. These objects are not
generally visible. They turn up in tracebacksstengl andStringO

The following data objects are provided as well:

InputType
The type object of the objects created by callBtgnglO with a string parameter.

OutputType
The type object of the objects returned by callBiginglO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 textwrap — Text wrapping and filling

New in version 2.3.

Thetextwrap module provides two convenience functiomgap() andfill() , as well asTextWrapper
the class that does all the work, and a utility functaedent() . If you're just wrapping or filling one or two text
strings, the convenience functions should be good enough; otherwise, you should use an inSart& @fpper

for efficiency.

wrap (tex{, width[, ...]])
Wraps the single paragraph fext (a string) so every line is at mostidth characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributesxofVrapper , documented belowvidth
defaults to70.

134 Chapter 4. String Services

fill (texq, width[, ..]])
Wraps the single paragraph text and returns a single string containing the wrapped paragté[gh. is
shorthand for

"\n".join(wrap(text, ...))

In particularfill() accepts exactly the same keyword argumentsrap() .

Both wrap() andfill() work by creating arextWrapper instance and calling a single method on it. That
instance is not reused, so for applications that wrap/fill many text strings, it will be more efficient for you to create
your ownTextWrapper object.

An additional utility functiondedent() , is provided to remove indentation from strings that have unwanted whites-
pace to the left of the text.

dedent (tex®
Remove any whitespace that can be uniformly removed from the left of every liegtin

This is typically used to make triple-quoted strings line up with the left edge of screen/whatever, while still
presenting it in the source code in indented form.

For example:

def test():
end first line with \ to avoid the empty line!
s ="
hello
world

print repr(s) # prints hello\n world\n
print repr(dedent(s)) # prints ’hello\n world\n’

classTextWrapper (..)
TheTextWrapper constructor accepts a number of optional keyword arguments. Each argument corresponds
to one instance attribute, so for example

wrapper = TextWrapper(initial_indent="* ")

is the same as

wrapper = TextWrapper()
wrapper.initial_indent = "* "

You can re-use the samiextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

TheTextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the input text
longer tharwidth , TextWrapper guarantees that no output line will be longer tiéidth characters.

expand _tabs
(default: True) If true, then all tab characters text will be expanded to spaces using tgpandtabs()
method oftext

replace _whitespace
(default: True) If true, each whitespace character (as definedthgg.whitespace) remaining after tab
expansion will be replaced by a single spaete: If expand _tabs is false andeplace _whitespace
is true, each tab character will be replaced by a single space, whichtise same as tab expansion.

4.8. textwrap — Text wrapping and filling 135

initial _indent
(default:”) String that will be prepended to the first line of wrapped output. Counts towards the length of the
first line.

subsequent _indent
(default:”) String that will be prepended to all lines of wrapped output except the first. Counts towards the
length of each line except the first.

fix _sentence _endings
(default: False) If true, TextWrapper attempts to detect sentence endings and ensure that sentences are
always separated by exactly two spaces. This is generally desired for text in a monospaced font. However,
the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a lowercase letter
followed by one of ! ’, “1 ’, or * ?’, possibly followed by one of*’ or *’ ’, followed by a space. One problem
with this is algorithm is that it is unable to detect the difference between “Dr.” in

[...] Dr. Frankenstein’s monster [...]

and “Spot.” in

[...] See Spot. See Spot run [...]

fix _sentence _endings is false by default.

Since the sentence detection algorithm reliestoimg.lowercase for the definition of “lowercase letter,”
and a convention of using two spaces after a period to separate sentences on the same line, it is specific to
English-language texts.

break _long _words
(default: True) If true, then words longer thamidth will be broken in order to ensure that no lines are longer
thanwidth . If it is false, long words will not be broken, and some lines may be longerhdth . (Long
words will be put on a line by themselves, in order to minimize the amount by whiidth is exceeded.)

TextWrapper also provides two public methods, analogous to the module-level convenience functions:

wrap (tex®
Wraps the single paragraph iext (a string) so every line is at mostidth characters long. All wrapping
options are taken from instance attributes of TlegtWrapper instance. Returns a list of output lines, without
final newlines.

fill (tex)
Wraps the single paragraphtiext, and returns a single string containing the wrapped paragraph.

4.9 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec and error handling lookup process.

It defines the following functions:

register (search._function
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functi¢esmicoder decoder stream.reader, stream writer)
taking the following arguments:

encoder and decoder These must be functions or methods which have the same interface as the
encode() /decode() methods of Codec instances (see Codec Interface). The functions/methods are ex-
pected to work in a stateless mode.

stream_readerandstream writer: These have to be factory functions providing the following interface:

136 Chapter 4. String Services

factory(stream errors='strict’)

The factory functions must return objects providing the interfaces defined by the base Stasags/Nriter
andStreamReader , respectively. Stream codecs can maintain state.

Possible values for errors asrict’ (raise an exception in case of an encoding errogplace’ (re-
place malformed data with a suitable replacement marker, sucP)asignore’ (ignore malformed data
and continue without further noticéxmlcharrefreplace’ (replace with the appropriate XML character
reference (for encoding only)) arlgackslashreplace’ (replace with backslashed escape sequences (for
encoding only)) as well as any other error handling name definecbgiater _error()

In case a search function cannot find a given encoding, it should rstuma.

lookup (‘encoding
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found,@kupError s raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simplify access to the various codecs, the module provides these additional functions wHmbkupé) for
the codec lookup:

getencoder (encoding
Lookup up the codec for the given encoding and return its encoder function.

Raises d.ookupError in case the encoding cannot be found.

getdecoder (encoding
Lookup up the codec for the given encoding and return its decoder function.

Raises d.ookupError in case the encoding cannot be found.

getreader (encoding
Lookup up the codec for the given encoding and return its StreamReader class or factory function.

Raises d.ookupError in case the encoding cannot be found.

getwriter (encoding
Lookup up the codec for the given encoding and return its StreamWriter class or factory function.

Raises d.ookupError in case the encoding cannot be found.

register _error (. name, error handler
Register the error handling functi@mror_handlerunder the namaame error_handlerwill be called during
encoding and decoding in case of an error, whameis specified as the errors parameter.

For encodingerror_handlerwill be called with aUnicodeEncodeError instance, which contains informa-

tion about the location of the error. The error handler must either raise this or a different exception or return a
tuple with a replacement for the unencodable part of the input and a position where encoding should continue.
The encoder will encode the replacement and continue encoding the original input at the specified position.
Negative position values will be treated as being relative to the end of the input string. If the resulting position
is out of bound an IndexError will be raised.

Decoding and translating works similar, excéfsticodeDecodeError or UnicodeTranslateError
will be passed to the handler and that the replacement from the error handler will be put into the output directly.

lookup _error (nameg
Return the error handler previously register under the naanee

Raises d.ookupError in case the handler cannot be found.

strict _errors (exceptiol
Implements thestrict error handling.

replace _errors (exceptiol
Implements theeplace error handling.

4.9. codecs — Codec registry and base classes 137

ignore _errors (exception
Implements thégnore error handling.

xmicharrefreplace _errors _errors (exception
Implements themlcharrefreplace error handling.
backslashreplace _errors _errors (exception

Implements thévackslashreplace error handling.
To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, moc{e encodini, errors[, buffering]]])
Open an encoded file using the givemode and return a wrapped version providing transparent encod-
ing/decoding.
Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the file.

errorsmay be given to define the error handling. It defaultstagct’ which causes ¥alueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the builbpen() function. It defaults to line buffered.

EncodedFile (file, inpul[, outpu{, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the gijait encoding and then written to
the original file as strings using tlmutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults tinput.

errors may be given to define the error handling. It defaultsstdct’ , Which cause¥alueError to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM

BOMBE

BOMLE

BOMUTF8

BOMUTF16

BOMUTF16_BE

BOMUTF16_LE

BOMUTF32

BOMUTF32_BE

BOMUTF32_LE
These constants define various encodings of the Unicode byte order mark (BOM) used in UTF-16 and UTF-
32 data streams to indicate the byte order used in the stream or file and in UTF-8 as a Unicode signature.
BOMUTF16 is eitherBOMUTF16_BE or BOMUTF16_LE depending on the platform’s native byte order,
BOMis an alias forBOMUTF16, BOMLE for BOMUTF16_LE and BOMBE for BOMUTF16_BE. The
others represent the BOM in UTF-8 and UTF-32 encodings.

49.1 Codec Base Classes

Thecodecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

138 Chapter 4. String Services

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, #secode() anddecode() methods may implement different error
handling schemes by providing teerors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning

strict’ RaiseUnicodeError (or a subclass); this is the default.

'ignore’ Ignore the character and continue with the next.

'replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACE
'xmlicharrefreplace’ Replace with the appropriate XML character reference (only for encoding).

'backslashreplace’ Replace with backslashed escape sequences (only for encoding).

The set of allowed values can be extendedreiister _error

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input[, errors])
Encodes the objeatputand returns a tuple (output object, length consumed). While codecs are not restricted to
use with Unicode, in a Unicode context, encoding converts a Unicode object to a plain string using a particular
character set encoding (e.gpl1252 oriso-8859-1).
errors defines the error handling to apply. It defaultsdtict’ handling.
The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input[, errors])
Decodes the objedput and returns a tuple (output object, length consumed). In a Unicode context, decoding
converts a plain string encoded using a particular character set encoding to a Unicode object.

input must be an object which provides thé _getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errors defines the error handling to apply. It defaultsdwict’ handling.

The method may not store state in tBedec instance. Usé&treamCodec for codecs which have to keep

state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

The StreamWriter andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. Semdings.utf _8 for an example on how this is done.

StreamWriter Objects

TheStreamWriter class is a subclass Gfodec and defines the following methods which every stream writer must
define in order to be compatible to the Python codec registry.

classStreamWriter (strean{, errors])
Constructor for &treamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

4.9. codecs — Codec registry and base classes 139

streammust be a file-like object open for writing (binary) data.

The StreamWriter may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are predefined:

e’strict’ RaiseValueError (or a subclass); this is the default.

e’ignore’ Ignore the character and continue with the next.

e'replace’ Replace with a suitable replacement character

e'xmicharrefreplace’ Replace with the appropriate XML character reference
e’backslashreplace’ Replace with backslashed escape sequences.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime $frieemWriter object.

The set of allowed values for tlegrors argument can be extended wittgister _error()

write (objec)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusingite€) method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, tBéreamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass @odec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (strearr[, errors])
Constructor for &streamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

The StreamReader may implement different error handling schemes by providingetiners keyword argu-
ment. These parameters are defined:

eo’strict’ RaiseValueError (or a subclass); this is the default.
e’ignore’ Ignore the character and continue with the next.
e'replace’ Replace with a suitable replacement character.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime $fréieemReader object.

The set of allowed values for tlegrors argument can be extended witkgister ~ _error()

read ([size[, chars]])
Decodes data from the stream and returns the resulting object.

140 Chapter 4. String Services

charsindicates the number of characters to read from the streaad() will never return more thachars
characters, but it might return less, if there are not enough characters available.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible sizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.qg. if optional encoding endings or state markers are available on
the stream, these should be read too.

Changed in version 2.4harsargument added.

readline ([size[, keepend];])
Read one line from the input stream and return the decoded data.

size if given, is passed as size argument to the streagaidline() method.
If keependss false lineends will be stripped from the lines returned.
Changed in version 2.4eependargument added.

readlines ([sizehin[, keepend}s])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list dwteipsaritls
is true.

sizehint if given, is passed asizeargument to the stream’sad() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, tBéreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

The StreamReaderWriter allows wrapping streams which work in both read and write modes.
The design is such that one can use the factory functions returned lopkup() function to construct the instance.

classStreamReaderWriter (stream, Reader, Writer, erroys
Creates &treamReaderWriter instance streammust be a file-like objecReaderandWriter must be fac-
tory functions or classes providing tisdreamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfacesSofeamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

The StreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned lopkup() function to construct the instance.

4.9. codecs — Codec registry and base classes 141

classStreamRecoder (stream, encode, decode, Reader, Writer, ejrors
Creates &treamRecoder instance which implements a two-way conversiencodeanddecodework on
the frontend (the input toead() and output ofwrite()) while Readerand Writer work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.
streammust be a file-like object.

encodedecodemust adhere to th€odec interface,Reader Writer must be factory functions or classes pro-
viding objects of thestreamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translati®&gaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaceStvéamReader andStreamWriter classes. They
inherit all other methods and attribute from the underlying stream.

4.9.2 Standard Encodings

Python comes with a number of codecs builtin, either implemented as C functions, or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

e a Microsoft Windows code page, which is typically derived from a 8859 codeset, but replaces control characters
with additional graphic characters

e an IBM EBCDIC code page

e an IBM PC code page, which isscii compatible

Codec Aliases Languages
ascii 646, us-ascii English

big5 big5-tw, csbig5 Traditional Chir
big5hkscs big5-hkscs, hkscs Traditional Chir
cp037 IBM037, IBM039 English

cp424 EBCDIC-CP-HE, IBM424 Hebrew

cp437 437, 1BM437 English

cp500 EBCDIC-CP-BE, EBCDIC-CP-CH, IBM500 Western Europe
cp737 Greek

cp775 IBM775 Baltic language
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Ea:
cp855 855, IBM855 Bulgarian, Byel
cp856 Hebrew

cp857 857, IBM857 Turkish

cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic

142 Chapter 4. String Services

Codec Aliases Languages
cp862 862, IBM862 Hebrew

cp863 863, IBM863 Canadian
cp864 IBM864 Arabic

cp865 865, IBM865 Danish, Norwe
Ccp866 866, IBM866 Russian

cp869 869, CP-GR, IBM869 Greek

cp874 Thai

cp875 Greek

cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean

cp950 950, ms950 Traditional Chir
cp1006 Urdu

cpl026 ibm1026 Turkish
cpl1140 ibm1140 Western Europ:
cpl250 windows-1250 Central and Ea:
cpl251 windows-1251 Bulgarian, Byel
cpl252 windows-1252 Western Europt
cpl1253 windows-1253 Greek

cpl254 windows-1254 Turkish

cpl255 windows-1255 Hebrew
cpl256 windows1256 Arabic

cpl257 windows-1257 Baltic language
cpl258 windows-1258 Viethamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ke-5601, ks c-5601-1987, ksx1001, kx-1001 Korean

gh2312 chinese, ¢sis058gh231280, euc-cn, euccn, eucgh2312-cn, gh2312-1980, gh2312-80, is&impdfied Ching
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gh-2312 Simplified Chin
502022 jp €sis02022jp, is02022jp, is0-2022-jp Japanese
502022 jp_1 i502022jp-1, is0-2022-jp-1 Japanese
502022 jp_2 i502022jp-2, is0-2022-jp-2 Japanese, Kore
502022 jp_2004 | is02022jp-2004, is0-2022-jp-2004 Japanese
502022 jp_3 is02022jp-3, is0-2022-jp-3 Japanese
502022 jp_ext i502022jp-ext, is0-2022-jp-ext Japanese
502022 kr €sis02022kr, is02022kr, iso0-2022-kr Korean

latin_1 is0-8859-1, is08859-1, 8859, cp819, latin, latinl, L1 West Europe
is08859 2 is0-8859-2, latin2, L2 Central and Ea:
i508859 3 is0-8859-3, latin3, L3 Esperanto, Mal
is08859 4 is0-8859-4, latin4, L4 Baltic languagu
is08859 5 is0-8859-5, cyrillic Bulgarian, Byel
i508859 6 is0-8859-6, arabic Arabic

is08859 7 is0-8859-7, greek, greek8 Greek

is08859 8 is0-8859-8, hebrew Hebrew
is08859 9 iS0-8859-9, latin5, L5 Turkish
is08859 10 is0-8859-10, latin6, L6 Nordic languag
is08859 13 is0-8859-13 Baltic language
is08859 14 is0-8859-14, lating, L8 Celtic language
508859 15 iS0-8859-15 Western Europ:
johab cpl361, ms1361 Korean

koi8_r Russian

4.9. codecs — Codec registry and base classes

143

Codec Aliases Languages
koi8_u Ukrainian
mac_cyrillic maccyrillic Bulgarian, Byel
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Ea:
mac_roman macroman Western Europe
mac_turkish macturkish Turkish
ptcpl54 csptcpl54, pt154, cpl54, cyrillic-asian Kazakh
shift_jis csshiftjis, shiftjis, sjis, sjis Japanese
shift_jis_2004 shiftjis2004, sjis 2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, §isx0213 Japanese
utf_16 U16, utflé all languages
utf_16_be UTF-16BE all languages (E
utf_16_le UTF-16LE all languages (E
utf_7 u7 all languages
utf_8 U8, UTF, utf8 all languages

A number of codecs are specific to Python, so their codec names have no meaning outside Python. Some of them
don't convert from Unicode strings to byte strings, but instead use the property of the Python codecs machinery that
any bijective function with one argument can be considered as an encoding.

For the codecs listed below, the result in the “encoding” direction is always a byte string. The result of the “decoding”
direction is listed as operand type in the table.

Codec Aliases Operand type | Purpose

base64.codec base64, base-64 byte string Convert operand to MIME base64

bz2 _codec bz2 byte string Compress the operand using bz2
hex_codec hex byte string Convert operand to hexadecimal represents
idna Unicode string| Implements RFC 3490. New in version 2.3
mbcs dbcs Unicode string| Windows only: Encode operand according t
palmos Unicode string| Encoding of PalmOS 3.5

punycode Unicode string| Implements RFC 3492. New in version 2.3
quopricodec quopri, quoted-printable, quotedprintalleyte string Convert operand to MIME quoted printable
raw_unicode_escape Unicode string| Produce a string that is suitable as raw Unic
rot_13 rotl3 byte string Returns the Caesar-cypher encryption of thi
string_escape byte string Produce a string that is suitable as string lite
undefined any Raise an exception for all conversion. Can |
unicode_escape Unicode string| Produce a string that is suitable as Unicode
unicode_internal Unicode string| Return the internal representation of the op
uu_codec uu byte string Convert the operand using uuencode
zlib_codec zip, zlib byte string Compress the operand using gzip

4.9.3 encodings.idna

New in version 2.3.

— Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upongheycode encoding and

stringprep

144

Chapter 4. String Services

These RFCs together define a protocol to supportAa®oH characters in domain names. A domain name containing
non-Ascil characters (such as “www.Alliancefrancgaise.nu”) is converted intasaii-compatible encoding (ACE,

such as “www.xn-alliancefranaise-npb.nu”). The ACE form of the domain name is then used in all places where
arbitrary characters are not allowed by the protocol, such as DNS queries, HdstPfields, and so on. This
conversion is carried out in the application; if possible invisible to the user: The application should transparently
convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode before presenting them
to the user.

Python supports this conversion in several ways: itina codec allows to convert between Unicode and the ACE.
Furthermore, theocket module transparently converts Unicode host names to ACE, so that applications need not
be concerned about converting host names themselves when they pass them to the socket module. On top of that,
modules that have host names as function parameters, siittpés andftplib , accept Unicode host names

(httplib ~ then also transparently sends an IDNA hostname imthe: field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: Applications wishing to present such host names to the user should decode them to Unicode.

The moduleencodings.idna also implements the nameprep procedure, which performs certain normalizations on
host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The nameprep
functions can be used directly if desired.

nameprep (label)
Return the nameprepped version latbel The implementation currently assumes query strings, so
AllowUnassigned s true.

ToASCII (label)
Convert a label tascli, as specified in RFC 349QseSTD3ASCIIRules is assumed to be false.

ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

4.10 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based otthieteData.txt’ file version 3.2.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.2.0 (see
http://www.unicode.org/Public/lUNIDATA/UnicodeData.html). It defines the following functions:

lookup (nam§
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found<eyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode charantehr as a string. If no name is definedefaultis returned,
or, if not given,ValueError is raised.

decimal (unichi], default])
Returns the decimal value assigned to the Unicode charantehr as integer. If no such value is defined,
defaultis returned, or, if not giverialueError s raised.

digit (unich, default])
Returns the digit value assigned to the Unicode charactiehr as integer. If no such value is definet&fault
is returned, or, if not giveriValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode chanagighr as float. If no such value is definedkfault
is returned, or, if not giveriValueError is raised.

4.10. unicodedata — Unicode Database 145

category (‘unichr)
Returns the general category assigned to the Unicode chavnadtér as string.

bidirectional (‘unichr)
Returns the bidirectional category assigned to the Unicode chauaithir as string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode charaitler as integer. Return8 if no
combining class is defined.

east _asian _width (‘unichr)
Returns the east asian width assigned to the Unicode chaueithr as string. New in version 2.4.

mirrored (unichr)
Returns the mirrored property assigned to the Unicode characiehr as integer. Returns if the character
has been identified as a “mirrored” character in bidirectional textherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode chanéaiteras string. An empty
string is returned in case no such mapping is defined.

normalize (form, unistj
Return the normal fornfiorm for the Unicode stringinistr. Valid values forform are 'NFC’, 'NFKC’, 'NFD’,
and 'NFKD'.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of canon-
ical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various way.
For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be expressed as
the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER 1I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gh2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility charac-
ters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition, followed
by the canonical composition.

New in version 2.3.
In addition, the module exposes the following constant:

unidata _version
The version of the Unicode database used in this module.

New in version 2.3.

4.11 stringprep — Internet String Preparation

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RFC 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC

146 Chapter 4. String Services

defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of thetringprep procedure are part of the profile. One example strengprep profile is
nameprep , which is used for internationalized domain names.

The modulestringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using tiekstringprep.py utility.

As aresult, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC: sets
and mappings. For a sedffringprep provides the “characteristic function”, i.e. a function that returns true if the
parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the associated
value. Below is a list of all functions available in the module.

in _table _al(codg
Determine whethetodeis in tableA.1 (Unassigned code points in Unicode 3.2).

in _table _bl(codg
Determine whethetodeis in tableB.1 (Commonly mapped to nothing).

map_table _b2(codg
Return the mapped value foodeaccording to tableB.2 (Mapping for case-folding used with NFKC).

map_table _b3(codg
Return the mapped value foodeaccording to tableB.3 (Mapping for case-folding used with no normalization).

in _table _c11(code
Determine whethetodeis in tableC.1.1 (ASCII space characters).

in _table _cl12(code
Determine whethetodeis in tableC.1.2 (Non-ASCII space characters).

in _table _c11 _c12(coddg
Determine whethetodeis in tableC.1 (Space characters, union of C.1.1 and C.1.2).

in _table _c21(code
Determine whethetodeis in tableC.2.1 (ASCII control characters).

in _table _c22(code
Determine whethetodeis in tableC.2.2 (Non-ASCII control characters).

in _table _c21 _c22(code
Determine whethetodeis in tableC.2 (Control characters, union of C.2.1 and C.2.2).

in _table _c3(codd
Determine whethetodeis in tableC.3 (Private use).

in _table _c4(codg
Determine whethetodeis in tableC.4 (Non-character code points).

in _table _c5(codg
Determine whethetodeis in tableC.5 (Surrogate codes).

in _table _c6(codég
Determine whethetodeis in tableC.6 (Inappropriate for plain text).

in _table _c7(codd
Determine whethetodeis in tableC.7 (Inappropriate for canonical representation).

in _table _c8(codg
Determine whethetodeis in tableC.8 (Change display properties or are deprecated).

in _table _c9(codg
Determine whethetodeis in tableC.9 (Tagging characters).

4.11. stringprep — Internet String Preparation 147

in _table _d1(codg
Determine whethetodeis in tableD.1 (Characters with bidirectional property “R” or “AL”).

in _table _d2(codg
Determine whethetodeis in tableD.2 (Characters with bidirectional property “L").

148 Chapter 4. String Services

CHAPTER
FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

pydoc Documentation generator and online help system.

doctest A framework for verifying interactive Python examples.

unittest Unit testing framework for Python.

test Regression tests package containing the testing suite for Python.
test.test _support Support for Python regression tests.

decimal Implementation of the General Decimal Arithmetic Specification.

math Mathematical functionss{n() etc.).

cmath Mathematical functions for complex numbers.

random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.

bisect Array bisection algorithms for binary searching.

collections High-performance datatypes

heapq Heap queue algorithm (a.k.a. priority queue).

array Efficient arrays of uniformly typed numeric values.

sets Implementation of sets of unique elements.

itertools Functions creating iterators for efficient looping.

ConfigParser Configuration file parser.

fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
calendar Functions for working with calendars, including some emulation of thexttal program.
cmd Build line-oriented command interpreters.

shlex Simple lexical analysis for Nix shell-like languages.

5.1 pydoc — Documentation generator and online help system

New in version 2.1.

The pydoc module automatically generates documentation from Python modules. The documentation can be pre-
sented as pages of text on the console, served to a Web browser, or saved to HTML files.

The built-in functionhelp() invokes the online help system in the interactive interpreter, which pgasc to
generate its documentation as text on the console. The same text documentation can also be viewed from outside the
Python interpreter by runningydoc as a script at the operating system’s command prompt. For example, running

pydoc sys

at a shell prompt will display documentation on thes module, in a style similar to the manual pages shown by

149

the UNIX man command. The argument fiydoc can be the name of a function, module, or package, or a dotted
reference to a class, method, or function within a module or module in a package. If the argumgshdddooks

like a path (that is, it contains the path separator for your operating system, such as a slash)jrabd refers to an
existing Python source file, then documentation is produced for that file.

Specifying a-w flag before the argument will cause HTML documentation to be written out to a file in the current
directory, instead of displaying text on the console.

Specifying ak flag before the argument will search the synopsis lines of all available modules for the keyword given
as the argument, again in a manner similar to thexuman command. The synopsis line of a module is the first line
of its documentation string.

You can also useydoc to start an HTTP server on the local machine that will serve documentation to visiting
Web browsers.pydoc -p 1234will start a HTTP server on port 1234, allowing you to browse the documentation
at http://localhost:1234/ in your preferred Web browsepydoc -g will start the server and additionally
bring up a smalllkinter -based graphical interface to help you search for documentation pages.

Whenpydoc generates documentation, it uses the current environment and path to locate modules. Thus, invoking
pydoc spamdocuments precisely the version of the module you would get if you started the Python interpreter and
typed import spam ’

Module docs for core modules are assumed to residiegpn/www.python.org/doc/current/lib/. This can be overridden
by setting the PYTHONDOCS environment variable to a different URL or to a local directory containing the Library
Reference Manual pages.

5.2 doctest — Test interactive Python examples

Thedoctest module searches for pieces of text that look like interactive Python sessions, and then executes those
sessions to verify that they work exactly as shown. There are several common ways to use doctest:

e To check that a module’s docstrings are up-to-date by verifying that all interactive examples still work as docu-
mented.

e To perform regression testing by verifying that interactive examples from a test file or a test object work as
expected.

e To write tutorial documentation for a package, liberally illustrated with input-output examples. Depending on
whether the examples or the expository text are emphasized, this has the flavor of "literate testing” or "executable
documentation”.

Here’s a complete but small example module:

150 Chapter 5. Miscellaneous Services

This is the "example" module.
The example module supplies one function, factorial(). For example,

>>> factorial(5)
120

def factorial(n):
""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]

[1, 1, 2, 6, 24, 120]

>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

OverflowError: n too large

5.2. doctest — Test interactive Python examples 151

import math
if not n >= 0:
raise ValueError("n must be >= 0")
if math.floor(n) != n:
raise ValueError("n must be exact integer")

if nt1 == n: # catch a value like 1e300
raise OverflowError("n too large")

result = 1

factor = 2

while factor <= n:
result *= factor
factor += 1

return result

def _test():
import doctest
doctest.testmod()

if _name__ == "_ main__"
_test()

If you run ‘example.py’ directly from the command lineJoctest works its magic:

$ python example.py
$

There’s no output! That's normal, and it means all the examples worked -\Pasthe script, andloctest prints a
detailed log of what it's trying, and prints a summary at the end:

$ python example.py -v
Trying:
factorial(5)
Expecting:
120
ok
Trying:
[factorial(n) for n in range(6)]
Expecting:
[1, 1, 2, 6, 24, 120]
ok
Trying:
[factorial(long(n)) for n in range(6)]
Expecting:
[1, 1, 2, 6, 24, 120]
ok

And so on, eventually ending with:

152 Chapter 5. Miscellaneous Services

Trying:
factorial(1e100)
Expecting:
Traceback (most recent call last):

OverflowError: n too large
ok
1 items had no tests:
__main__._test
2 items passed all tests:
1 tests in __main__
8 tests in __main__.factorial
9 tests in 3 items.
9 passed and O failed.
Test passed.
$

That's all you need to know to start making productive uselaftest ! Jump in. The following sections provide
full details. Note that there are many examples of doctests in the standard Python test suite and libraries. Especially
useful examples can be found in the standard testtfitéést/test_doctest.py’.

5.2.1 Simple Usage: Checking Examples in Docstrings

The simplest way to start using doctest (but not necessarily the way you'll continue to do it) is to end eachihodule
with:

def _test():
import doctest
doctest.testmod()

if _name__ == "_ main_"
_test()

doctest then examines docstrings in mode
Running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won't display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of outputi§Test Failed*** N failures. ', whereN is
the number of examples that failed.

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed to standard output, along with assorted summaries at the end.

You can force verbose mode by passivgrbose=True to testmod() , or prohibit it by passing
verbose=False . In either of those casesys.argv is not examined byestmod() (so passingv or not
has no effect).

5.2. doctest — Test interactive Python examples 153

For more information otestmod() , see section 5.2.4.

5.2.2 Simple Usage: Checking Examples in a Text File

Another simple application of doctest is testing interactive examples in a text file. This can be done with the
testfile() function:

import doctest
doctest.testfile("example.txt")

That short script executes and verifies any interactive Python examples contained in thafige.txt’. The file
content is treated as if it were a single giant docstring; the file doesn’t need to contain a Python program! For example,
perhapséxample.txt’ contains this:

The “example” module

Using “factorial

This is an example text file in reStructuredText format. First import
“factorial* from the “example module:

>>> from example import factorial
Now use it:

>>> factorial(6)
120

Runningdoctest.testfile("example.txt") then finds the error in this documentation:

File "./example.txt", line 14, in example.txt
Failed example:
factorial(6)
Expected:
120
Got:
720

As with testmod() , testfile() won't display anything unless an example fails. If an example does fail, then
the failing example(s) and the cause(s) of the failure(s) are printed to stdout, using the same ftestatad()

By default,testfile() looks for files in the calling module’s directory. See section 5.2.4 for a description of the
optional arguments that can be used to tell it to look for files in other locations.

Like testmod() , testfile() 's verbosity can be set with the command-line switch or with the optional key-
word argumenverbose

For more information omestfile() , see section 5.2.4.

154 Chapter 5. Miscellaneous Services

5.2.3 How It Works

This section examines in detail how doctest works: which docstrings it looks at, how it finds interactive examples,
what execution context it uses, how it handles exceptions, and how option flags can be used to control its behavior.
This is the information that you need to know to write doctest examples; for information about actually running doctest
on these examples, see the following sections.

Which Docstrings Are Examined?

The module docstring, and all function, class and method docstrings are searched. Objects imported into the module
are not searched.

In addition, ifM. __test __ exists and "is true”, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings foundfrantest __ are searched, and strings
are treated as if they were docstrings. In output, akkeyM. __test __ appears with name

<name of M>_ test .K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.

Changed in version 2.4: A "private name” concept is deprecated and no longer documented.

How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine, but doctest isn't trying to do an exact
emulation of any specific Python shell. All hard tab characters are expanded to spaces, using 8-column tab stops. If
you don't believe tabs should mean that, too bad: don't use hard tabs, or write yolban¥estParser class.

Changed in version 2.4: Expanding tabs to spaces is new; previous versions tried to preserve hard tabs, with confusing
results.

>>> # comments are ignored

>>> x = 12

>>> X

12

>>> if x == 13:
print "yes"

. else:
print "no"
print "NO"
print "NO!m"

no

NO

NOom

>>>

Any expected output must immediately follow the firab> ' or’... ’ line containing the code, and the ex-
pected output (if any) extends to the next> ' or all-whitespace line.

The fine print:

e Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected

5.2. doctest — Test interactive Python examples 155

output. If expected output does contain a blank line,qRit ANKLINE> in your doctest example each place a
blank line is expected. Changed in version ZBLANKLINE>was added; there was no way to use expected
output containing empty lines in previous versions.

e Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

e If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you

should use a raw docstring, which will preserve your backslashes exactly as you type them:

>>> def f(x):

r"Backslashes in a raw docstring: m\n™
>>> print f.__doc__
Backslashes in a raw docstring: m\n

Otherwise, the backslash will be interpreted as part of the string. For example,”tabdve would be inter-

preted as a newline character. Alternatively, you can double each backslash in the doctest version (and not use

a raw string):

>>> def f(x):

. ""Backslashes in a raw docstring: m\\n™”
>>> print f.__doc__

Backslashes in a raw docstring: m\n

e The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math
>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial

'>>> ' [ine that started the example.

What's the Execution Context?

By default, each timeloctest finds a docstring to test, it useshallow copyof Ms globals, so that running tests
doesn’t change the module’s real globals, and so that one tb&tam't leave behind crumbs that accidentally allow
another test to work. This means examples can freely use any names defined at top{gawidmames defined
earlier in the docstring being run. Examples cannot see names defined in other docstrings.

You can force use of your own dict as the execution context by paggafg=your _dict totestmod() or
testfile() instead.

What About Exceptions?

No problem, provided that the traceback is the only output produced by the example: just paste in the traceback. Since
tracebacks contain details that are likely to change rapidly (for example, exact file paths and line numbers), this is one

case where doctest works hard to be flexible in what it accepts.

Simple example:

156 Chapter 5. Miscellaneous Services

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

That doctest succeedsWalueError is raised, with thelist.remove(x): X not in list ' detall as
shown.

The expected output for an exception must start with a traceback header, which may be either of the following two
lines, indented the same as the first line of the example:

Traceback (most recent call last):
Traceback (innermost last):

The traceback header is followed by an optional traceback stack, whose contents are ignored by doctest. The traceback
stack is typically omitted, or copied verbatim from an interactive session.

The traceback stack is followed by the most interesting part: the line(s) containing the exception type and detail. This
is usually the last line of a traceback, but can extend across multiple lines if the exception has a multi-line detail:

>>> raise ValueError('multi\n line\ndetail’)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: multi
line
detail

The last three lines (starting witalueError) are compared against the exception’s type and detail, and the rest
are ignored.

Best practice is to omit the traceback stack, unless it adds significant documentation value to the example. So the last
example is probably better as:

>>> raise ValueError('multi\n line\ndetail’)
Traceback (most recent call last):

ValueError: multi
line
detail

Note that tracebacks are treated very specially. In particular, in the rewritten example, the.use' @f independent
of doctest’sELLIPSIS option. The ellipsis in that example could be left out, or could just as well be three (or three
hundred) commas or digits, or an indented transcript of a Monty Python skit.

Some details you should read once, but won't need to remember:

e Doctest can’t guess whether your expected output came from an exception traceback or from ordinary printing.
So, e.g., an example that expect&lueError: 42 is prime " will pass whetherValueError is
actually raised or if the example merely prints that traceback text. In practice, ordinary output rarely begins with
a traceback header line, so this doesn't create real problems.

e Each line of the traceback stack (if present) must be indented further than the first line of the exarsigig,

5.2. doctest — Test interactive Python examples 157

with a non-alphanumeric character. The first line following the traceback header indented the same and starting
with an alphanumeric is taken to be the start of the exception detail. Of course this does the right thing for
genuine tracebacks.

e When thelGNORE_EXCEPTION.DETAIL doctest option is is specified, everything following the leftmost
colon is ignored.

e The interactive shell omits the traceback header line for sBymgaxError s. But doctest uses the trace-
back header line to distinguish exceptions from non-exceptions. So in the rare case where you need to test a
SyntaxError that omits the traceback header, you will need to manually add the traceback header line to
your test example.

e For someSyntaxError s, Python displays the character position of the syntax error, usingarker:

>>> 1 1
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Since the lines showing the position of the error come before the exception type and detail, they are not checked
by doctest. For example, the following test would pass, even though it putsrttaker in the wrong location:

>>> 1 1
Traceback (most recent call last):
File "<stdin>", line 1
11

SyntaxError: invalid syntax

Changed in version 2.4: The ability to handle a multi-line exception detail, arlt6tH®RE_EXCEPTION.DETAIL
doctest option, were added.

Option Flags and Directives

A number of option flags control various aspects of doctest’'s behavior. Symbolic names for the flags are supplied as
module constants, which can be or'ed together and passed to various functions. The names can also be used in doctest
directives (see below).

The first group of options define test semantics, controlling aspects of how doctest decides whether actual output
matches an example’s expected output:

DONTACCEPTTRUEFOR_1
By default, if an expected output block contains jistan actual output block containing justor just True
is considered to be a match, and similarly foiversusFalse . WhenDONTACCEPTTRUEFOR.1 is
specified, neither substitution is allowed. The default behavior caters to that Python changed the return type of
many functions from integer to boolean; doctests expecting "little integer” output still work in these cases. This
option will probably go away, but not for several years.

DONTACCEPTBLANKLINE
By default, if an expected output block contains a line containing only the stBhANKLINE>, then that line
will match a blank line in the actual output. Because a genuinely blank line delimits the expected output, this is
the only way to communicate that a blank line is expected. WD@®NTACCEPTBLANKLINE is specified,
this substitution is not allowed.

158 Chapter 5. Miscellaneous Services

NORMALIZEWHITESPACE
When specified, all sequences of whitespace (blanks and newlines) are treated as equal. Any sequence of
whitespace within the expected output will match any sequence of whitespace within the actual output. By de-
fault, whitespace must match exactNORMALIZE WHITESPACEHs especially useful when a line of expected
output is very long, and you want to wrap it across multiple lines in your source.

ELLIPSIS
When specified, an ellipsis marker.() in the expected output can match any substring in the actual output.
This includes substrings that span line boundaries, and empty substrings, so it's best to keep usage of this simple.
Complicated uses can lead to the same kinds of "oops, it matched too much!” surprises,tisgbrone to in
regular expressions.

IGNORE_EXCEPTION.DETAIL
When specified, an example that expects an exception passes if an exception of the expected type is raised, even
if the exception detail does not match. For example, an example expec¢ahgeError: 42 " will pass if
the actual exception raised igalueError: 3*14 ’, but will fail, e.g., if TypeError s raised.

Note that a similar effect can be obtained uskIgLIPSIS , andIGNORE_EXCEPTION.DETAIL may go

away when Python releases prior to 2.4 become uninteresting. Until (BBIQRE_ EXCEPTION.DETAIL

is the only clear way to write a doctest that doesn'’t care about the exception detail yet continues to pass under
Python releases prior to 2.4 (doctest directives appear to be comments to them). For example,

>>> (1, 2)[3] = 'moo’ #doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):

File "<stdin>", line 1, in ?
TypeError: object doesn’'t support item assignment

passes under Python 2.4 and Python 2.3. The detail changed in 2.4, to say "does not” instead of "doesn’t”.

COMPARISON-LAGS
A bitmask or’ing together all the comparison flags above.

The second group of options controls how test failures are reported:

REPORTUDIFF
When specified, failures that involve multi-line expected and actual outputs are displayed using a unified diff.

REPORTICDIFF
When specified, failures that involve multi-line expected and actual outputs will be displayed using a context
diff.

REPORINDIFF
When specified, differences are computeddif§iib.Differ , using the same algorithm as the popular
‘ndiff.py’ utility. This is the only method that marks differences within lines as well as across lines. For example,

if a line of expected output contains diditwhere actual output contains letlera line is inserted with a caret
marking the mismatching column positions.

REPORTONLY_FIRST _FAILURE
When specified, display the first failing example in each doctest, but suppress output for all remaining examples.
This will prevent doctest from reporting correct examples that break because of earlier failures; but it might also
hide incorrect examples that fail independently of the first failure. WRERORTONLY_FIRST _FAILURE
is specified, the remaining examples are still run, and still count towards the total number of failures reported;
only the output is suppressed.

REPORTINGFLAGS
A bitmask or’ing together all the reporting flags above.

"Doctest directives” may be used to modify the option flags for individual examples. Doctest directives are expressed
as a special Python comment following an example’s source code:

5.2. doctest — Test interactive Python examples 159

directive = "#" "doctest:" directive _options

directive _options = directive _option ("," directive _option)*

directive _option ;= on_or _off directive _option _name

on_or _off =

directive _option _name := "DONT_ACCEPTBLANKLINE" | "NORMALIZE _WHITESPACE" | ...

Whitespace is not allowed between ther - and the directive option name. The directive option name can be any of
the option flag names explained above.

An example’s doctest directives modify doctest’s behavior for that single example- tdsmable the named behavior,
or - to disable it.

For example, this test passes:

>>> print range(20) #doctest: +NORMALIZE_WHITESPACE
o 1, 2, 3 4 5 6 7, 8 9,
10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

Without the directive it would fail, both because the actual output doesn’t have two blanks before the single-digit list
elements, and because the actual output is on a single line. This test also passes, and also requires a directive to do so:

>>> print range(20) # doctest:+ELLIPSIS
[0, 1, ..., 18, 19]

Multiple directives can be used on a single physical line, separated by commas:

>>> print range(20) # doctest: +ELLIPSIS, +NORMALIZE_WHITESPACE
[0, 1, .., 18, 19]

If multiple directive comments are used for a single example, then they are combined:

>>> print range(20) # doctest: +ELLIPSIS
. # doctest: +NORMALIZE_WHITESPACE
o, 1, .., 18, 19]

As the previous example shows, you can add ' lines to your example containing only directives. This can be
useful when an example is too long for a directive to comfortably fit on the same line:

>>> print range(5) + range(10,20) + range(30,40) + range(50,60)
. # doctest: +ELLIPSIS
o, .., 4, 10, .., 19, 30, .., 39, 50, ..., 59]

Note that since all options are disabled by default, and directives apply only to the example they appear in, enabling
options (via+ in a directive) is usually the only meaningful choice. However, option flags can also be passed to
functions that run doctests, establishing different defaults. In such cases, disabling an option &idirective can

be useful.

Changed in version 2.4: ConstantsDONTACCEPTBLANKLINE, NORMALIZEWHITESPACE
ELLIPSIS , IGNOREEXCEPTION.DETAIL, REPORTUDIFF, REPORICDIFF, REPORINDIFF,
REPORTONLY_FIRST _FAILURE, COMPARISON-LAGS and REPORTINGFLAGS were added; by de-

160 Chapter 5. Miscellaneous Services

fault <BLANKLINE> in expected output matches an empty line in actual output; and doctest directives were
added.

There’s also a way to register new option flag names, although this isn’t useful unless you intend talextead
internals via subclassing:

register _optionflag (nam§
Create a new option flag with a given name, and return the new flag’s integer value.
register _optionflag() can be used when subclassi@utputChecker or DocTestRunner
to create new options that are supported by your subclassgsster _optionflag should always be
called using the following idiom:

MY_FLAG = register_optionflag(MY_FLAG")

New in version 2.4.

Warnings

doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match, the
test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t guarantee
about output. For example, when printing a dict, Python doesn't guarantee that the key-value pairs will be printed in

any particular order, so a test like

>>> foo()
{"Hermione™: "hippogryph", "Harry": "broomstick"}

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
True

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>>

[(Harry’, 'broomstick’), ('Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> jd(1.0) # certain to fail some of the time

7948648

>>> class C: pass

>>> C() # the default repr() for instances embeds an address
<_main__.C instance at OXO0AC18F0>

TheELLIPSIS directive gives a nice approach for the last example:

5.2. doctest — Test interactive Python examples 161

>>> C() #doctest: +ELLIPSIS
< _main__.C instance at 0x...>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to the
platform C library for float formatting, and C libraries vary widely in quality here.

>>> 1./7 # risky
0.14285714285714285

>>> print 1./7 # safer
0.142857142857

>>> print round(1./7, 6) # much safer
0.142857

Numbers of the forn2.**J are safe across all platforms, and | often contrive doctest examples to produce numbers
of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

5.2.4 Basic API

The functiongestmod() andtestfile() provide a simple interface to doctest that should be sufficient for most
basic uses. For a less formal introduction to these two functions, see sections 5.2.1 and 5.2.2.

testfile (filenamg¢, module_relative]] , namﬂ \ packagd[, globs][, verbosd[, report][, optionflagg[, ex-
traglobs [raise_on_error || , parser|)
All arguments excepilenameare optional, and should be specified in keyword form.
Test examples in the file namétename Return { failure_count test.coun) .

Optional argumentnodule_relative specifies how the filename should be interpreted:

olf module_relativeis True (the default), thefilenamespecifies an OS-independent module-relative path.
By default, this path is relative to the calling module’s directory; but ifftaekageargument is specified,
then itis relative to that package. To ensure OS-independéiecemeshould usé characters to separate
path segments, and may not be an absolute path (i.e., it may not begih)with

oIf module_relativeis False , thenfilenamespecifies an OS-specific path. The path may be absolute or
relative; relative paths are resolved with respect to the current working directory.

Optional argumenhamegives the name of the test; by default, oNibne, os.path.basename(filenamé
is used.

Optional argumenpackageis a Python package or the name of a Python package whose directory should be
used as the base directory for a module-relative filename. If no package is specified, then the calling mod-
ule’s directory is used as the base directory for module-relative filenames. It is an error to paekifygeif
module_relativeis False .

Optional argumenglobsgives a dict to be used as the globals when executing examples. A new shallow copy of
this dict is created for the doctest, so its examples start with a clean slate. By defauNpoeifa new empty
dict is used.

162 Chapter 5. Miscellaneous Services

Optional argumenéxtraglobsgives a dict merged into the globals used to execute examples. This works like
dict.update() . if globsandextraglobshave a common key, the associated valuextiaglobsappears in

the combined dict. By default, or None, no extra globals are used. This is an advanced feature that allows
parameterization of doctests. For example, a doctest can be written for a base class, using a generic name for
the class, then reused to test any number of subclasses by passixtgegiobsdict mapping the generic name

to the subclass to be tested.

Optional argumengerboseprints lots of stuff if true, and prints only failures if false; by default, oNidne, it's
true if and only if’-v’ is in sys.argv

Optional argumenteport prints a summary at the end when true, else prints nothing at the end. In verbose
mode, the summary is detailed, else the summary is very brief (in fact, empty if all tests passed).

Optional argumenbptionflagsor’s together option flags. See section 5.2.3.

Optional argumentaise_on_error defaults to false. If true, an exception is raised upon the first failure or
unexpected exception in an example. This allows failures to be post-mortem debugged. Default behavior is to
continue running examples.

Optional argumenparserspecifies @ocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (ieqcTestParser()).

New in version 2.4.

testmod (m] [, namﬂ [\ gIobs][\ verbose][\ isprivate][\ report] [, optionflag§ [: extraglob§ [, raise_on_error
, exclude.empty])
All arguments are optional, and all except fosshould be specified in keyword form.

Test examples in docstrings in functions and classes reachable from nmo¢aienodule__main __ if mis
not supplied or iNone), starting withm. __doc __.

Also test examples reachable from ditt__test __, if it exists and is noNone. m. __test __ maps names
(strings) to functions, classes and strings; function and class docstrings are searched for examples; strings are
searched directly, as if they were docstrings.

Only docstrings attached to objects belonging to moduége searched.
Return { failure_count test.coun) .
Optional argumenhamegives the name of the module; by default, oNibne, m. __name__ is used.

Optional argumentexclude_ empty defaults to false. If true, objects for which no doctests are found
are excluded from consideration. The default is a backward compatibility hack, so that code still using
doctest.master.summarize() in conjunction withtestmod() continues to get output for objects
with no tests. Thexclude_.emptyargument to the newdéocTestFinder constructor defaults to true.

Optional argumentgxtraglobs verbose report, optionflags raise_on_error, andglobs are the same as for
functiontestfile() above, except thaflobsdefaults tom. __dict __.

Optional argumentsprivate specifies a function used to determine whether a hame is private. The default
function treats all names as publidsprivate can be set taloctest.is _private to skip over names

that are private according to Python’s underscore naming convenbeprecated since release 2.4ispri-

vate was a stupid idea — don't use it. If you need to skip tests based on name, filter the list returned by
DocTestFinder.find() instead.

Changed in version 2.3: The paramatptionflagswas added.
Changed in version 2.4: The parametexraglobsraise_on_error andexclude emptywere added.

There’s also a function to run the doctests associated with a single object. This function is provided for backward
compatibility. There are no plans to deprecate it, but it’s rarely useful:

run _docstring _examples (f, globs[, verbosd[, namé[, compileflag§[, optionflags])
Test examples associated with objedior examplef may be a module, function, or class object.

A shallow copy of dictionary argumengtobsis used for the execution context.
Optional argumenbameis used in failure messages, and defaultf\ioName".

5.2. doctest — Test interactive Python examples 163

If optional argumenterboseis true, output is generated even if there are no failures. By default, output is
generated only in case of an example failure.

Optional argumentompileflaggives the set of flags that should be used by the Python compiler when running
the examples. By default, or Mlone, flags are deduced corresponding to the set of future features found in
globs

Optional argumendptionflagsworks as for functionestfile() above.

5.2.5 Unittest API

As your collection of doctest’ed modules grows, you'll want a way to run all their doctests systematically. Prior to
Python 2.4doctest had a barely documentéitester class that supplied a rudimentary way to combine doctests
from multiple modules.Tester was feeble, and in practice most serious Python testing frameworks build on the
unittest module, which supplies many flexible ways to combine tests from multiple sources. So, in Python 2.4,
doctest ’'sTester classis deprecated, addctest provides two functions that can be used to creati&est

test suites from modules and text files containing doctests. These test suites can then be runitising test
runners:

import unittest
import doctest
import my_module_with_doctests, and_another

suite = unittest. TestSuite()

for mod in my_module_with_doctests, and_another:
suite.addTest(doctest.DocTestSuite(mod))

runner = unittest.TextTestRunner()

runner.run(suite)

There are two main functions for creatingittest .TestSuite instances from text files and modules with
doctests:

DocFileSuite (*paths, **kw)
Convert doctest tests from one or more text files tmétest . TestSuite

The returnedinittest ~ .TestSuite is to be run by the unittest framework and runs the interactive examples
in each file. If an example in any file fails, then the synthesized unit test fails, &aitlieeException
exception is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Pass one or more paths (as strings) to text files to be examined.
Options may be provided as keyword arguments:
Optional argumentodule_relative specifies how the filenames jrathsshould be interpreted:

eIf module_relativeis True (the default), then each filename specifies an OS-independent module-relative
path. By default, this path is relative to the calling module’s directory; but ifphekageargument is
specified, then it is relative to that package. To ensure OS-independence, each filename shbuld use
characters to separate path segments, and may not be an absolute path (i.e., it may not begin with

oIf module_relativeis False , then each filename specifies an OS-specific path. The path may be absolute
or relative; relative paths are resolved with respect to the current working directory.

Optional argumenpackageis a Python package or the name of a Python package whose directory should be
used as the base directory for module-relative filenames. If no package is specified, then the calling module’s
directory is used as the base directory for module-relative filenames. It is an error to seetifigef mod-
ule_relativeis False .

164 Chapter 5. Miscellaneous Services

Optional argumensetUpspecifies a set-up function for the test suite. This is called before running the tests in
each file. ThesetUpfunction will be passed BocTest object. The setUp function can access the test globals
as theglobsattribute of the test passed.

Optional argumentearDownspecifies a tear-down function for the test suite. This is called after running the
tests in each file. TheearDownfunction will be passed BocTest object. The setUp function can access the
test globals as thglobsattribute of the test passed.

Optional argumenglobsis a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By defaglgbsis a new empty dictionary.

Optional argumenbptionflagsspecifies the default doctest options for the tests, created by or-ing together
individual option flags. See section 5.2.3. See functeh _unittest _reportflags() below for a
better way to set reporting options.

Optional argumenparserspecifies @ocTestParser (or subclass) that should be used to extract tests from
the files. It defaults to a normal parser (ieqcTestParser()).

New in version 2.4.

DocTestSuite ([module][, globs][, extraglobg[, testinder][, setUp][, tearDown][, checkeﬂ)
Convert doctest tests for a module tarattest . TestSuite

The returnedunittest .TestSuite is to be run by the unittest framework and runs each doctest in the
module. If any of the doctests fail, then the synthesized unit test fails, &aibliseException exception
is raised showing the name of the file containing the test and a (sometimes approximate) line number.

Optional argumenimoduleprovides the module to be tested. It can be a module object or a (possibly dotted)
module name. If not specified, the module calling this function is used.

Optional argumenglobsis a dictionary containing the initial global variables for the tests. A new copy of this
dictionary is created for each test. By defaglgbsis a new empty dictionary.

Optional argumengxtraglobsspecifies an extra set of global variables, which is mergedgiaos By default,
no extra globals are used.

Optional argumentest_finderis theDocTestFinder object (or a drop-in replacement) that is used to extract
doctests from the module.

Optional argumentsetUp tearDown andoptionflagsare the same as for functi@ocFileSuite() above.
New in version 2.3.

Changed in version 2.4: The parametglabs extraglobs test finder, setUp tearDown andoptionflagswere
added,; this function now uses the same search technigestasod()

Under the coversDocTestSuite() creates ainittest .TestSuite out of doctest.DocTestCase in-
stances, an®ocTestCase is a subclass afinittest .TestCase . DocTestCase isn't documented here (it's
an internal detail), but studying its code can answer questions about the exact detaitest integration.

Similarly, DocFileSuite() creates anittest .TestSuite out ofdoctest.DocFileCase instances, and
DocFileCase is a subclass dbocTestCase .

So both ways of creating anittest ~ .TestSuite run instances oDocTestCase . This is important for a
subtle reason: when you rutoctest functions yourself, you can control thioctest options in use directly,
by passing option flags tdoctest functions. However, if you're writing anittest framework, unittest
ultimately controls when and how tests get run. The framework author typically wants to aimitekt reporting
options (perhaps, e.g., specified by command line options), but there’s no way to pass optionstthiibegth ~ to
doctest testrunners.

For this reasonjoctest also supports a notion afoctest reporting flags specific tonittest ~ support, via this
function:

set _unittest _reportflags (flags
Set thedoctest reporting flags to use.

Argumentflagsor’s together option flags. See section 5.2.3. Only "reporting flags” can be used.

5.2. doctest — Test interactive Python examples 165

This is a module-global setting, and affects all future doctests run by modittest : therunTest()

method oDocTestCase looks at the option flags specified for the test case wheDtltd estCase instance

was constructed. If no reporting flags were specified (which is the typical and expecteddcersedt 's

unittest reporting flags are or’ed into the option flags, and the option flags so augmented are passed to
the DocTestRunner instance created to run the doctest. If any reporting flags were specified when the
DocTestCase instance was constructedhctest ’s unittest reporting flags are ignored.

The value of theinittest reporting flags in effect before the function was called is returned by the function.
New in version 2.4,

5.2.6 Advanced API

The basic APl is a simple wrapper that's intended to make doctest easy to use. Itis fairly flexible, and should meet most
users’ needs; however, if you require more fine-grained control over testing, or wish to extend doctest’s capabilities,
then you should use the advanced API.

The advanced API revolves around two container classes, which are used to store the interactive examples extracted
from doctest cases:

e Example : A single python statement, paired with its expected output.

e DocTest : A collection of Example s, typically extracted from a single docstring or text file.
Additional processing classes are defined to find, parse, and run, and check doctest examples:

DocTestFinder : Finds all docstrings in a given module, and usBoaTestParser to create &ocTest
from every docstring that contains interactive examples.

e DocTestParser : Creates &ocTest object from a string (such as an object’s docstring).

DocTestRunner : Executes the examples inRocTest , and uses a®utputChecker to verify their
output.

OutputChecker : Compares the actual output from a doctest example with the expected output, and decides
whether they match.

The relationships among these processing classes are summarized in the following diagram:

list of:
[— + [+
|module| --DocTestFinder-> | DocTest | --DocTestRunner-> results
Fomee + | - Fommee + [- (printed)
I I | Example | I I
v I [v I
DocTestParser | Example | OutputChecker
[+

DocTest Objects

classDocTest (examples, globs, name, filename, lineno, docsjring
A collection of doctest examples that should be run in a single namespace. The constructor arguments are used
to initialize the member variables of the same names. New in version 2.4.

166 Chapter 5. Miscellaneous Services

DocTest defines the following member variables. They are initialized by the constructor, and should not be modified
directly.

examples
A list of Example objects encoding the individual interactive Python examples that should be run by this test.

globs
The namespace (aka globals) that the examples should be run in. This is a dictionary mapping names to values.
Any changes to the namespace made by the examples (such as binding new variables) will be reflietted in
after the test is run.

name
A string name identifying théocTest . Typically, this is the name of the object or file that the test was
extracted from.

filename
The name of the file that thiBocTest was extracted from; oNone if the filename is unknown, or if the
DocTest was not extracted from a file.

lineno
The line number withirfilename where thisDocTest begins, ofNone if the line number is unavailable.
This line number is zero-based with respect to the beginning of the file.

docstring
The string that the test was extracted from, or ‘None' if the string is unavailable, or if the test was not extracted
from a string.

Example Objects

classExample (source, War{t, exc;msg][, Iineno][, indent][, options])
A single interactive example, consisting of a Python statement and its expected output. The constructor argu-
ments are used to initialize the member variables of the same names. New in version 2.4.

Example defines the following member variables. They are initialized by the constructor, and should not be modified
directly.

source
A string containing the example’s source code. This source code consists of a single Python statement, and
always ends with a newline; the constructor adds a newline when necessary.

want
The expected output from running the example’s source code (either from stdout, or a traceback in case of
exception).want ends with a newline unless no output is expected, in which case it's an empty string. The
constructor adds a newline when necessary.

exc _msg
The exception message generated by the example, if the example is expected to generate an exdégmien; or
if it is not expected to generate an exception. This exception message is compared against the return value
of traceback.format _exception _only() . exc _msg ends with a newline unless itNone. The
constructor adds a newline if needed.

lineno
The line number within the string containing this example where the example begins. This line number is
zero-based with respect to the beginning of the containing string.

indent
The example’s indentation in the containing string, i.e., the number of space characters that precede the exam-
ple’s first prompt.

options

5.2. doctest — Test interactive Python examples 167

A dictionary mapping from option flags fbrue or False , which is used to override default options for this
example. Any option flags not contained in this dictionary are left at their default value (as specified by the
DocTestRunner ’s optionflags). By default, no options are set.

DocTestFinder objects

classDocTestFinder ([verbosé[, parser][, recursd[, excludeempt)a)
A processing class used to extract becTest s that are relevant to a given object, from its docstring and
the docstrings of its contained objecBocTest s can currently be extracted from the following object types:
modules, functions, classes, methods, staticmethods, classmethods, and properties.

The optional argumenterbosecan be used to display the objects searched by the finder. It defabisds®
(no output).

The optional argumergdarserspecifies théocTestParser object (or a drop-in replacement) that is used to
extract doctests from docstrings.

If the optional argumentcurseis false, therDocTestFinder.find() will only examine the given object,
and not any contained objects.
If the optional argumergxclude_emptyis false, therbocTestFinder.find() will include tests for objects

with empty docstrings.
New in version 2.4.
DocTestFinder defines the following method:
find (obj[, namd[, modulﬂ[, gIobs][, extraglobs])
Return a list of thédocTest s that are defined bybj's docstring, or by any of its contained objects’ docstrings.

The optional argumemamespecifies the object's name; this name will be used to construct names for the
returnedDocTest s. If nameis not specified, thenbj. __name__ is used.

The optional parametenoduleis the module that contains the given object. If the module is not specified or is
None, then the test finder will attempt to automatically determine the correct module. The object’s module is
used:

eAs a default namespace gfobsis not specified.

eTo prevent the DocTestFinder from extracting DocTests from objects that are imported from other modules.
(Contained objects with modules other thranduleare ignored.)

oTo find the name of the file containing the object.
¢T0 help find the line number of the object within its file.

If moduleis False , no attempt to find the module will be made. This is obscure, of use mostly in testing
doctest itself: ifmoduleis False , orisNone but cannot be found automatically, then all objects are considered
to belong to the (nhon-existent) module, so all contained objects will (recursively) be searched for doctests.

The globals for eacbocTest is formed by combininglobsandextraglobs(bindings inextraglobsoverride
bindings inglobg. A new shallow copy of the globals dictionary is created for e@obTest . If globsis not
specified, then it defaults to the module’sdict__, if specified, o{} otherwise. Ifextraglobss not specified,
then it defaults tq} .

DocTestParser objects

classDocTestParser ()

A processing class used to extract interactive examples from a string, and use them tolBoedtest object.
New in version 2.4,

DocTestParser defines the following methods:

168 Chapter 5. Miscellaneous Services

get _doctest (string, globs, name, filename, linéno
Extract all doctest examples from the given string, and collect them iDmcdest object.

globs name filename andlineno are attributes for the neocTest object. See the documentation for
DocTest for more information.

get _examples (string[, namé)
Extract all doctest examples from the given string, and return them as aligaofiple objects. Line numbers
are 0-based. The optional argumeaimeis a name identifying this string, and is only used for error messages.

parse (string[, namd)
Divide the given string into examples and intervening text, and return them as a list of alteffsimple s
and strings. Line numbers for tli&xample s are 0-based. The optional argumeameis a hame identifying
this string, and is only used for error messages.

DocTestRunner objects

classDocTestRunner ([checkeﬂ[, verbosé[, optionflagg)
A processing class used to execute and verify the interactive exampl&oitilast .

The comparison between expected outputs and actual outputs is don®bypartChecker . This compari-
son may be customized with a number of option flags; see section 5.2.3 for more information. If the option flags
are insufficient, then the comparison may also be customized by passing a subClagsud€Checker to the

constructor.

The test runner’s display output can be controlled in two ways. First, an output function can be passed to
TestRunner.run() ; this function will be called with strings that should be displayed. It defaults to
sys.stdout.write . If capturing the output is not sufficient, then the display output can be also cus-

tomized by subclassing DocTestRunner, and overriding the metepdst _start |, report _success |,
report _unexpected _exception ,andreport _failure

The optional keyword argumenheckerspecifies theOutputChecker object (or drop-in replacement) that
should be used to compare the expected outputs to the actual outputs of doctest examples.

The optional keyword argumerierbosecontrols theDocTestRunner s verbosity. Ifverboses True , then
information is printed about each example, as it is runzelboses False , then only failures are printed. If
verbosds unspecified, oNone, then verbose output is used iff the command-line switcis used.

The optional keyword argumeaptionflagscan be used to control how the test runner compares expected output
to actual output, and how it displays failures. For more information, see section 5.2.3.

New in version 2.4.
DocTestParser defines the following methods:

report _start (out, test, examp)e
Report that the test runner is about to process the given example. This method is provided to allow subclasses
of DocTestRunner to customize their output; it should not be called directly.

examples the example about to be processistis the test containingxample outis the output function that
was passed tbocTestRunner.run()

report _success (out, test, example, gpt
Report that the given example ran successfully. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

exampleis the example about to be processeagbt is the actual output from the exampléaestis the test
containingexample outis the output function that was passedocTestRunner.run()

report _failure (out, test, example, gpt
Report that the given example failed. This method is provided to allow subclas@scdestRunner to
customize their output; it should not be called directly.

5.2. doctest — Test interactive Python examples 169

exampleis the example about to be processegbt is the actual output from the exampléaestis the test
containingexample outis the output function that was passedocTestRunner.run()

report _unexpected _exception (out,test, example, exinfo)
Report that the given example raised an unexpected exception. This method is provided to allow subclasses of
DocTestRunner to customize their output; it should not be called directly.

examples the example about to be processexic_info is a tuple containing information about the unexpected
exception (as returned tsys.exc _info()). testis the test containingxample out is the output function
that was passed BocTestRunner.run()

run (tes{, compileﬂag%[, out][, clear,globs])
Run the examples itest(aDocTest object), and display the results using the writer functom

The examples are run in the namespiast.globs . If clear_globsis true (the default), then this namespace
will be cleared after the test runs, to help with garbage collection. If you would like to examine the namespace
after the test completes, then udear_globs=False

compileflaggyives the set of flags that should be used by the Python compiler when running the examples. If
not specified, then it will default to the set of future-import flags that appbidbs

The output of each example is checked usingDloe TestRunner s output checker, and the results are for-
matted by thédocTestRunner.report _* methods.

summarize ([verbosé)
Print a summary of all the test cases that have been run by this DocTestRunner, and return a tuple
‘(failure_count test_coun) .

The optionalverboseargument controls how detailed the summary is. If the verbosity is not specified, then the
DocTestRunner s verbosity is used.

OutputChecker objects

classOutputChecker ()
A class used to check the whether the actual output from a doctest example matches the expected output.
OutputChecker defines two methodscheck _output , which compares a given pair of outputs, and re-
turns true if they match; amoutput _difference , which returns a string describing the differences between
two outputs. New in version 2.4,

OutputChecker defines the following methods:

check _output (want, got, optionflags
ReturnTrue iff the actual output from an examplgdt) matches the expected outputahf). These strings are
always considered to match if they are identical; but depending on what option flags the test runner is using,
several non-exact match types are also possible. See section 5.2.3 for more information about option flags.

output _difference (. example, got, optionflays
Return a string describing the differences between the expected output for a given exampipl¢ and the
actual outputgot). optionflagsis the set of option flags used to compa@ntandgot.

5.2.7 Debugging
Doctest provides several mechanisms for debugging doctest examples:

e Several functions convert doctests to executable Python programs, which can be run under the Python debugger,
pdb.

e TheDebugRunner classis a subclass BfocTestRunner that raises an exception for the first failing exam-
ple, containing information about that example. This information can be used to perform post-mortem debug-
ging on the example.

170 Chapter 5. Miscellaneous Services

e The unittest cases generated bfpocTestSuite() support thedebug() method defined by
unittest .TestCase

e You can add a call tpdb.set _trace() in a doctest example, and you'll drop into the Python debugger
when that line is executed. Then you can inspect current values of variables, and so on. For example, suppose
‘a.py’ contains just this module docstring:

>>> def f(x):
g(x*2)
>>> def g(x):
print x+3
import pdb; pdb.set_trace()

Then an interactive Python session may look like this:

>>> import a, doctest
>>> doctest.testmod(a)
--Return--
> <doctest a[1]>(3)g()->None
-> import pdb; pdb.set_trace()
(Pdb) list
1 def g(x):
2 print X+3
3 > import pdb; pdb.set_trace()
[EOF]
(Pdb) print x
6
(Pdb) step
--Return--
> <doctest a[0]>(2)f()->None
-> g(x*2)
(Pdb) list
1 def f(x):
2 > g(x*2)
[EOF]
(Pdb) print x
3
(Pdb) step
--Return--
> <doctest a[2]>(1)?()->None
-> {(3)
(Pdb) cont
0, 3)
>>>

Changed in version 2.4: The ability to useb.set _trace() usefully inside doctests was added.

Functions that convert doctests to Python code, and possibly run the synthesized code under the debugger:

script _from _examples ()
Convert text with examples to a script.

5.2. doctest — Test interactive Python examples 171

Arguments is a string containing doctest examples. The string is converted to a Python script, where doctest
examples irsare converted to regular code, and everything else is converted to Python comments. The generated
script is returned as a string. For example,

import doctest

print doctest.script_from_examples(r""
Set x and y to 1 and 2.
>>> X, y =]_, 2

Print their sum:
>>> print x+y

displays:

Set x and y to 1 and 2.
X,y =1 2
#

H*

Print their sum:
print x+y

Expected:

3

This function is used internally by other functions (see below), but can also be useful when you want to transform
an interactive Python session into a Python script.

New in version 2.4.

testsource (module, name

Convert the doctest for an object to a script.

Argumentmoduleis a module object, or dotted name of a module, containing the object whose doctests
are of interest. Argumentameis the name (within the module) of the object with the doctests of inter-
est. The result is a string, containing the object’s docstring converted to a Python script, as described for
script _from _examples() above. For example, if modula.py’ contains a top-level functiof{) , then

import a, doctest
print doctest.testsource(a, "a.f")

prints a script version of functiof() ’'s docstring, with doctests converted to code, and the rest placed in
comments.

New in version 2.3.

debug (module, nam[a pm])

Debug the doctests for an object.

Themoduleandnamearguments are the same as for functiestsource() above. The synthesized Python
script for the named object’s docstring is written to a temporary file, and then that file is run under the control
of the Python debuggendb .

A shallow copy ofmodule __dict __is used for both local and global execution context.

Optional argumenpm controls whether post-mortem debugging is usegnifhas a true value, the script file

is run directly, and the debugger gets involved only if the script terminates via raising an unhandled exception.
If it does, then post-mortem debugging is invoked, pitb .post _mortem() , passing the traceback object
from the unhandled exception. pinis not specified, or is false, the script is run under the debugger from the
start, via passing an appropriaeecfile() call topdb.run()

172

Chapter 5. Miscellaneous Services

New in version 2.3.
Changed in version 2.4: Thmmargument was added.

debug _src (src[, pm][, gIobs])
Debug the doctests in a string.

This is like functiondebug() above, except that a string containing doctest examples is specified directly, via
thesrcargument.

Optional argumenpmhas the same meaning as in functadebug() above.

Optional argumenglobsgives a dictionary to use as both local and global execution context. If not specified,
or None, an empty dictionary is used. If specified, a shallow copy of the dictionary is used.

New in version 2.4.

The DebugRunner class, and the special exceptions it may raise, are of most interest to testing framework authors,
and will only be sketched here. See the source code, and esp&=ailgRunner ’s docstring (which is a doctest!)
for more details:

classDebugRunner ([checkeﬂ[, verbosd[, optionflagg)
A subclass oDocTestRunner that raises an exception as soon as a failure is encountered. If an unexpected
exception occurs, adnexpectedException exception is raised, containing the test, the example, and the
original exception. If the output doesn’'t match, theDacTestFailure exception is raised, containing the
test, the example, and the actual output.

For information about the constructor parameters and methods, see the documentdiociT®stRunner
in section 5.2.6.

There are two exceptions that may be raise®epugRunner instances:

exceptionDocTestFailure (test, example, gpt
An exception thrown bypocTestRunner to signal that a doctest example’s actual output did not match its
expected output. The constructor arguments are used to initialize the member variables of the same names.

DocTestFailure defines the following member variables:
test
TheDocTest object that was being run when the example failed.

example
TheExample that failed.

got
The example’s actual output.

exceptionUnexpectedException (test, example, exinfo)
An exception thrown bypocTestRunner to signal that a doctest example raised an unexpected exception.
The constructor arguments are used to initialize the member variables of the same names.

UnexpectedException defines the following member variables:
test
TheDocTest object that was being run when the example failed.

example
TheExample that failed.

exc _info
A tuple containing information about the unexpected exception, as returrgegshaxc _info()

5.2.8 Soapbox

As mentioned in the introductiodpctest has grown to have three primary uses:

5.2. doctest — Test interactive Python examples 173

1. Checking examples in docstrings.
2. Regression testing.

3. Executable documentation / literate testing.

These uses have different requirements, and it is important to distinguish them. In particular, filling your docstrings
with obscure test cases makes for bad documentation.

When writing a docstring, choose docstring examples with care. There’s an art to this that needs to be learned—it
may not be natural at first. Examples should add genuine value to the documentation. A good example can often be
worth many words. If done with care, the examples will be invaluable for your users, and will pay back the time it
takes to collect them many times over as the years go by and things change. I'm still amazed at how often one of my
doctest examples stops working after a "harmless” change.

Doctest also makes an excellent tool for regression testing, especially if you don’t skimp on explanatory text. By
interleaving prose and examples, it becomes much easier to keep track of what's actually being tested, and why. When
a test fails, good prose can make it much easier to figure out what the problem is, and how it should be fixed. It's
true that you could write extensive comments in code-based testing, but few programmers do. Many have found that
using doctest approaches instead leads to much clearer tests. Perhaps this is simply because doctest makes writing
prose a little easier than writing code, while writing comments in code is a little harder. | think it goes deeper than just
that: the natural attitude when writing a doctest-based test is that you want to explain the fine points of your software,
and illustrate them with examples. This in turn naturally leads to test files that start with the simplest features, and
logically progress to complications and edge cases. A coherent narrative is the result, instead of a collection of isolated
functions that test isolated bits of functionality seemingly at random. It's a different attitude, and produces different
results, blurring the distinction between testing and explaining.

Regression testing is best confined to dedicated objects or files. There are several options for organizing tests:

e Write text files containing test cases as interactive examples, and test the filestestilg() or
DocFileSuite() . This is recommended, although is easiest to do for new projects, designed from the
start to use doctest.

e Define functions namedregrtest _topic that consist of single docstrings, containing test cases for the
named topics. These functions can be included in the same file as the module, or separated out into a separate

test file.
e Define a__test __ dictionary mapping from regression test topics to docstrings containing test cases.
5.3 unittest — Unit testing framework

New in version 2.1.

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent's Smalltalk testing framework. Each is the de facto
standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework.untigest module provides classes that make it
easy to support these qualities for a set of tests.

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup actions.
This may involve, for example, creating temporary or proxy databases, directories, or starting a server process.

174 Chapter 5. Miscellaneous Services

test case
A test cases the smallest unit of testing. It checks for a specific response to a particular set of inputs. PyUnit
provides a base clas$estCase , which may be used to create new test cases. You may provide your own
implementation that does not subclass froestCase , of course.

test suite
A test suitds a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed
together.

test runner
A test runneris a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results of
executing the tests.

The test case and test fixture concepts are supported througresh@ase andFunctionTestCase classes;

the former should be used when creating new tests, and the latter can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures usifestCase , thesetUp() andtearDown()

methods can be overridden to provide initialization and cleanup for the fixture . RtvitttionTestCase , existing

functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization is run first;

if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of the test. Each
instance of th@estCase will only be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by thestSuite class. This class allows individual tests and test suites to be aggre-
gated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single methanl() , which accepts destCase or TestSuite object

as a parameter, and returns a result object. The GlastResult is provided for use as the result object. PyUnit
provide theTextTestRunner as an example test runner which reports test results on the standard error stream by
default. Alternate runners can be implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See Also:

Moduledoctest (section 5.2):
Another test-support module with a very different flavor.

PyUnit Web Site
(http://pyunit.sourceforge.net/)
The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www. XProgramming.com/testfram.htm)
Kent Beck’s original paper on testing frameworks using the pattern sharedithgst

5.3.1 Basic example

Theunittest module provides a rich set of tools for constructing and running tests. This section demonstrates that
a small subset of the tools suffice to meet the needs of most users.

Here is a short script to test three functions fromrtiedom module:

5.3. unittest — Unit testing framework 175

import random
import unittest

class TestSequenceFunctions(unittest.TestCase):

def setUp(self):
self.seq = range(10)

def testshuffle(self):
make sure the shuffled sequence does not lose any elements
random.shuffle(self.seq)
self.seq.sort()
self.assertEqual(self.seq, range(10))

def testchoice(self):
element = random.choice(self.seq)
self.assert_(element in self.seq)

def testsample(self):
self.assertRaises(ValueError, random.sample, self.seq, 20)
for element in random.sample(self.seq, 5):
self.assert_(element in self.seq)

if _name__ =='_ main__"
unittest.main()

A testcase is created by subclassumgttest. TestCase . The three individual tests are defined with methods
whose names start with the lettetsst '. This naming convention informs the test runner about which methods
represent tests.

The crux of each test is a call &ssertEqual() to check for an expected resudssert () to verify a condition;
or assertRaises() to verify that an expected exception gets raised. These methods are used instead of the
assert statement so the test runner can accumulate all test results and produce a report.

When asetUp() method is defined, the test runner will run that method prior to each test. Likewise, if a
tearDown() method is defined, the test runner will invoke that method after each test. In the exaatple()
was used to create a fresh sequence for each test.

The final block shows a simple way to run the testsittest.main() provides a command line interface to the
test script. When run from the command line, the above script produces an output that looks like this:

Ran 3 tests in 0.000s

OK

Instead ofunittest.main() , there are other ways to run the tests with a finer level of control, less terse output,
and no requirement to be run from the command line. For example, the last two lines may be replaced with:

suite = unittest. makeSuite(TestSequenceFunctions)
unittest. TextTestRunner(verbosity=2).run(suite)

Running the revised script from the interpreter or another script produces the following output:

176 Chapter 5. Miscellaneous Services

testchoice (__main__.TestSequenceFunctions) ... ok
testsample (__main__.TestSequenceFunctions) ... ok
testshuffle (__main__.TestSequenceFunctions) ... ok

Ran 3 tests in 0.110s

OK

The above examples show the most commonly wsgtiest features which are sufficient to meet many everyday
testing needs. The remainder of the documentation explores the full feature set from first principles.

5.3.2 Organizing test code

The basic building blocks of unit testing aest cases— single scenarios that must be set up and checked for correct-
ness. In PyUnit, test cases are represented by instancesTddt@ase class in theunittest module. To make
your own test cases you must write subclasseBestCase , or useFunctionTestCase

An instance of alestCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of @estCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

The simplest test case subclass will simply overridetindest() method in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def runTest(self):
widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one ofagsert*() or fail*() methods provided by the
TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing framework
will identify the test case asfailure. Other exceptions that do not arise from checks made througistet*()

andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case, we
call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a “Widget”
in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method atép() , which the testing framework
will automatically call for us when we run the test:

5.3. unittest =~ — Unit testing framework 177

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.failUnless(self.widget.size() == (50,50),
'incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and thranTest() method will not be executed.

Similarly, we can provide gearDown() method that tidies up after thenTest() = method has been run:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, thearDown() method will be run regardless of whether or nahTest() succeeded.
Such a working environment for the testing code is callégtare

Often, many small test cases will use the same fixture. In this case, we would end up subclassing
SimpleWidgetTestCase into many small one-method classes suchDafaultWidgetSizeTestCase
This is time-consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

178 Chapter 5. Miscellaneous Services

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),
‘incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),
‘wrong size after resize’)

Here we have not provided minTest() method, but have instead provided two different test methods. Class
instances will now each run one of thest*() methods, withself.widget created and destroyed separately

for each instance. When creating an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this: the
test suite |, represented by the claggstSuite in theunittest module:

widgetTestSuite = unittest. TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object that
returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest. TestSuite):
def __init__(self):
unittest. TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",
"testResize")))

5.3. unittest =~ — Unit testing framework 179

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to creat§ @stCase subclass with many similarly named test functions, there is a
convenience function calleshakeSuite() that constructs a test suite that comprises all of the test cases in a test
case class:

suite = unittest.makeSuite(WidgetTestCase)

Note that when using thenakeSuite() function, the order in which the various test cases will be run by the test
suite is the order determined by sorting the test function names usiogi@ built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sincdestSuite instances can be added tdrestSuite just asTestCase instances can be added to a
TestSuite

suitel modulel.TheTestSuite()
suite2 module2.TheTestSuite()
alltests = unittest.TestSuite((suitel, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (such as
‘widget.py’), but there are several advantages to placing the test code in a separate module, sisigetssts. py’:

e The test module can be run standalone from the command line.

e The test code can more easily be separated from shipped code.

e There is less temptation to change test code to fit the code it tests without a good reason.

e Test code should be modified much less frequently than the code it tests.

e Tested code can be refactored more easily.

e Tests for modules written in C must be in separate modules anyway, so why not be consistent?

e If the testing strategy changes, there is no need to change the source code.

5.3.3 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to @estCase subclass.

For this reason, PyUnit providesrainctionTestCase class. This subclass @kstCase can be used to wrap an
existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
..

one can create an equivalent test case instance as follows:

180 Chapter 5. Miscellaneous Services

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they can
also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use dfssertionError as an indicator of test failure, but does not recommend it.
Future versions may treatssertionError differently.

5.3.4 Classes and functions

classTestCase ()
Instances of th@estCase class represent the smallest testable units in a set of tests. This class is intended to
be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the
interface needed by the test runner to allow it to drive the test, and methods that the test code can use to check
for and report various kinds of failures.

classFunctionTestCase (testFunt{, setu;{, tearDowr{, description]]])
This class implements the portion of thiestCase interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test cases
using legacy test code, allowing it to be integrated intmdtest -based test framework.

classTestSuite ([testﬁ)
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregedisis diven,
it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in a
TestSuite . It can load all tests within a given module ©estCase class. When loading from a mod-
ule, it considers allestCase -derived classes. For each such class, it creates an instance for each method with
a name beginning with the strinte’st .

defaultTestLoader
Instance of th& estLoader class which can be shared. If no customization offthstLoader is needed,
this instance can always be used instead of creating new instances.

classTextTestRunner ([strean{, descriptiong, verbositﬂ]])
A basic test runner implementation which prints results on standard output. It has a few configurable parameters,
but is essentially very simple. Graphical applications which run test suites should provide alternate implemen-
tations.

main ([module[, defauItTes[t, argv[, testRunne[r, testRunne}]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently exe-
cutable. The simplest use for this function is:

1 ’

if __name__ == "'_ _main__"
unittest.main()

5.3. unittest =~ — Unit testing framework 181

In some cases, the existing tests may have be written usindatttest module. If so, that module provides a
DocTestSuite class that can automatically builchittest. TestSuite instances from the existing test code.
New in version 2.3.

5.3.5 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests —
the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the test
itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any exception
raised by this method will be considered an error rather than a test failure. The default implementation does
nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called even
if the test method raised an exception, so the implementation in subclasses may need to be particularly careful
about checking internal state. Any exception raised by this method will be considered an error rather than a test
failure. This method will only be called if theetUp() succeeds, regardless of the outcome of the test method.
The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passezbals If resultis omitted orNone, a
temporary result object is created and used, but is not made available to the caller. This is equivalent to simply
calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propagated to the caller,
and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert _(expr[, msg])
failUnless (expn, msg|)
Signal a test failure iéxpris false; the explanation for the error will besgif given, otherwise it will beNone.

assertEqual (first, seconﬂ, msg|)

failUnlessEqual (first, secongl, msg])
Test thatfirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation
given bymsg or None. Note that usindailUnlessEqual() improves upon doing the comparison as the
first parameter tdailUnless() : the default value fomsgcan be computed to include representations of
bothfirst andsecond

assertNotEqual (first, seconﬂ, msg])

faillfEqual (first, seconﬂ, msg|)
Test thatfirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg or None. Note that usindaillfEqual() improves upon doing the comparison as the first
parameter tdailUnless() is that the default value fansgcan be computed to include representations of
bothfirst andsecond

assertAlmostEqual (first, secon@, pIaces{, ms])
failUnlessAlmostEqual (first, secongl, places, msg]])
Test thaffirst andsecondare approximately equal by computing the difference, rounding to the given number

182 Chapter 5. Miscellaneous Services

of places and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given bynsg or None.

assertNotAlmostEqual (first, secon@, places{, msg]])

faillfAlImostEqual (first, secongl, placeg, msg| |)
Test thafirst andsecondare not approximately equal by computing the difference, rounding to the given number
of places and comparing to zero. Note that comparing a given number of decimal places is not the same as
comparing a given number of significant digits. If the values do not compare equal, the test will fail with the
explanation given bynsg or None.

assertRaises (exception, callable,)..

failUnlessRaises (- exception, callable,)..
Test that an exception is raised wheadlableis called with any positional or keyword arguments that are also
passed t@ssertRaises() . The test passes éxceptions raised, is an error if another exception is raised,
or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes
may be passed &xception

faillf (expl{, msg])
The inverse of théailUnless() method is thdaillf() method. This signals a test failuresikpris true,
with msgor None for the error message.

fail ([msg])
Signals a test failure unconditionally, withsgor None for the error message.

failureException
This class attribute gives the exception raised bytdst() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute AssertionError

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object.eéStCase instances, this will always be,
but this method is also implemented by thestSuite class, which can return larger values.

defaultTestResult 0
Return the default type of test result object to be used to run this test.

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including the
module and class names.

shortDescription 0
Returns a one-line description of the testName if no description has been provided. The default implemen-
tation of this method returns the first line of the test method’s docstring, if availabNnre:.

5.3.6 TestSuite Objects

TestSuite objects behave much likEestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to add
tests toTestSuite instances:

addTest (tes)
Add aTestCase orTestSuite to the set of tests that make up the suite.

addTests (test9
Add all the tests from a sequenceT@stCase andTestSuite instances to this test suite.

Therun() method is also slightly different:

5.3. unittest — Unit testing framework 183

run (resulf
Run the tests associated with this suite, collecting the result into the test result object passall &pote that
unlike TestCase.run() , TestSuite.run() requires the result object to be passed in.

In the typical usage of aestSuite object, therun() method is invoked by &estRunner rather than by the
end-user test harness.

5.3.7 TestResult Objects

A TestResult object stores the results of a set of tests. ThestCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top afnittest may want access to theestResult object generated by running
a set of tests for reporting purposesi@stResult instance is returned by theestRunner.run() method for
this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among those test
runs. The collections contain tuples (ofestcase tracebach , wheretracebackis a string containing a formatted
version of the traceback for the exception.

TestResult instances have the following attributes that will be of interest when inspecting the results of running a
set of tests:

errors
A list containing pairs ofTestCase instances and the formatted tracebacks for tests which raised an ex-
ception but did not signal a test failure. Changed in version 2.2: Contains formatted tracebacks instead of
sys.exc _info() results.

failures
A list containing pairs offestCase instances and the formatted tracebacks for tests which signalled a failure
in the code under test. Changed in version 2.2: Contains formatted tracebacks insgaéxaf _info()
results.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of thdestResult class are used to maintain the internal data structures, and may be
extended in subclasses to support additional reporting requirements. This is particularly useful in building tools which
support interactive reporting while tests are being run.

startTest (tes)
Called when the test cagestis about to be run.

stopTest (tes)
Called when the test casesthas been executed, regardless of the outcome.

addError (test, erp
Called when the test cagestraises an exception without signalling a test failuegr is a tuple of the form
returned bysys.exc _info() : (type value traceback.

addFailure (test, er)
Called when the test cagestsignals a failure.err is a tuple of the form returned bgys.exc _info()
(type valug traceback.

addSuccess (tes)
This method is called for a test that does not fagktis the test case object.

One additional method is available fdestResult objects:

184 Chapter 5. Miscellaneous Services

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been

called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard.
Interactive tools which provide runners can use this in a similar manner.

5.3.8 TestLoader Objects

TheTestLoader class is used to create test suites from classes and modules. Normally, there is no need to create an
instance of this class; thenittest ~ module provides an instance that can be shared atefla@ltTestLoader
module attribute. Using a subclass or instance would allow customization of some configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClags
Return a suite of all tests cases contained inTibstCase -derived classestCaseClass

loadTestsFromModule (modulg
Return a suite of all tests cases contained in the given module. This method seancdléfor classes derived
from TestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy oTestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does not
play well with this method. Doing so, however, can be useful when the fixtures are different and defined in
subclasses.

loadTestsFromName (name[, moduld)
Return a suite of all tests cases given a string specifier.

The specifiernameis a “dotted name” that may resolve either to a module, a test case class, a test
method within a test case class, or a callable object which returiieséCase or TestSuite in-
stance. For example, if you have a modampleTests containing aTestCase -derived class
SampleTestCase with three test methodsgst _one() ,test _two() ,andtest _three()),the spec-

ifier 'SampleTests.SampleTestCase’ would cause this method to return a suite which will run all three
test methods. Using the specifiSampleTests.SampleTestCase.test _two’ would cause it to re-

turn a test suite which will run only thiest _two() test method. The specifier can refer to modules and
packages which have not been imported; they will be imported as a side-effect.

The method optionally resolvesmmerelative to a given module.

loadTestsFromNames (name%, moduld)
Similar toloadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClags
Return a sorted sequence of method names found wikiCaseClass

The following attributes of &estLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
‘test’

sortTestMethodsUsing
Function to be used to compare method names when sorting thgetTestCaseNames() . The default
value is the built-ircmp() function; it can be set tblone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is th€estSuite class.

5.3. unittest =~ — Unit testing framework 185

5.4 test — Regression tests package for Python

Thetest package contains all regression tests for Python as well as the mddsteest _support and
test.regrtest . test.test _support is used to enhance your tests whist.regrtest drives the test-
ing suite.

Each module in théest package whose name starts witkst _’ is a testing suite for a specific module or feature.
All new tests should be written using theittest module; usingunittest is not required but makes the tests
more flexible and maintenance of the tests easier. Some older tests are writterdtwies¢ and a “traditional”
testing style; these styles of tests will not be covered.

See Also:

Moduleunittest (section 5.3):
Writing PyUnit regression tests.

Moduledoctest (section 5.2):
Tests embedded in documentation strings.

5.4.1 Writing Unit Tests for the test package

It is preferred that tests for thiest package use thenittest module and follow a few guidelines. One is to

have the name of all the test methods start wiglst _' as well as the module’s name. This is needed so that the
methods are recognized by the test driver as test methods. Also, no documentation string for the method should be
included. A comment (such agTests function returns only True or False ") should be used to

provide documentation for test methods. This is done because documentation strings get printed out if they exist and
thus what test is being run is not stated.

A basic boilerplate is often used:

186 Chapter 5. Miscellaneous Services

import unittest
from test import test_support

class MyTestCasel(unittest.TestCase):
Only use setUp() and tearDown() if necessary

def setUp(self):
. code to execute in preparation for tests ...

def tearDown(self):
. code to execute to clean up after tests ...

def test feature_one(self):
Test feature one.
. testing code ...

def test_feature_two(self):
Test feature two.
. testing code ...

. more test methods ...

class MyTestCase2(unittest.TestCase):
. same structure as MyTestCasel ...

. more test classes ...

def test_main():
test_support.run_unittest(MyTestCasel,
MyTestCase2,
. list other tests ...

if __name__ =="'_ main__"
test_main()
This boilerplate code allows the testing suite to be rutdsy.regrtest as well as on its own as a script.

The goal for regression testing is to try to break code. This leads to a few guidelines to be followed:
e The testing suite should exercise all classes, functions, and constants. This includes not just the external API
that is to be presented to the outside world but also "private” code.

e Whitebox testing (examining the code being tested when the tests are being written) is preferred. Blackbox
testing (testing only the published user interface) is not complete enough to make sure all boundary and edge
cases are tested.

e Make sure all possible values are tested including invalid ones. This makes sure that not only all valid values
are acceptable but also that improper values are handled correctly.

e Exhaust as many code paths as possible. Test where branching occurs and thus tailor input to make sure as many
different paths through the code are taken.

e Add an explicit test for any bugs discovered for the tested code. This will make sure that the error does not crop
up again if the code is changed in the future.

e Make sure to clean up after your tests (such as close and remove all temporary files).

5.4. test — Regression tests package for Python 187

e Import as few modules as possible and do it as soon as possible. This minimizes external dependencies of tests
and also minimizes possible anomalous behavior from side-effects of importing a module.

e Try to maximize code reuse. On occasion, tests will vary by something as small as what type of input is used.
Minimize code duplication by subclassing a basic test class with a class that specifies the input:

class TestFuncAcceptsSequences(unittest.TestCase):
func = mySuperWhammyFunction

def test_func(self):
self.func(self.arg)

class AcceptLists(TestFuncAcceptsSequences):
arg = [1,2,3]

class AcceptStrings(TestFuncAcceptsSequences):
arg = 'abc’

class AcceptTuples(TestFuncAcceptsSequences):
arg = (1,2,3)

See Also:

Test Driven Development
A book by Kent Beck on writing tests before code.

5.4.2 Running tests using test.regrtest

test.regrtest can be used as a script to drive Python’s regression test suite. Running the script by itself automat-
ically starts running all regression tests in thet package. It does this by finding all modules in the package whose
name starts withtest _’, importing them, and executing the functitest _main() if present. The names of tests

to execute may also be passed to the script. Specifying a single regressiqytiesh (fegrtest.py test_spam.py)

will minimize output and only print whether the test passed or failed and thus minimize output.

Runningtest.regrtest directly allows what resources are available for tests to use to be set. You do this by using
the-u command-line option. Rupython regrtest.py -uall to turn on all resources; specifyiral as an option for

-u enables all possible resources. If all but one resource is desired (a more common case), a comma-separated list of
resources that are not desired may be listed afterThe commangython regrtest.py -uall,-audio,-largefile will
runtest.regrtest with all resources except ttaidio andlargefile resources. For a list of all resources and more
command-line options, rupython regrtest.py -h.

Some other ways to execute the regression tests depend on what platform the tests are being executedion. On U
you can runmake testat the top-level directory where Python was built. On Windows, executibgt from your
‘PCBuild’ directory will run all regression tests.

5.5 test.test _support — Utility functions for tests

Thetest.test _support module provides support for Python’s regression tests.
This module defines the following exceptions:

exceptionTestFailed
Exception to be raised when a test fails.

188 Chapter 5. Miscellaneous Services

exceptionTestSkipped
Subclass offestFailed . Raised when a test is skipped. This occurs when a needed resource (such as a
network connection) is not available at the time of testing.

exceptionResourceDenied
Subclass offestSkipped . Raised when a resource (such as a network connection) is not available. Raised
by therequires() function.

Thetest.test _support module defines the following constants:

verbose
True when verbose output is enabled. Should be checked when more detailed information is desired about a
running testverboses set bytest.regrtest

have _unicode
True when Unicode support is available.

is _jython
True if the running interpreter is Jython.
TESTFN

Set to the path that a temporary file may be created at. Any temporary that is created should be closed and
unlinked (removed).

Thetest.test _support module defines the following functions:

forget (module_.nameg
Removes the module namedodule namefrom sys.modules and deletes any byte-compiled files of the
module.

is _resource _enabled (resourcé
Returns True if resourceis enabled and available. The list of available resources is only set when
test.regrtest is executing the tests.

requires (resourc{, msg])
RaisesResourceDenied if resourceis not available.msgis the argument t&ResourceDenied if it is
raised. Always returns true if called by a function whasename__is’ __main __’ . Used when tests are
executed byest.regrtest

findfile (filenamé
Return the path to the file namdéitename If no match is foundilenameis returned. This does not equal a
failure since it could be the path to the file.

run _unittest (*classe3d
Executeunittest. TestCase subclasses passed to the function. The function scans the classes for methods
starting with the prefixtest _’ and executes the tests individually. This is the preferred way to execute tests.

run _suite (suite[, testclasi)
Execute thaunittest. TestSuite instancesuite The optional argumenestclassaccepts one of the test
classes in the suite so as to print out more detailed information on where the testing suite originated from.

5.6 decimal — Decimal floating point arithmetic

New in version 2.4.

Thedecimal module provides support for decimal floating point arithmetic. It offers several advantages over the
float() datatype:

e Decimal numbers can be represented exactly. In contrast, numbetslikéo not have an exact representation
in binary floating point. End users typically would not exp&ct to display asl.1000000000000001 as

5.6. decimal — Decimal floating point arithmetic 189

it does with binary floating point.

e The exactness carries over into arithmetic. In decimal floating p&rit, + 0.1 + 0.1 - 0.3 "is exactly
equal to zero. In binary floating point, result3s5511151231257827e-017 . While near to zero, the
differences prevent reliable equality testing and differences can accumulate. For this reason, decimal would be
preferred in accounting applications which have strict equality invariants.

e The decimal module incorporates notion of significant places so1h2®‘+ 1.20 ’'is 2.50 . The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For multipli-
cation, the “schoolbook” approach uses all the figures in the multiplicands. For instarge;, ‘1.2 ' gives
1.56 while ‘1.30 * 1.20 ’gives1.5600 .

e Unlike hardware based binary floating point, the decimal module has a user settable precision (defaulting to 28
places) which can be as large as needed for a given problem:

>>> getcontext().prec = 6

>>> Decimal(1) / Decimal(7)
Decimal("0.142857")

>>> getcontext().prec = 28

>>> Decimal(1) / Decimal(7)
Decimal("0.1428571428571428571428571429")

¢ Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of the
standard. When needed, the programmer has full control over rounding and signal handling.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeroes. Decimals also include special values sundimiis , -Infinity
andNaN The standard also differentiatéd from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags indicating
the results of operations, and trap enablers which determine whether signals are treated as exceptions. Rounding
options includeROUNDCEILING , ROUNDDOWNROUNDFLOORROUNDHALF_DOWNROUNDHALF_EVEN
ROUNDHALF_UP, andROUNDUP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs
of the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the
decimal module areClamped , InvalidOperation , DivisionByZero ,Inexact , Rounded, Subnormal ,

Overflow , andUnderflow

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag incremented from zero and,
then, if the trap enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before
monitoring a calculation.

See Also:
IBM's General Decimal Arithmetic Specificatiomhe General Decimal Arithmetic Specification
IEEE standard 854-198Unofficial IEEE 854 Text

5.6.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current contexjetditntext() and, if
necessary, setting new values for precision, rounding, or enabled traps:

190 Chapter 5. Miscellaneous Services

>>> from decimal import *

>>> getcontext()

Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[Overflow, InvalidOperation,
DivisionByZero])

>>> getcontext().prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings or tuples. To create a Decimalflisam a first

convert it to a string. This serves as an explicit reminder of the details of the conversion (including representation
error). Decimal numbers include special values sucNaswhich stands for “Not a number”, positive and negative
Infinity ,and-0 .

>>> Decimal(10)
Decimal("10")

>>> Decimal("3.14")
Decimal("3.14")

>>> Decimal((0, (3, 1, 4), -2))
Decimal("3.14")

>>> Decimal(str(2.0 ** 0.5))
Decimal("1.41421356237")
>>> Decimal("NaN")
Decimal("NaN")

>>> Decimal("-Infinity")
Decimal("-Infinity")

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext().prec = 6

>>> Decimal('3.0")

Decimal("3.0")

>>> Decimal('3.1415926535")

Decimal("3.1415926535")

>>> Decimal(’3.1415926535") + Decimal('2.7182818285’)
Decimal("5.85987")

>>> getcontext().rounding = ROUND_UP

>>> Decimal(’3.1415926535") + Decimal('2.7182818285’)
Decimal("5.85988")

Decimals interact well with much of the rest of python. Here is a small decimal floating point flying circus:

5.6. decimal — Decimal floating point arithmetic 191

>>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
>>> max(data)

Decimal("9.25")

>>> min(data)

Decimal("0.03")

>>> sorted(data)

[Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal('1.87"),
Decimal("2.35"), Decimal("3.45"), Decimal("9.25")]

>>> sum(data)

Decimal("19.29")

>>> a,b,c = data[:3]

>>> str(a)

'1.34'

>>> float(a)

1.3400000000000001

>>> round(a, 1) # round() first converts to binary floating point
1.3

>>> int(a)

1

>>> g * 5

Decimal("6.70")

>>> g * b

Decimal("2.5058")

>>> Cc % a

Decimal("0.77")

Thequantize() method rounds a number to a fixed exponent. This method is useful for monetary applications that
often round results to a fixed number of places:

>>> Decimal(’7.325’).quantize(Decimal(’.01’), rounding=ROUND_DOWN)
Decimal("7.32")

>>> Decimal(’7.325’).quantize(Decimal(’1.’), rounding=ROUND_UP)
Decimal("8")

As shown above, thgetcontext() function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use ttsetcontext() function.

In accordance with the standard, fhecimal module provides two ready to use standard cont®dsjcContext
andExtendedContext . The former is especially useful for debugging because many of the traps are enabled:

192 Chapter 5. Miscellaneous Services

>>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext(myothercontext)

>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[], traps=[])

>>> setcontext(ExtendedContext)

>>> Decimal(1) / Decimal(7)

Decimal("0.142857143")

>>> Decimal(42) / Decimal(0)

Decimal("Infinity")

>>> setcontext(BasicContext)
>>> Decimal(42) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal(42) / Decimal(0)
DivisionByZero: x / 0

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
theclear _flags() method.

>>> setcontext(ExtendedContext)

>>> getcontext().clear_flags()

>>> Decimal(355) / Decimal(113)

Decimal("3.14159292")

>>> getcontext()

Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
capitals=1, flags=[Inexact, Rounded], traps=[])

The flagsentry shows that the rational approximationRb was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in thegos field of a context:

>>> Decimal(1) / Decimal(0)
Decimal("Infinity")
>>> getcontext().traps[DivisionByZero] = 1
>>> Decimal(1) / Decimal(0)
Traceback (most recent call last):
File "<pyshell#112>", line 1, in -toplevel-

Decimal(1) / Decimal(0)

DivisionByZero: x / 0

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted tDecimal with a single cast inside a loop. With context set and decimals created, the bulk of the
program manipulates the data no differently than with other Python numeric types.

5.6. decimal — Decimal floating point arithmetic 193

5.6.2 Decimal objects

classDecimal ([value[, contexﬂ])
Constructs a newecimal object based frommalue

valuecan be an integer, string, tuple, or anotBecimal object. If novalueis given, return®ecimal("0")
If valueis a string, it should conform to the decimal numeric string syntax:

sign =

digit =0 | 2|3 |45 16|78 |y
indicator = e | 'F

digits »= digit [digit]...

decimal-part = digits .’ [digits] | [."] digits

exponent-part = indicator [sign] digits

infinity = Infinity’ | ’Inf’

nan == ’'NaN’' [digits] | 'sNaN’ [digits]

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string ::= [sign] numeric-value | [sign] nan

If valueis atuple , it should have three components, a si@nfdr positive orl for negative), auple
of digits, and an integer exponent. For examplBecimal((0, (1, 4, 1, 4), -3)) " returns
Decimal("1.414")

The contextprecision does not affect how many digits are stored. That is determined exclusively by the number
of digits invalue For example,Decimal("3.00000") ' records all five zeroes even if the context precision

is only three.

The purpose of theontextargument is determining what to dovélueis a malformed string. If the context
trapsinvalidOperation , an exception is raised; otherwise, the constructor returns a new Decimal with the

value ofNaN
Once constructed)ecimal objects are immutable.

Decimal floating point objects share many properties with the other builtin numeric types sflcatas andint .
All of the usual math operations and special methods apply. Likewise, decimal objects can be copied, pickled, printed,
used as dictionary keys, used as set elements, compared, sorted, and coerced to another tyfleéuctoal®ong).

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized meth-
ods:

adjusted ()
Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit re-
mains: Decimal("321e+5").adjusted() returns seven. Used for determining the position of the most

significant digit with respect to the decimal point.

as _tuple ()
Returns a tuple representation of the numbfsigh, digittuple, exponent)

compare (other[, contexﬂ)
Compares like__cmp__() but returns a decimal instance:

a or b is a NaN ==> Decimal("NaN")
a<b ==> Decimal("-1")
a == ==> Decimal("0")
a>b ==> Decimal("1")
max(othel{, contexl])
Like ‘max(self, other) ' except that the context rounding rule is applied before returning and\thist

194 Chapter 5. Miscellaneous Services

values are either signalled or ignored (depending on the context and whether they are signaling or quiet).

min (other[, contexl])
Like ‘min(self, other) " except that the context rounding rule is applied before returning and\iisit
values are either signalled or ignored (depending on the context and whether they are signaling or quiet).

normalize ([context])
Normalize the number by stripping the rightmost trailing zeroes and converting any result equal to
Decimal("0") to Decimal("0e0") . Used for producing canonical values for members of an equiva-
lence class. For examplBgcimal("32.100") andDecimal("0.321000e+2") both normalize to the
equivalent valu®ecimal("32.1")

quantize (exp[, rounding[, contex[, watchexd]])
Quantize makes the exponent the samex@sSearches for a rounding methodaunding then incontext and
then in the current context.

If watchexpis set (default), then an error is returned whenever the resulting exponent is greaténthaor
less tharEtiny

remainder _near (other[, contexﬂ)
Computes the modulo as either a positive or negative value depending on which is closest to zero. For in-
stance, Decimal(10).remainder _near(6) ' returnsDecimal("-2") which is closer to zero than
Decimal("4")

If both are equally close, the one chosen will have the same sigelfas

same_quantum (other[, contexﬂ)
Test whether self and other have the same exponent or whether bdthNre

sqrt ([contexl])
Return the square root to full precision.

to _eng_string ([contexl])
Convert to an engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, convefecimal('123E+1) to Decimal("1.23E+3")

to _integral ([rounding{, contexﬂ])
Rounds to the nearest integer without signalimgxact or Rounded. If given, appliesounding otherwise,
uses the rounding method in either the supptiedtextor the current context.

5.6.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed usirgettomatext() and
setcontext() functions:

getcontext ()
Return the current context for the active thread.

setcontext (¢)
Set the current context for the active thread.to

New contexts can formed using tiontext constructor described below. In addition, the module provides three
pre-made contexts:

classBasicContext
This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUNDHALF_UP. All flags are cleared. All traps are enabled (treated as exceptions) except

5.6. decimal — Decimal floating point arithmetic 195

Inexact , Rounded, andSubnormal .
Because many of the traps are enabled, this context is useful for debugging.

classExtendedContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set tROUNDHALF_EVEN All flags are cleared. No traps are enabled (so that exceptions are not
raised during computations).

Because the trapped are disabled, this context is useful for applications that prefer to have resultNaNie of
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

classDefaultContext

This context is used by th€ontext constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts creating Iotitext constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are started
has the effect of setting system-wide defaults. Changing the fields after threads have started is not recommended
as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are precision=28, rounding=ROUMBLF_EVEN, and enabled traps for Overflow, In-
validOperation, and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created witiotitext constructor.

classContext (prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capijals=1

Creates a new context. If a field is not specified omMNisne, the default values are copied from the
DefaultContext . If the flagsfield is not specified or idlone, all flags are cleared.

Theprecfield is a positive integer that sets the precision for arithmetic operations in the context.

The rounding option is one of: ROUNDCEILING (towards Infinity), ROUNDDOWN(towards
zero), ROUNDFLOOR(towards-Infinity), ROUNDHALF_DOWNtowards zero)ROUNDHALF_EVEN
ROUNDHALF_UP (away from zero), oROUNDUP (away from zero).

Thetrapsandflagsfields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The EminandEmaxfields are integers specifying the outer limits allowable for exponents.

The capitalsfield is either0 or 1 (the default). If set td, exponents are printed with a capiilotherwise, a
lowercasee is used:Decimal(’6.02e+23")

TheContext class defines several general purpose methods as well as a large number of methods for doing arithmetic
directly in a given context.

clear _flags ()

Sets all of the flags 6.

copy ()

Returns a duplicate of the context.

create _decimal (num

Creates a new Decimal instance framambut usingself as context. Unlike th®ecimal constructor, the
context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application. Another
benefit is that rounding immediately eliminates unintended effects from digits beyond the current precision. In
the following example, using unrounded inputs means that adding zero to a sum can change the result:

196

Chapter 5. Miscellaneous Services

>>> getcontext().prec = 3

>>> Decimal("3.4445") + Decimal("1.0023")
Decimal("4.45")

>>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023")
Decimal("4.44")

Etiny ()
Returns a value equal t&Emin - prec + 1 ’which is the minimum exponent value for subnormal results.
When underflow occurs, the exponent is seEtimy

Etop ()
Returns a value equal t&max - prec + 1 .

The usual approach to working with decimals is to crdéa¢eimal instances and then apply arithmetic operations
which take place within the current context for the active thread. An alternate approach is to use context methods for
calculating within a specific context. The methods are similar to those fdb#eémal class and are only briefly
recounted here.

abs (x)
Returns the absolute value xf

add(x,y)
Return the sum af andy.

compare (X, Y)
Compares values numerically.

Like __cmp__() but returns a decimal instance:

a or b is a NaN ==> Decimal("NaN")

a<bhb ==> Decimal("-1")
a==>b ==> Decimal("0")
a>bhb ==> Decimal("1")
divide (x,Y)
Returnx divided byy.
divmod (X,)

Divides two numbers and returns the integer part of the result.

max(X, y)
Compare two values numerically and return the maximum.

If they are numerically equal then the left-hand operand is chosen as the result.
min (X, y)

Compare two values numerically and return the minimum.

If they are numerically equal then the left-hand operand is chosen as the result.
minus (X)

Minus corresponds to the unary prefix minus operator in Python.

multiply (x,y)
Return the product of andy.

normalize (X)
Normalize reduces an operand to its simplest form.

Essentially gplus operation with all trailing zeros removed from the result.

5.6. decimal — Decimal floating point arithmetic 197

plus (X)
Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision and
rounding, so it imotan identity operation.

power (X, y[modulo])
Return X ** y ’to the moduloif given.

The right-hand operand must be a whole number whose integer part (after any exponent has been applied) has
no more than 9 digits and whose fractional part (if any) is all zeros before any rounding. The operand may
be positive, negative, or zero; if negative, the absolute value of the power is used, and the left-hand operand is
inverted (divided into 1) before use.

If the increased precision needed for the intermediate calculations exceeds the capabilities of the implementation
then aninvalidOperation condition is signaled.

If, when raising to a negative power, an underflow occurs during the division into 1, the operation is not halted
at that point but continues.

qguantize (Xx,Y)
Returns a value equal toafter rounding and having the exponentyof

Unlike other operations, if the length of the coefficient after the quantize operation would be greater than pre-
cision, then annvalidOperation is signaled. This guarantees that, unless there is an error condition, the
quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

remainder (x,Y)
Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

remainder _near (X,Y)
Computed the modulo as either a positive or negative value depending on which is closest to zero. For in-
stance, Decimal(10).remainder _near(6) ' returnsDecimal("-2") which is closer to zero than
Decimal("4")

If both are equally close, the one chosen will have the same sigelfas

same_quantum (X, y)
Test whethex andy have the same exponent or whether bothNaidl

sqrt ()
Return the square root to full precision.

substract (Xx,Y)
Return the difference betweearandy.

to _eng_string ()
Convert to engineering-type string.

Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal
place. For example, convelecimal('123E+1") to Decimal("1.23E+3")

to _integral (X)
Rounds to the nearest integer without signalimgxact or Rounded.

to _sci _string ()
Converts a number to a string using scientific notation.

5.6.4 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

198 Chapter 5. Miscellaneous Services

The context flag is incremented whenever the condition is encountered. After the computation, flags may be checked
for informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For example,
if the DivisionByZero trap is set, then BivisionByZero exception is raised upon encountering the condition.

classClamped
Altered an exponent to fit representation constraints.

Typically, clamping occurs when an exponent falls outside the contértie andEmaxlimits. If possible, the
exponent is reduced to fit by adding zeroes to the coefficient.

classDecimalException
Base class for other signals and is a subclagsittimeticError

classDivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returnifinity or -Infinity with the sign determined by the inputs to the calculation.

classlnexact
Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

classinvalidOperation
An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trappedJadtuPassible causes
include:

Infinity - Infinity

0 * Infinity

Infinity / Infinity

X % 0

Infinity % x

X._rescale(non-integer)

sqrt(-x) and x > 0

0*™ 0

X ** (non-integer)

X ** Infinity

classOverflow
Numerical overflow.

Indicates the exponent is larger thEBmax after rounding has occurred. If not trapped, the result depends on
the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity . In either caselnexact andRounded are also signaled.

classRounded
Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rduf@ingp 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

classSubnormal
Exponent was lower thalBmin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

5.6. decimal — Decimal floating point arithmetic 199

classUnderflow
Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounttiegact andSubnormal are also signaled.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError(exceptions.StandardError)
DecimalException
Clamped
DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
Inexact
Overflow(Inexact, Rounded)
Underflow(lnexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal

5.6.5 Floating Point Notes

The use of decimal floating point eliminates decimal representation error (making it possible to repfesexdactly);
however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import *
>>> getcontext().prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111’)
>>> (U + V) +w

Decimal("9.5111111")

>>> u + (Vv + w)

Decimal("10")

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)

Decimal("0.01")

>>> U *(v+w)

Decimal("0.0060000")

Thedecimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

200 Chapter 5. Miscellaneous Services

>>> getcontext().prec = 20

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111’)
>>> (U +Vv) +w

Decimal("9.51111111")

>>> u + (Vv + w)

Decimal("9.51111111")

>>>

>>> u, v, w = Decimal(20000), Decimal(-6), Decimal(’6.0000003’)
>>> (u*v) + (u*w)

Decimal("0.0060000")

>>> U *(v+w)

Decimal("0.0060000")

The number system for thdecimal module provides special values includiM¢gaN sNaN, -Infinity ,
Infinity , and two zeroest0 and-0 .

Infinities can be constructed directly witecimal(’Infinity’) . Also, they can arise from dividing by zero
when theDivisionByZero signal is not trapped. Likewise, when tBwerflow signal is not trapped, infinity can
result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, indeter-
minate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and relan| or if the InvalidOperation signal is trapped, raise an excep-

tion. For exampleQ/0 returnsNaNwhich means “not a number”. This variety M&Nis quiet and, once created, will

flow through other computations always resulting in anot&i This behavior can be useful for a series of compu-
tations that occasionally have missing inputs — it allows the calculation to proceed while flagging specific results as
invalid.

A variant issNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal(’Infinity’)
Decimal("0OE-1000000026")

5.6.6 Working with threads

Thegetcontext() function accesses a differe@bntext object for each thread. Having separate thread contexts
means that threads may make changes (sugetasntext.prec=10) without interfering with other threads.
Likewise, thesetcontext() function automatically assigns its target to the current thread.

If setcontext() has not been called befogetcontext() , thengetcontext() will automatically create a
new context for use in the current thread.

The new context is copied from a prototype context cabedaultContext To control the defaults so that each thread
will use the same values throughout the application, directly modifyDsfaultContexbbject. This should be done

5.6. decimal — Decimal floating point arithmetic 201

beforeany threads are started so that there won't be a race condition between threadgjetdiomgext() . For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy()
DefaultContext.traps[InvalidOperation] = 1

setcontext(DefaultContext)

Afterwards, the threads can be started
tl.start()

t2.start()
t3.start()

5.6.7 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work \ligciimal class:

202 Chapter 5. Miscellaneous Services

def moneyfmt(value, places=2, curr=", sep=",, dp="/,
pos=", neg="-', trailneg="):
""Convert Decimal to a money formatted string.

places: required number of places after the decimal point

curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places is zero
pos: optional sign for positive numbers: '+, space or blank
neg: optional sign for negative numbers: -, ’(, space or blank
trailneg:optional trailing minus indicator: -, ')’, space or blank

>>> d = Decimal(’-1234567.8901")

>>> moneyfmt(d, curr="$’)

'-$1,234,567.89’

>>> moneyfmt(d, places=0, sep="’, dp=", neg=", trailneg="-)
'1.234.568-

>>> moneyfmt(d, curr='$’, neg="(, trailneg="))
'($1,234,567.89)

>>> moneyfmt(Decimal(123456789), sep="")

123 456 789.00’

>>> moneyfmt(Decimal(’-0.02’), neg='<’, trailneg=">")
'<.02>

q = Decimal((0, (1,), -places)) # 2 places --> '0.01
sign, digits, exp = value.quantize(qg).as_tuple()
assert exp == -places
result =]
digits = map(str, digits)
build, next = result.append, digits.pop
if sign:
build(trailneg)
for i in range(places):
if digits:
build(next())
else:
build('0%)
build(dp)
i=0
while digits:
build(next())
i +=1
if i == 3 and digits:
i=0
build(sep)
build(curr)
if sign:
build(neg)
else:
build(pos)
result.reverse()
return ".join(result)

def pi():
""Compute Pi to the current precision.

>>> print pi()
- 3.144592653589793238462643383 OO
5.6. decimal — Decimal floating point arithmetic 203

getcontext().prec += 2 # extra digits for intermediate steps

three = Decimal(3) # substitute "three=3.0" for regular floats
lmcte ¥+ = rn nrna A Aa — N +heease 29 1 N N D22

5.7 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name droatithenodule

if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

Number-theoretic and representation functions:

ceil (X
Return the ceiling ok as a float, the smallest integer value greater than or equal to
fabs (x)
Return the absolute value wf
floor (X)
Return the floor ok as a float, the largest integer value less than or equal to
fmod (x, y)

Returnfmod(%, V), as defined by the platform C library. Note that the Python expressiéfy may not
return the same result. The intent of the C standard isfthadl(X, y) be exactly (mathematically; to infinite
precision) equal tx - n*y for some integen such that the result has the same sign and magnitude less
thanabs(y) . Python'sx % yreturns a result with the sign gfinstead, and may not be exactly computable for
float arguments. For exampleod(-1e-100, 1e100) is-1e-100 , but the result of Python'sle-100

% 1e100is 1e100-1e-100 , which cannot be represented exactly as a float, and rounds to the surprising
1e100 . For this reason, functiomod() is generally preferred when working with floats, while Python’s

% vy is preferred when working with integers.

frexp (X)
Return the mantissa and exponenkafs the pai(m, €). mis a float ance is an integer such that ==
* 2% eexactly. Ifxis zero, returng0.0, 0) , otherwise0.5 <= abs(m) < 1. Thisis used to "pick
apart” the internal representation of a float in a portable way.

Idexp (X, i)
Returnx * (2** i) . This is essentially the inverse of functifmexp()

modf (X)
Return the fractional and integer partsxoBoth results carry the sign af and both are floats.

Note thatfrexp() = andmodf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter
(there is no such thing in Python).

For theceil() ,floor() , andmodf() functions, note thaall floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any floatvith abs(x) >= 2**52 necessarily has no fractional bits.

Power and logarithmic functions:

exp (X)
Returne** x.

log (x[, basﬂ)
Return the logarithm af to the giverbase If the baseis not specified, return the natural logarithmxdthat is,

204 Chapter 5. Miscellaneous Services

the logarithm to base). Changed in version 2.Baseargument added.
log10 (X)
Return the base-10 logarithm xf

powW(X, Y)
Returnx** y.

sqrt (x)
Return the square root a&f

Trigonometric functions:

acos (X)

Return the arc cosine of in radians.
asin (x)

Return the arc sine of, in radians.

atan (x)
Return the arc tangent &f in radians.

atan2 (y, %
Returnatan(y / x),inradians. The resultis betwegri andpi . The vector in the plane from the origin to
point(X, Yy) makes this angle with the positive X axis. The poinatdn2() is that the signs of both inputs
are known to it, so it can compute the correct quadrant for the angle. For exatgpi€l) andatan2(1,
1) are bothpi/4 , butatan2(-1, -1) is -3*pi/4

cos (X
Return the cosine ofradians.

hypot (X, Y)
Return the Euclidean normsgrt(x*x + y*y). This is the length of the vector from the origin to po{m,
y).

sin (X)
Return the sine of radians.

tan ()
Return the tangent ofradians.

Angular conversion:

degrees (X)
Converts angl& from radians to degrees.

radians (X)
Converts angle from degrees to radians.

Hyperbolic functions:

cosh (X)
Return the hyperbolic cosine &f

sinh (x)
Return the hyperbolic sine af

tanh (x)
Return the hyperbolic tangent uf

The module also defines two mathematical constants:

pi
The mathematical constapit

5.7. math — Mathematical functions 205

The mathematical constaat

Note: Themath module consists mostly of thin wrappers around the platform C math library functions. Behavior in
exceptional cases is loosely specified by the C standards, and Python inherits much of its math-function error-reporting
behavior from the platform C implementation. As a result, the specific exceptions raised in error cases (and even
whether some arguments are considered to be exceptional at all) are not defined in any useful cross-platform or cross-
release way. For example, wheteath.log(0) returns-Inf orraisesv/alueError or OverflowError isn’t

defined, and in cases whamath.log(0) raisesOverflowError , math.log(OL) may raiseValueError

instead.

See Also:

Modulecmath (section 5.8):
Complex number versions of many of these functions.

5.8 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)
Return the arc cosine of There are two branch cuts: One extends right from 1 along the real axis to
continuous from below. The other extends left from -1 along the real axist@entinuous from above.

acosh (x)
Return the hyperbolic arc cosinexfThere is one branch cut, extending left from 1 along the real axisto -
continuous from above.

asin (x)
Return the arc sine of This has the same branch cutsaass()

asinh (x)
Return the hyperbolic arc sine af There are two branch cuts, extending left frapdj to +-ooj , both
continuous from above. These branch cuts should be considered a bug to be corrected in a future release. The
correct branch cuts should extend along the imaginary axis, onefjonp toooj and continuous from the
right, and one from%j down to ©oj and continuous from the left.

atan (x)
Return the arc tangent af There are two branch cuts: One extends fljmalong the imaginary axis teoj ,
continuous from the left. The other extends frohj -along the imaginary axis taxej , continuous from the
left. (This should probably be changed so the upper cut becomes continuous from the other side.)

atanh (x)
Return the hyperbolic arc tangentxf There are two branch cuts: One extends from 1 along the real axis to
oo, continuous from above. The other extends from -1 along the real axis toentinuous from above. (This
should probably be changed so the right cut becomes continuous from the other side.)

cos (X
Return the cosine of.

cosh (x)
Return the hyperbolic cosine &f

exp (X)
Return the exponential valeg™* x.

log (x[, basd)
Returns the logarithm ofto the giverbase If the baseis not specified, returns the natural logarithnxoT here

206 Chapter 5. Miscellaneous Services

is one branch cut, from 0 along the negative real axistg eontinuous from above. Changed in version 2.4:
baseargument added.

logl0 (x)
Return the base-10 logarithm xf This has the same branch cutiag()

sin (X)
Return the sine of.
sinh (x)
Return the hyperbolic sine af
sqrt (x)
Return the square root &f This has the same branch cutiag()
tan (X
Return the tangent of.
tanh (x)

Return the hyperbolic tangent »f

The module also defines two mathematical constants:

pi
The mathematical constapi, as a real.

The mathematical constagtas a real.

Note that the selection of functions is similar, but not identical, to that in madhalés . The reason for having two
modules is that some users aren't interested in complex numbers, and perhaps don’t even know what they are. They
would rather havenath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See Also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.)The state of the art in numerical analys{Slarendon Press (1987) pp165-211.

5.9 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions.

For integers, uniform selection from a range. For sequences, uniform selection of a random element, a function to
generate a random permutation of a list in-place, and a function for random sampling without replacement.

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic functamdom() , which generates a random float uniformly in

the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit precision
floats and has a period of 2**19937-1. The underlying implementation in C is both fast and threadsafe. The Mersenne
Twister is one of the most extensively tested random number generators in existence. However, being completely
deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

5.9. random — Generate pseudo-random numbers 207

The functions supplied by this module are actually bound methods of a hidden instanceaoftitven. Random class.

You can instantiate your own instancesRdndomto get generators that don't share state. This is especially useful
for multi-threaded programs, creating a different instandearidomfor each thread, and using thempahead()
method to ensure that the generated sequences seen by each thread don’t overlap.

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that case,

override therandom() , seed() , getstate() , setstate() andjumpahead() methods. Optionally, a new
generator can supply getrandombits() method — this allowsandrange() to produce selections over an
arbitrarily large range. New in version 2.4: thetrandombits() method.

As an example of subclassing, trendom module provides th&/ichmannHill class which implements an al-
ternative generator in pure Python. The class provides a backward compatible way to reproduce results from earlier
versions of Python which used the Wichmann-Hill algorithm as the core generator. Changed in version 2.3: Substi-
tuted MersenneTwister for Wichmann-Hill.

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argumesu be any hashable objectxlis omitted or
None, current system time is used; current system time is also used to initialize the generator when the module
is first imported. If randomness sources are provided by the operating system, they are used instead of the
system time (see thes.urandom() function for details on availability). Changed in version 2.4: formerly,
operating system resources were not usedk idfnotNone or an int or longhash(x) is used instead. Kis
an int or long x is used directly.

getstate ()
Return an object capturing the current internal state of the generator. This object can be peststatsg)
to restore the state. New in version 2.1.

setstate (statg
stateshould have been obtained from a previous cajjdtstate() , andsetstate() restores the internal
state of the generator to what it was at the teaéstate() was called. New in version 2.1.

jumpahead (n)
Change the internal state to one different from and likely far away from the current ste&te. non-negative
integer which is used to scramble the current state vector. This is most useful in multi-threaded programs, in
conjuction with multiple instances of tHeandom class: setstate() or seed() can be used to force all
instances into the same internal state, and fherpahead() can be used to force the instances’ states far
apart. New in version 2.1. Changed in version 2.3: Instead of jumping to a specificrssips ahead,
jumpahead(n) jumps to another state likely to be separated by many steps..

getrandbits (k)
Returns a pythofong int with k random bits. This method is supplied with the MersenneTwister generator and
some other generators may also provide it as an optional part of the API. When avag&tbdadbits()
enablesandrange() to handle arbitrarily large ranges. New in version 2.4.

Functions for integers:

randrange ([start,] stop{, step])
Return a randomly selected element fromange(start, stop step. This is equivalent to
choice(range(start, stop step) , but doesn’t actually build a range object. New in version 1.5.2.

randint (a, b
Return a random integd®t such thalh <= N <= bh.

Functions for sequences:

choice (seq
Return a random element from the non-empty sequeeaqdf seqis empty, raisetndexError

shuffle (x[, random])

208 Chapter 5. Miscellaneous Services

Shuffle the sequencein place. The optional argumerdandomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functioandom() .

Note that for even rather smadin(x) , the total number of permutations »fs larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

sample (population, K
Return ak length list of unique elements chosen from the population sequence. Used for random sampling
without replacement. New in version 2.3.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each occur-
rence is a possible selection in the sample.

To choose a sample from a range of integers,xiaage as an argument. This is especially fast and space
efficient for sampling from a large populatiosample(xrange(10000000), 60)

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b)
Return a random real numbNrsuch thalh <= N < h.

betavariate (alpha, betd
Beta distribution. Conditions on the parameters @pgha > -1 andbeta > -1 . Returned values range
between 0 and 1.

expovariate (lambd
Exponential distributionlambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values range from 0 to positive infinity.

gammavariate (alpha, beta
Gamma distribution.Notthe gamma function!) Conditions on the parametersaipha > 0 andbeta > 0.

gauss (mu, sigma
Gaussian distributionmu is the mean, andigmais the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate ~ (mu, sigma
Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution
with meanmuand standard deviatissigma mucan have any value, arsigmamust be greater than zero.

normalvariate (mu, sigma
Normal distribution.muis the mean, andigmais the standard deviation.

vonmisesvariate (mu, kappa
muis the mean angle, expressed in radians between 0 gugda2idkappais the concentration parameter, which
must be greater than or equal to zerokdppais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to @

paretovariate (alpha
Pareto distributionalphais the shape parameter.

weibullvariate (alpha, beta
Weibull distribution.alphais the scale parameter abdtais the shape parameter.

Alternative Generators

5.9. random — Generate pseudo-random numbers 209

classwichmannHill ([seec])
Class that implements the Wichmann-Hill algorithm as the core generator. Has all of the same methods as
Random plus thewhseed method described below. Because this class is implemented in pure Python, it is
not threadsafe and may require locks between calls. The period of the generator is 6,953,607,871,644 which is
small enough to require care that two independent random sequences do not overlap.

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1s8e@ for details.
whseed does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more
than about 2**24 distinct internal states in all.

classSystemRandom [seeoﬂ)
Class that uses thaes.urandom() function for generating random numbers from sources provided by the op-
erating system. Not available on all systems. Does not rely on software state and sequences are not reproducible.
Accordingly, theseed() andjumpahead() methods have no effect and are ignored. Ghtstate()
andsetstate() methods rais®lotimplementedError if called. New in version 2.4,

See Also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generatorACM Transactions on Modeling and Computer Simulatioh 8, No. 1, January pp.3-30 1998.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.10 whrandom — Pseudo-random number generator

Deprecated since release 2.1serandom instead.

Note: This module was an implementation detail of tk@dom module in releases of Python prior to 2.1. Itis no
longer used. Please do not use this module directlyjasgom instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is alsonmaeretbm .
Instances of thevhrandom class conform to the Random Number Generator interface described in the docs for the
random module. They also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, Y, z])
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time, \if andz are either omitted or
0, the seed will be computed from the current system time. If one or two of the paramet@rshartenot all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with the
corresponding result on the pseudo-random series produced by the generator.

Other supported methods include:

choice (seq
Chooses a random element from the non-empty sequsagand returns it.

randint (a, b)
Returns a random integ8t such thab<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (X,Y, 2
Initializes the random number generator from the integessandz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numbersuch thab<=N<b.

210 Chapter 5. Miscellaneous Services

When imported, thevhrandom module also creates an instance of l@andom class, and makes the methods of
that instance available at the module level. Therefore one can write Bitkerwhrandom.random() or:

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.
See Also:

Modulerandom (section 5.9):
Generators for various random distributions and documentation for the Random Number Generator interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistic81 (1982) 188-190.

5.11 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is callbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect _left (list, iten[, Io[, hi]])
Locate the proper insertion point fdemin list to maintain sorted order. The parameterandhi may be used
to specify a subset of the list which should be considered; by default the entire list is ustedn iff already
present ifist, the insertion point will be before (to the left of) any existing entries. The return value is suitable

for use as the first parameterlist.insert() . This assumes théist is already sorted. New in version 2.1.
bisect _right (list, itenf, Io[, hi]])
Similar tobisect _left() , but returns an insertion point which comes after (to the right of) any existing
entries ofitemin list. New in version 2.1.
bisect (...

Alias for bisect _right()

insort _left (list, iten[, Io[, hi]])
Insertitemin list in sorted order. This is equivalent list.insert(bisect.bisect _left(list, item
lo, hi), item). This assumes théistis already sorted. New in version 2.1.

insort _right (list, iten] , Io[, hi]])
Similar toinsort _left() , but insertingtemin list after any existing entries @em New in version 2.1.

insort (..)
Alias forinsort _right()

5.11.1 Examples

Thebisect() function is generally useful for categorizing numeric data. This examplehisest() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A, 75..84 is a
‘B’, etc.

5.11. bisect — Array bisection algorithm 211

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
return grades[bisect(breakpoints, total)]

>>> grade(66)

cr

>>> map(grade, [33, 99, 77, 44, 12, 88])
[IEI’ 1A1, 1Bl’ IDI’ vFil 1Al]

5.12 collections — High-performance container datatypes

New in version 2.4.

This module implements high-performance container datatypes. Currently, the only datatype is a deque. Future
additions may include B-trees and Fibonacci heaps.

deque ([iterable])
Returns a new deque objected initialized left-to-right (ugipgend()) with data fromiterable If iterableis
not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the sam@(1) performance in either direction.

Thoughlist objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs fopop(0) ' and ‘insert(0, v) ' operations which change both the size
and position of the underlying data representation. New in version 2.4.

Deque objects support the following methods:

append (X)
Add x to the right side of the deque.

appendleft (X)
Add x to the left side of the deque.

clear ()
Remove all elements from the deque leaving it with length 0.

extend (iterable
Extend the right side of the deque by appending elements from the iterable argument.

extendleft (iterable)
Extend the left side of the deque by appending elements iienaible. Note, the series of left appends results
in reversing the order of elements in the iterable argument.

pop ()
Remove and return an element from the right side of the deque. If no elements are present, raises a

IndexError

popleft ()
Remove and return an element from the left side of the deque. If no elements are presentinmdesdsreor

rotate (n)
Rotate the dequesteps to the right. Ifiis negative, rotate to the left. Rotating one step to the right is equivalent

212 Chapter 5. Miscellaneous Services

to: ‘d.appendleft(d.pop())

In addition to the above, deques support iteration, picklingn(d) ’, ‘reversed(d) ', ‘copy.copy(d)
‘copy.deepcopy(d) ', membership testing with th@ operator, and subscript references suctdgd] .
Example:

>>> from collections import deque

>>> d = deque('ghi’) # make a new deque with three items

>>> for elem in d: # iterate over the deque’'s elements

print elem.upper()

G

H

|

>>> d.append(’j’) # add a new entry to the right side

>>> d.appendleft('f) # add a new entry to the left side

>>> d # show the representation of the deque

deque([t, ‘g, ', i\ 7]

>>> d.pop() # return and remove the rightmost item

YJ')

>>> d.popleft() # return and remove the leftmost item

1f7

>>> |ist(d) # list the contents of the deque

[ygy, ’h’, ’i,]

>>> d[0] # peek at leftmost item

g

>>> d[-1] # peek at rightmost item

1i1

>>> list(reversed(d)) # list the contents of a deque in reverse

[’i‘, ‘h’, 1g|]

>>> 'h'" in d # search the deque

True

>>> d.extend(’jkl’) # add multiple elements at once

>>> d

deque([’g’, 1h1l ’i’, ’j’, ’k', 1||])

>>> d.rotate(1) # right rotation

>>> d

deque([’l’, ygy, ’h’, ’i’, 1j1’ xkx])

>>> d.rotate(-1) # left rotation

>>> d

deque([’g’, ’h’, ’i,, ’j’, ’k’, 1|1])

>>> deque(reversed(d)) # make a new deque in reverse order

deque([’l’, yky, 1j1’ ,i’, 1h1l 191])

>>> d.clear() # empty the deque

>>> d.pop() # cannot pop from an empty deque

Traceback (most recent call last):

File "<pyshell#6>", line 1, in -toplevel-
d.pop()
IndexError: pop from an empty deque
>>> d.extendleft('abc’) # extendleft() reverses the input order

>>>
deque([’c’, 'b’, 'a’)

5.12. collections — High-performance container datatypes 213

5.12.1 Recipes

This section shows various approaches to working with deques.

The rotate() method provides a way to implemedéque slicing and deletion. For example, a pure python
implementation oflel d[n] relies on theotate() method to position elements to be popped:

def delete_nth(d, n):
d.rotate(-n)
d.popleft()
d.rotate(n)

To implementdeque slicing, use a similar approach applyiratate() to bring a target element to the left side of
the deque. Remove old entries wigbpleft() , add new entries witbxtend() , and then reverse the rotation.

With minor variations on that approach, it is easy to implement Forth style stack manipulations slugh dsop ,
swap, over , pick ,rot , androll

A roundrobin task server can be built frondaque usingpopleft() to select the current task aappend() to
add it back to the tasklist if the input stream is not exhausted:

def roundrobin(*iterables):
pending = deque(iter(i) for i in iterables)
while pending:
task = pending.popleft()
try:
yield task.next()
except Stoplteration:
continue
pending.append(task)

>>> for value in roundrobin(’abc’, 'd’, 'efgh’):
print value

QO T DO QD

Multi-pass data reduction algorithms can be succinctly expressed and efficiently coded by extracting elements with
multiple calls topopleft() , applying the reduction function, and calliagpend() to add the result back to the
queue.

For example, building a balanced binary tree of nested lists entails reducing two adjacent nodes into one by grouping
them in a list:

214 Chapter 5. Miscellaneous Services

def maketree(iterable):
d = deque(iterable)
while len(d) > 1:
pair = [d.popleft(), d.popleft()]
d.append(pair)
return list(d)

>>> print maketree('abcdefgh’)

[{lla, b1, [c, 'd1l, (e, fl, [g, "hl

5.13 heapg — Heap queue algorithm

New in version 2.3.
This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are arrays for whidieag k| <= heag2* k+1] andheag k] <= heag2* k+2] for all k, counting ele-
ments from zero. For the sake of comparison, non-existing elements are considered to be infinite. The interesting
property of a heap is thaieag0] is always its smallest element.

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes the
relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable

since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a "min
heap” in textbooks; a "max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surpesgif] is the smallest item,
andheapsort() maintains the heap invariant!

To create a heap, use a list initialized[to, or you can transform a populated list into a heap via fundieapify()
The following functions are provided:

heappush (heap, item
Push the valugemonto theheap maintaining the heap invariant.

heappop (heap
Pop and return the smallest item from theap maintaining the heap invariant. If the heap is empty,
IndexError s raised.

heapify (X)
Transform listx into a heap, in-place, in linear time.

heapreplace (heap, item
Pop and return the smallest item from themp and also push the netem The heap size doesn’t change. If the
heap is emptyindexError is raised. This is more efficient thdmeappop() followed by heappush() ,
and can be more appropriate when using a fixed-size heap. Note that the value returned may be légyar than
That constrains reasonable uses of this routine unless written as part of a conditional replacement:

if item > heap[O]:
item = heapreplace(heap, item)

Example of use:

5.13. heapq — Heap queue algorithm 215

>>> from heapq import heappush, heappop
>>> heap = []
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, Q]
>>> for item in data:

heappush(heap, item)

>>> sorted = []
>>> while heap:
sorted.append(heappop(heap))

>>> print sorted

[0, 1, 2,3, 4,5,6, 7, 8, 9]
>>> data.sort()

>>> print data == sorted
True

>>>

The module also offers two general purpose functions based on heaps.

nlargest (n, iterable
Return a list with then largest elements from the dataset defined itgrable Equivalent to:
sorted(iterable, reverse=True)[:n] New in version 2.4.

nsmallest (' n, iterable
Return a list with then smallest elements from the dataset defined itgrable Equivalent to:
sorted(iterable)[:n] New in version 2.4.

Both functions perform best for smaller valuesrof For larger values, it is more efficient to use tharted()
function. Also, whem==1, it is more efficient to use the builtimin() andmax() functions.

5.13.1 Theory

(This explanation is due to Franois Pinard. The Python code for this module was contributed by Kevin O’Connor.)

Heaps are arrays for whicl k] <= a[2* k+1] anda[K] <= a[2* k+2] for all k, counting elements from O.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap is
thata[0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
arek, nota[K] :

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 2526 27 28 29 30

In the tree above, each cddlis topping2* k+1 and2* k+2. In an usual binary tournament we see in sports, each

cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.
However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To be
more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the rule

216 Chapter 5. Miscellaneous Services

becomes that a cell and the two cells it tops contain three different items, but the top cell "wins” over the two topped
cells.

If this heap invariant is protected at all time, index 0 is clearly the overall winner. The simplest algorithmic way to
remove it and find the "next” winner is to move some loser (let's say cell 30 in the diagram above) into the 0 position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not "better” than the last 0'th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the "win” condition means the smallest scheduled time. When an event
schedule other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a heap
is a good structure for implementing schedulers (this is what | used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is hot much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing "runs”
(which are pre-sorted sequences, which size is usually related to the amount of CPU memory), followed by a merging
passes for these runs, which merging is often very cleverly organiktéslvery important that the initial sort produces

the longest runs possible. Tournaments are a good way to that. If, using all the memory available to hold a tournament,
you replace and percolate items that happen to fit the current run, you'll produce runs which are twice the size of the
memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0'th item on disk and get an input which may not fit in the current tournament (because the
value "wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed memory
could be cleverly reused immediately for progressively building a second heap, which grows at exactly the same rate
the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run. Clever and
quite effective!

In a word, heaps are useful memory structures to know. | use them in a few applications, and I think it is good to keep
a ‘heap’ module around. :-)

5.14 array — Efficient arrays of numeric values

This module defines an object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by usipg eode which is a single
character. The following type codes are defined:

1The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabilities
of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in advance)
that each tape movement will be the most effective possible (that is, will best participate at "progressing” the merge). Some tapes were even able
to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch! From all
times, sorting has always been a Great Art! :-)

5.14. array — Efficient arrays of numeric values 217

Type code | C Type Python Type Minimum size in bytes
'c’ char character 1
b’ signed char int 1
‘B’ unsigned char | int 1
u’ Py_UNICODE | Unicode character 2
' signed short int 2
'H’ unsigned short| int 2
i) signed int int 2
T unsigned int long 2
T signed long int 4
L unsigned long | long 4
' float float 4
d’ double float 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed throughtehesize attribute. The values stored fir and’l’ items

will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following type:

array (typecodé, initializer])
Return a new array whose items are restrictedyipecode and initialized from the optionahitializer value,
which must be a list, string, or iterable over elements of the appropriate type. Changed in version 2.4: For-
merly, only lists or strings were accepted. If given a list or string, the initializer is passed to the new array’s
fromlist() , fromstring() , or fromunicode() method (see below) to add initial items to the array.
Otherwise, the iterable initializer is passed to éx¢end() method.

ArrayType
Obsolete alias foarray .

Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases,
TypeError s raised. Array objects also implement the buffer interface, and may be used wherever buffer objects
are supported.

The following data items and methods are also supported:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append (X)
Append a new item with valueto the end of the array.

buffer _info ()
Return a tuple(address length giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be compuied as
ray.buffer _info()[1] * array.itemsize . This is occasionally useful when working with low-level
(and inherently unsafe) I/O interfaces that require memory addresses, such asagtt(ain operations. The
returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C ot+C(the only way to effectively make use of

this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in the Python/C API Reference Manual

byteswap ()

218 Chapter 5. Miscellaneous Services

“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of valuesRuntimeError s raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (x)
Return the number of occurrencesxah the array.

extend (iterable)
Append items fromterable to the end of the array. iterableis another array, it must hawxactlythe same
type code; if not,TypeError will be raised. Ifiterableis not an array, it must be iterable and its elements
must be the right type to be appended to the array. Changed in version 2.4: Formerly, the argument could only
be another array.

fromfile (f, n)
Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availableEOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

fromlist (list)
Append items from the list. This is equivalent for x in list: a.append(x) ' exceptthat if thereis a
type error, the array is unchanged.

fromstring (9
Appends items from the string, interpreting the string as an array of machine values (as if it had been read from
a file using thdromfile() method).

fromunicode (9)
Extends this array with data from the given unicode string. The array must be a type 'u’ array; otherwise a
ValueError is raised. Useaafray.fromstring(ustr.decode(enc)) ' to append Unicode data to an
array of some other type.

index (x)
Return the smallestsuch that is the index of the first occurrence »fn the array.
insert (i, x)

Insert a new item with value in the array before position Negative values are treated as being relative to the
end of the array.

pop([i])
Removes the item with the indéxXrom the array and returns it. The optional argument defaultd tcso that
by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.Use thefromfile() method.

Readn items (as machine values) from the file objé@nd append them to the end of the array. If less than
n items are availablecOFError is raised, but the items that were available are still inserted into the drray.
must be a real built-in file object; something else wittead() method won't do.

remove (X)
Remove the first occurrence wfrom the array.

reverse ()
Reverse the order of the items in the array.
tofile (f)
Write all items (as machine values) to the file object

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()
Convert the array to an array of machine values and return the string representation (the same sequence of bytes

5.14. array — Efficient arrays of numeric values 219

that would be written to a file by thefile() method.)

tounicode ()
Convert the array to a unicode string. The array must be a type 'u’ array; otherwise a ValueError is raised. Use
array.tostring().decode(enc) to obtain a unicode string from an array of some other type.

write ()
Deprecated since release 1.5.Use thetofile() method.

Write all items (as machine values) to the file object

When an array object is printed or converted to a string, it is representaedagg typecode initializer). The

initializer is omitted if the array is empty, otherwise it is a string if tiypecodes 'c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes‘(), so long as tharray() function has been imported usifigm array import array

Examples:

array('l')

array(’c’, ’hello world’)

array('u’, u’hello \textbackslash u2641’)
array(l', [1, 2, 3, 4, 5])

array('d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Modulexdrlib (section 12.17):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual

(http://numpy.sourceforge.net/numdoc/HTML/numdoc.htm)
The Numeric Python extension (NumPy) defines another array typehtgeénumpy.sourceforge.net/ for
further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf).

5.15 sets — Unordered collections of unique elements

New in version 2.3.

Thesets module provides classes for constructing and manipulating unordered collections of unique elements. Com-
mon uses include membership testing, removing duplicates from a sequence, and computing standard math operations
on sets such as intersection, union, difference, and symmetric difference.

Like other collections, sets supportin - set len(se) , andfor x in set Being an unordered collection, sets
do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

Most set applications use tt&et class which provides every set method except fohash __() . For advanced
applications requiring a hash method, themutableSet class adds a_hash __() method but omits methods
which alter the contents of the set. B&kt andimmutableSet derive fromBaseSet , an abstract class useful
for determining whether something is a sstnstance(obj, BaseSet)

The set classes are implemented using dictionaries. As a result, sets cannot contain mutable elements such as lists
or dictionaries. However, they can contain immutable collections such as tuples or instaihcesutébleSet
For convenience in implementing sets of sets, inner sets are automatically converted to immutable form, for example,

220 Chapter 5. Miscellaneous Services

Set([Set(['dog]]) is transformed t@et([ImmutableSet(['dog’])])

classSet ([iterable])
Constructs a new emp8et object. If the optionaiterableparameter is supplied, updates the set with elements
obtained from iteration. All of the elementsiterableshould be immutable or be transformable to an immutable
using the protocol described in section 5.15.3.

classimmutableSet ([iterable])
Constructs a new emptinmutableSet object. If the optionaiterable parameter is supplied, updates the set
with elements obtained from iteration. All of the element&énable should be immutable or be transformable
to an immutable using the protocol described in section 5.15.3.

BecausdmmutableSet objects provide a__hash __() method, they can be used as set elements or as
dictionary keys.ImmutableSet objects do not have methods for adding or removing elements, so all of the
elements must be known when the constructor is called.

5.15.1 Set Objects

Instances oSet andimmutableSet both provide the following operations:

Operation Equivalent | Result
len(s) cardinality of ses
X in s testx for membership irs
X not in s testx for non-membership is
sissubset(t) s<=t test whether every elementgis int
s.issuperset(t) s >=t test whether every elementtiiis in s
s.union(t) s|t new set with elements from bograndt
s.intersection(t) s&t new set with elements commondgandt
s.difference(t) s-t new set with elements imbut not int
s.symmetric _difference(t) s™t new set with elements in eithsior t but not both
s.copy() new set with a shallow copy &f
Note, the non-operator versions ofunion() , intersection() , difference() , and
symmetric _difference() will accept any iterable as an argument. In contrast, their operator based
counterparts require their arguments to be sets. This precludes error-prone constructi@et(lidec’) &
'cbs’ in favor of the more readabl8et('abc’).intersection(’cbs’) . Changed in version 2.3.1:

Formerly all arguments were required to be sets.

In addition, bothSet andIimmutableSet support set to set comparisons. Two sets are equal if and only if every
element of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if
the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set if and
only if the first set is a proper superset of the second set (is a superset, but is not equal).

The subset and equality comparisons do not generalize to a complete ordering function. For example, any two disjoint
sets are not equal and are not subsets of each othed] 86 the following returnFalse : a<b, a==b, or a>b.
Accordingly, sets do not implement the cmp__ method.

Since sets only define partial ordering (subset relationships), the output liftthert() method is undefined
for lists of sets.

The following table lists operations availablelmmutableSet but not found inSet :

Operation | Result
hash(s) \ returns a hash value far

The following table lists operations availableSet but not found innmmutableSet

5.15. sets — Unordered collections of unique elements 221

Operation Equivalent | Result
s.union _update(t) s|=t return ses with elements added fromn
s.intersection _update(t) s&=t return ses keeping only elements also foundtin
s.difference _update(t) s-=t return ses after removing elements found in
s.symmetric _difference _update(t) s"=t return ses with elements frons or t but not both
s.add(x) add elemenx to sets
s.remove(X) removex from sets; raises KeyError if not present
sdiscard(x) removes from setsif present
s.pop() remove and return an arbitrary element frgmaises KeyError if en
s.clear() remove all elements from sst
Note, the non-operator versions of union _update() , intersection _update() ,
difference _update() , and symmetric _difference _update() will accept any iterable as an ar-

gument. Changed in version 2.3.1: Formerly all arguments were required to be sets.

5.15.2 Example

>>> from sets import Set

>>> engineers = Set(['John’, 'Jane’, 'Jack’, 'Janice’])
>>> programmers = Set(['Jack’, 'Sam’, 'Susan’, 'Janice’])
>>> managers = Set(['Jane’, 'Jack’, 'Susan’, 'Zack’])

>>> employees = engineers | programmers | managers # union

>>> engineering_management = engineers & managers # intersection
>>> fulltime_management = managers - engineers - programmers # difference

>>> engineers.add('Marvin’) # add element

>>> print engineers
Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

>>> employees.issuperset(engineers) # superset test

False

>>> employees.union_update(engineers) # update from another set

>>> employees.issuperset(engineers)

True

>>> for group in [engineers, programmers, managers, employees]:
group.discard('Susan’) # unconditionally remove element
print group

Set(['Jane’, 'Marvin’, 'Janice’, 'John’, 'Jack’])

Set(['Janice’, 'Jack’, 'Sam’])

Set(['Jane’, 'Zack’, 'Jack’])

Set(['Jack’, 'Sam’, 'Jane’, 'Marvin’, 'Janice’, 'John’, 'Zack’])

5.15.3 Protocol for automatic conversion to immutable
Sets can only contain immutable elements. For convenience, mBabl®bjects are automatically copied to an
ImmutableSet before being added as a set element.

The mechanism is to always add a hashable element, or if it is not hashable, the element is checked to see if it has an
__as_immutable __() method which returns an immutable equivalent.

SinceSet objects have a_as _immutable __() method returning an instance lofimutableSet , it is possible
to construct sets of sets.

222 Chapter 5. Miscellaneous Services

A similar mechanism is needed by thecontains __() andremove() methods which need to hash an ele-
ment to check for membership in a set. Those methods check an element for hashability and, if not, check for a
__as_temporarily _immutable __() method which returns the element wrapped by a class that provides tem-
porary methods for _hash __() , __eq__() ,and__ne__() .

The alternate mechanism spares the need to build a separate copy of the original mutable object.

Set objects implement the__as _temporarily = _immutable __() method which returns th&et object
wrapped by a new classTemporarilylmmutableSet

The two mechanisms for adding hashability are normally invisible to the user; however, a conflict can arise in
a multi-threaded environment where one thread is updating a set while another has temporarily wrapped it in
_TemporarilylmmutableSet . In other words, sets of mutable sets are not thread-safe.

5.16 itertools — Functions creating iterators for efficient looping

New in version 2.3.

This module implements a number of iterator building blocks inspired by constructs from the Haskell and SML
programming languages. Each has been recast in a form suitable for Python.

The module standardizes a core set of fast, memory efficient tools that are useful by themselves or in combination.
Standardization helps avoid the readability and reliability problems which arise when many different individuals create
their own slightly varying implementations, each with their own quirks and naming conventions.

The tools are designed to combine readily with one another. This makes it easy to construct more specialized tools
succinctly and efficiently in pure Python.

For instance, SML provides a tabulation totdbulate(f) which produces a sequent{®), f(1),
This toolbox providesmap() andcount() which can be combined to forimap(f, count()) and produce
an equivalent result.

Likewise, the functional tools are designed to work well with the high-speed functions provided byeheor
module.

The module author welcomes suggestions for other basic building blocks to be added to future versions of the module.

Whether cast in pure python form or compiled code, tools that use iterators are more memory efficient (and faster)
than their list based counterparts. Adopting the principles of just-in-time manufacturing, they create data when and
where needed instead of consuming memory with the computer equivalent of “inventory”.

The performance advantage of iterators becomes more acute as the number of elements increases — at some point, lists
grow large enough to severely impact memory cache performance and start running slowly.

See Also:
The Standard ML Basis Library,he Standard ML Basis Library

Haskell, A Purely Functional Languadeefinition of Haskell and the Standard Libraries

5.16.1 ltertool functions

The following module functions all construct and return iterators. Some provide streams of infinite length, so they
should only be accessed by functions or loops that truncate the stream.

chain (*iterableg
Make an iterator that returns elements from the first iterable until it is exhausted, then proceeds to the next
iterable, until all of the iterables are exhausted. Used for treating consecutive sequences as a single sequence.
Equivalent to:

5.16. itertools — Functions creating iterators for efficient looping 223

def chain(*iterables):
for it in iterables:
for element in it
yield element

count ([n])
Make an iterator that returns consecutive integers startingmvithnot specifiedn defaults to zero. Does not
currently support python long integers. Often used as an argumeémiajm() to generate consecutive data
points. Also, used witlizip() to add sequence numbers. Equivalent to:

def count(n=0):
while True:
yield n
n+=1

Note,count() does not check for overflow and will return negative numbers after excesggaxint
This behavior may change in the future.

cycle (iterable)
Make an iterator returning elements from the iterable and saving a copy of each. When the iterable is exhausted,
return elements from the saved copy. Repeats indefinitely. Equivalent to:

def cycle(iterable):
saved = []
for element in iterable:
yield element
saved.append(element)
while saved:
for element in saved:
yield element

Note, this member of the toolkit may require significant auxiliary storage (depending on the length of the iter-
able).

dropwhile (predicate, iterablg
Make an iterator that drops elements from the iterable as long as the predicate is true; afterwards, returns every
element. Note, the iterator does not prodacy output until the predicate is true, so it may have a lengthy
start-up time. Equivalent to:

def dropwhile(predicate, iterable):
iterable = iter(iterable)
for x in iterable:
if not predicate(x):
yield x
break
for x in iterable:
yield x

groupby (iterable[, key])
Make an iterator that returns consecutive keys and groups froritettadble. The keyis a function computing
a key value for each element. If not specified oNisne, keydefaults to an identity function and returns the

224 Chapter 5. Miscellaneous Services

element unchanged. Generally, the iterable needs to already be sorted on the same key function.

The returned group is itself an iterator that shares the underlying iterablgreitipby() . Because the source
is shared, when thgroupby object is advanced, the previous group is no longer visible. So, if that data is
needed later, it should be stored as a list:

groups =]
uniquekeys =]
for k, g in groupby(data, keyfunc):
groups.append(list(g)) # Store group iterator as a list

uniquekeys.append(k)

groupby() is equivalent to:

class groupby(object):
def __init_ (self, iterable, key=None):
if key is None:
key = lambda x: x
self.keyfunc = key
self.it = iter(iterable)
self.tgtkey = self.currkey = self.currvalue = xrange(0)
def __iter__ (self):
return self
def next(self):
while self.currkey == self.tgtkey:
self.currvalue = self.it.next() # Exit on Stoplteration
self.currkey = self.keyfunc(self.currvalue)
self.tgtkey = self.currkey
return (self.currkey, self._grouper(self.tgtkey))
def _grouper(self, tgtkey):
while self.currkey == tgtkey:
yield self.currvalue
self.currvalue = self.it.next() # Exit on Stoplteration
self.currkey = self.keyfunc(self.currvalue)

New in version 2.4.

ifilter (predicate, iterable
Make an iterator that filters elements from iterable returning only those for which the predidateeis If

predicateis None, return the items that are true. Equivalent to:

def fifilter(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if predicate(x):
yield x

ifilterfalse (predicate, iterabl®
Make an iterator that filters elements from iterable returning only those for which the predi¢atisés . If
predicateis None, return the items that are false. Equivalent to:

5.16. itertools — Functions creating iterators for efficient looping 225

def fifilterfalse(predicate, iterable):
if predicate is None:
predicate = bool
for x in iterable:
if not predicate(x):
yield x

imap (function, *iterable3
Make an iterator that computes the function using arguments from each of the iteratfi@sctiinis set to
None, thenimap() returns the arguments as a tuple. Likap() but stops when the shortest iterable is
exhausted instead of filling iNone for shorter iterables. The reason for the difference is that infinite iterator
arguments are typically an error forap() (because the output is fully evaluated) but represent a common and
useful way of supplying argumentsitoap() . Equivalent to:

def imap(function, *iterables):
iterables = map(iter, iterables)
while True:
args = [i.next() for i in iterables]
if function is None:
yield tuple(args)
else:
yield function(*args)

islice (iterable,[start,] stop[, step])
Make an iterator that returns selected elements from the iterab#artfis non-zero, then elements from the
iterable are skipped until start is reached. Afterward, elements are returned consecutivelysigpesset
higher than one which results in items being skippedtdpis None, then iteration continues until the iterator
is exhausted, if at all; otherwise, it stops at the specified position. Unlike regular slislicg() does
not support negative values fetart, stop or step Can be used to extract related fields from data where the
internal structure has been flattened (for example, a multi-line report may list a name field on every third line).
Equivalent to:

def islice(iterable, *args):
s = slice(*args)
it = iter(xrange(s.start or 0, s.stop or sys.maxint, s.step or 1))
nexti = it.next()
for i, element in enumerate(iterable):
if i == nexti:
yield element
nexti = it.next()

izip (*iterableg
Make an iterator that aggregates elements from each of the iterableszip{ke except that it returns an
iterator instead of a list. Used for lock-step iteration over several iterables at a time. Equivalent to:

def izip(*iterables):
iterables = map(iter, iterables)
while iterables:
result = [i.next() for i in iterables]
yield tuple(result)

Changed in version 2.4: When no iterables are specified, returns a zero length iterator instead of raising a

226 Chapter 5. Miscellaneous Services

TypeError exception.

repeat (objec{, times])
Make an iterator that returmbjectover and over again. Runs indefinitely unlesstthesargument is specified.
Used as argument fmap() for invariant parameters to the called function. Also used vzif() to create
an invariant part of a tuple record. Equivalent to:

def repeat(object, times=None):
if times is None:
while True:
yield object
else:
for i in xrange(times):
yield object

starmap (function, iterabl¢
Make an iterator that computes the function using arguments tuples obtained from the iterable. Used in-
stead ofimap() when argument parameters are already grouped in tuples from a single iterable (the data
has been “pre-zipped”). The difference betwémap() andstarmap() parallels the distinction between
function(a,b) andfunction(*c) . Equivalent to:

def starmap(function, iterable):
iterable = iter(iterable)
while True:
yield function(*iterable.next())

takewhile (predicate, iterablg
Make an iterator that returns elements from the iterable as long as the predicate is true. Equivalent to:

def takewhile(predicate, iterable):
for x in iterable:
if predicate(x):
yield x
else:
break

tee (iterable[, n:2])
Returnn independent iterators from a single iterable. The case wivet@ is equivalent to:

def tee(iterable):
def gen(next, data={}, cnt=[0]):
for i in count():

if i == cnt[0]:
item = data[i] = next()
cnt[0] += 1

else:

item = data.pop(i)
yield item
it = iter(iterable)
return (gen(it.next), gen(it.next))

Note, oncetee() has made a split, the originakrable should not be used anywhere else; otherwise, the
iterable could get advanced without the tee objects being informed.

5.16. itertools — Functions creating iterators for efficient looping 227

Note, this member of the toolkit may require significant auxiliary storage (depending on how much temporary
data needs to be stored). In general, if one iterator is going to use most or all of the data before the other iterator,
it is faster to usdist() instead oftee() . New in version 2.4.

5.16.2 Examples

The following examples show common uses for each tool and demonstrate ways they can be combined.

228 Chapter 5. Miscellaneous Services

>>> amounts = [120.15, 764.05, 823.14]
>>> for checknum, amount in izip(count(1200), amounts):
print 'Check %d is for $%.2f % (checknum, amount)

Check 1200 is for $120.15
Check 1201 is for $764.05
Check 1202 is for $823.14

>>> import operator
>>> for cube in imap(operator.pow, xrange(1,5), repeat(3)):

print cube
1
8
27
64
>>> reportlines = ['EuroPython’, 'Roster’, ", ’alex’, ”, 'laura’,

", ‘martin’, ”, 'walter’, ", 'mark’]
>>> for name in islice(reportlines, 3, None, 2):
print name.title()

Alex
Laura
Martin
Walter
Mark

Show a dictionary sorted and grouped by value

>>> from operator import itemgetter

>>> d = dict(a=1, b=2, c=1, d=2, e=1, f=2, g=3)

>>> di = sorted(d.iteritems(), key=itemgetter(1))

>>> for k, g in groupby(di, key=itemgetter(1)):
print k, map(itemgetter(0), g)

1 [a), 'c, e
2 b, 'd, ']
3 [g

Find runs of consecutive numbers using groupby. The key to the solution
is differencing with a range so that consecutive numbers all appear in
same group.
>>> data = [1, 4,5,6, 10, 15,16,17,18, 22, 25,26,27,28]
>>> for k, g in groupby(enumerate(data), lambda (i,x):i-x):
print map(operator.itemgetter(1), g)

[

[4, 5, 6]

[10]

[15, 16, 17, 18]
[22]

[25, 26, 27, 28]

5.16. itertools — Functions creating iterators for efficient looping 229

5.16.3 Recipes

This section shows recipes for creating an extended toolset using the existing itertools as building blocks.

The extended tools offer the same high performance as the underlying toolset. The superior memory performance
is kept by processing elements one at a time rather than bringing the whole iterable into memory all at once. Code
volume is kept small by linking the tools together in a functional style which helps eliminate temporary variables.
High speed is retained by preferring “vectorized” building blocks over the use of for-loops and generators which incur
interpreter overhead.

230 Chapter 5. Miscellaneous Services

def

def

def

def

def

def

def

def

def

def

def

def

def

take(n, seq):
return list(islice(seq, n))

enumerate(iterable):
return izip(count(), iterable)

tabulate(function):
"Return function(0), function(1), ..."
return imap(function, count())

iteritems(mapping):
return izip(mapping.iterkeys(), mapping.itervalues())

nth(iterable, n):
"Returns the nth item"
return list(islice(iterable, n, n+1))

all(seq, pred=bool):
"Returns True if pred(x) is True for every element in the iterable"
for elem in fifilterfalse(pred, seq):
return False
return True

any(seq, pred=bool):
"Returns True if pred(x) is True for at least one element in the iterable"
for elem in fifilter(pred, seq):
return True
return False

no(seq, pred=bool):
"Returns True if pred(x) is False for every element in the iterable"
for elem in fifilter(pred, seq):
return False
return True

quantify(seq, pred=bool):
"Count how many times the predicate is True in the sequence"
return sum(imap(pred, seq))

padnone(seq):
""Returns the sequence elements and then returns None indefinitely.

Useful for emulating the behavior of the built-in map() function.

return chain(seq, repeat(None))

ncycles(seq, n):
"Returns the sequence elements n times"
return chain(*repeat(seq, n))

dotproduct(vecl, vec2):
return sum(imap(operator.mul, vecl, vec2))

flatten(listOfLists):
return list(chain(*listOfLists))

def repeatfunc(func, times=None, *args):
"""Repeat calls to func with specified arguments.
5.16. itertools — Functions creating iterators for efficient looping 231

if times is None:
return starmap(func, repeat(args))
else:

ratiirm ctarrmanffiima ranaatlarne timac))

5.17 ConfigParser = — Configuration file parser

This module defines the cla@onfigParser . TheConfigParser class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

Warning: This library doesotinterpret or write the value-type prefixes used in the Windows Registry extepded
version of INI syntax.

The configuration file consists of sections, led bjsattion] " header and followed byfame: value ’entries,

with continuations in the style of RFC 82Z1dme=value ’is also accepted. Note that leading whitespace is removed
from values. The optional values can contain format strings which refer to other values in the same section, or values
in a speciaDEFAULTsection. Additional defaults can be provided on initialization and retrieval. Lines beginning
with ‘# or *; " are ignored and may be used to provide comments.

For example:

[My Section]
foodir: %(dir)s/whatever
dir=frob

would resolve the%(dir)s ' to the value of dir ’ (‘frob ’in this case). All reference expansions are done on
demand.

Default values can be specified by passing them intocGbefigParser constructor as a dictionary. Additional
defaults may be passed into thet() method which will override all others.

classRawConfigParser ([defaultﬂ)
The basic configuration object. Wheefaultsis given, it is initialized into the dictionary of intrinsic defaults.
This class does not support the magical interpolation behavior. New in version 2.3.

classConfigParser ([defaults])
Derived class oRawConfigParser that implements the magical interpolation feature and adds optional
arguments to thget() anditems() methods. The values iefaultsmust be appropriate for thé6()s ’
string interpolation. Note that_name__ is an intrinsic default; its value is the section name, and will override
any value provided inlefaults

All option names used in interpolation will be passed througtogiteonxform() method just like any other
option name reference. For example, using the default implementatigptiohxform() (which converts
option names to lower case), the valukm®*' %(bar)s 'and ‘foo %(BAR)s ’are equivalent.

classSafeConfigParser ([defaultﬂ)
Derived class ofConfigParser that implements a more-sane variant of the magical interpolation feature.
This implementation is more predictable as well. New applications should prefer this version if they don't need
to be compatible with older versions of Python. New in version 2.3.

exceptionNoSectionError
Exception raised when a specified section is not found.

exceptionDuplicateSectionError
Exception raised i&dd _section() is called with the name of a section that is already present.

exceptionNoOptionError
Exception raised when a specified option is not found in the specified section.

232 Chapter 5. Miscellaneous Services

exceptioninterpolationError
Base class for exceptions raised when problems occur performing string interpolation.

exceptioninterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX_ INTERPOLATION_DEPTH Subclass ofnterpolationError

exceptioninterpolationMissingOptionError
Exception raised when an option referenced from a value does not exist. SubdfasspafiationError
New in version 2.3.

exceptioninterpolationSyntaxError
Exception raised when the source text into which substitutions are made does not conform to the required syntax.
Subclass ofnterpolationError . New in version 2.3.

exceptionMissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exceptionParsingError
Exception raised when errors occur attempting to parse a file.

MAXINTERPOLATION_DEPTH
The maximum depth for recursive interpolation fygt() when theraw parameter is false. This is relevant
only for theConfigParser class.

See Also:

Moduleshlex (section 5.21):
Support for a creating Nix shell-like mini-languages which can be used as an alternate format for application
configuration files.

5.17.1 RawConfigParser Objects

RawConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections availablBEFAULTis not included in the list.

add _section (section)
Add a section namedsection to the instance. If a section by the given name already exists,
DuplicateSectionError is raised.

has _section (section)
Indicates whether the named section is present in the configuratiolHRAUL Tsection is not acknowledged.

options (section
Returns a list of options available in the specifsettion

has _option (section, optioh
If the given section exists, and contains the given option, réftue ; otherwise returiralse . New in version
1.6.

read (filename}
Attempt to read and parse a list of filenames, returning a list of filenames which were successfully parsed. If
filenamess a string or Unicode string, it is treated as a single filename. If a file nam@dnamescannot be
opened, that file will be ignored. This is designed so that you can specify a list of potential configuration file
locations (for example, the current directory, the user's home directory, and some system-wide directory), and
all existing configuration files in the list will be read. If none of the named files existCthdigParser

5.17. ConfigParser = — Configuration file parser 233

instance will contain an empty dataset. An application which requires initial values to be loaded from a file
should load the required file or files usirgpdfp() before callingread() for any optional files:

import ConfigParser, os

config = ConfigParser.ConfigParser()
config.readfp(open('defaults.cfg’))
config.read(['site.cfg’, os.path.expanduser(™/.myapp.cfg’)])

Changed in version 2.4: Returns list of successfully parsed filenames.

readfp (fp[, filenamd)
Read and parse configuration data from the file or file-like objeigt fonly thereadline() method is used).
If filenameis omitted andp has aname attribute, that is used fdilename the default is «???>".

get (section, optioh
Get anoptionvalue for the hamedection

getint (section, optioh
A convenience method which coerces tpionin the specifiedectionto an integer.

getfloat (' section, optioh
A convenience method which coerces dptionin the specifiegectionto a floating point number.

getboolean (section, optioh
A convenience method which coerces thation in the specifiedsectionto a Boolean value. Note that the
accepted values for the option df¢' , "yes" ,"true" , and"on" , which cause this method to retufinue ,
and"0" ,"no" ,"false” ,and"off" ,which cause itto returRalse . These string values are checked in a
case-insensitive manner. Any other value will cause it to rdedaeError

items (sectior)
Return a list off name valug pairs for each option in the givesection

set (' section, option, valye
If the given section exists, set the given option to the specified value; otherwiseN@®sctionError
While it is possible to us®awConfigParser (or ConfigParser with raw parameters set to true) for
internal storage of non-string values, full functionality (including interpolation and output to files) can only be
achieved using string values. New in version 1.6.

write (fileobjec)
Write a representation of the configuration to the specified file object. This representation can be parsed by a
futureread() call. New in version 1.6.

remove _option (section, optioh
Remove the specifieabtionfrom the specifiedection If the section does not exist, rais®SectionError
If the option existed to be removed, returrue ; otherwise returdralse . New in version 1.6.

remove _section (sectior)
Remove the specifiegslectionfrom the configuration. If the section in fact existed, retiime . Otherwise
returnFalse .

optionxform (option)
Transforms the option nanmptionas found in an input file or as passed in by client code to the form that should
be used in the internal structures. The default implementation returns a lower-case veogitorpsubclasses
may override this or client code can set an attribute of this name on instances to affect this behavior. Setting this
tostr() , for example, would make option hames case sensitive.

234 Chapter 5. Miscellaneous Services

5.17.2 ConfigParser Objects

The ConfigParser class extends some methods of RRawConfigParser interface, adding some optional
arguments.

get (section, OptiO[\, raw[, vars]])
Get anoptionvalue for the namesdection All the ‘% interpolations are expanded in the return values, based on
the defaults passed into the constructor, as well as the optayegrovided, unless theaw argument is true.

items (sectior{, raw[, vars]])
Return a list ofl name valug pairs for each option in the givesection Optional arguments have the same
meaning as for thget() method. New in version 2.3.

5.17.3 SafeConfigParser Objects

The SafeConfigParser class implements the same extended interfacéadigParser , with the following
addition:

set (' section, option, valje
If the given section exists, set the given option to the specified value; otherwisblo8setionError . value
must be a stringstr orunicode); if not, TypeError is raised. New in version 2.4.

5.18 fileinput — lterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.
The typical use is:

import fileinput
for line in fileinput.input():
process(line)

This iterates over the lines of all files listed sys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is-’ , itis also replaced bgys.stdin . To specify an alternative list of filenames, pass it as the first
argument tanput() . A single file name is also allowed.

All files are opened in text mode. If an I/O error occurs during opening or reading EXteror s raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. ussyg.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([files[, inplace[, backud]])
Create an instance of thglelnput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration. The parameters to this function will be passed along to the
constructor of thé-ilelnput class.

The following functions use the global state createdrput() ; if there is no active statedRuntimeError s
raised.

5.18. fileinput — lIterate over lines from multiple input streams 235

filename ()
Return the name of the file currently being read. Before the first line has been read, Kgines

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno 0
Return the line number in the current file. Before the first line has been read, retukfter the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline 0
Returns true if the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read frays.stdin , otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

classFilelnput ([files[, inplace[, backud]])
Class Filelnput is the implementation; its methodflename() , lineno() , fileline() ,
isfirstline() , isstdin() , nextfile() andclose() correspond to the functions of the same
name in the module. In addition it hasreadline() method which returns the next input line, and a
__getitem __() method which implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access asaldline() cannot be mixed.

Optional in-place filtering: if the keyword argumentplace=1 is passed tinput() or to theFilelnput con-

structor, the file is moved to a backup file and standard output is directed to the input file (if a file of the same name as
the backup file already exists, it will be replaced silently). This makes it possible to write a filter that rewrites its input
file in place. If the keyword argumebaickup’.<some extension>’ is also given, it specifies the extension for

the backup file, and the backup file remains around; by default, the extensibak's and it is deleted when the
output file is closed. In-place filtering is disabled when standard input is read.

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.19 calendar — General calendar-related functions

This module allows you to output calendars like thaild cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Usetfirstweekday() to set the first day of the week to Sunday (6) or to any other
weekday. Parameters that specify dates are given as integers.

Most of these functions rely on thgatetime module which uses an idealized calendar, the current Gregorian
calendar indefinitely extended in both directions. This matches the definition of the "proleptic Gregorian” calendar in
Dershowitz and Reingold’s book "Calendrical Calculations”, where it's the base calendar for all computations.

setfirstweekday (weekday
Sets the weekday(is Monday,6 is Sunday) to start each week. The valMESNDAYTUESDAYWEDNESDAY
THURSDAYFRIDAY, SATURDAYandSUNDAYare provided for convenience. For example, to set the first
weekday to Sunday:

236 Chapter 5. Miscellaneous Services

import calendar
calendar.setfirstweekday(calendar. SUNDAY)

New in version 2.0.

firstweekday ()
Returns the current setting for the weekday to start each week. New in version 2.0.

isleap (yean
ReturnsTrue if yearis a leap year, otherwidealse .

leapdays (y1,y2
Returns the number of leap years in the range.[.y2), whereyl andy2 are years. Changed in version 2.0:
This function didn’t work for ranges spanning a century change in Python 1.5.2.

weekday (year, month, day
Returns the day of the wee (s Monday) foryear(1970—...),month(1-12), day (1-31).

weekheader (n)
Return a header containing abbreviated weekday namssecifies the width in characters for one weekday.

monthrange (year, month
Returns weekday of first day of the month and number of days in month, for the spgeifiemhdmonth

monthcalendar (year, month
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless setfbrgtweekday()

prmonth (theyear, themon{h w[, I]])
Prints a month’s calendar as returnedrbgnth() .

month (theyear, themon{h W[, I]])
Returns a month’s calendar in a multi-line stringwlis provided, it specifies the width of the date columns,
which are centered. Ifis given, it specifies the number of lines that each week will use. Depends on the first
weekday as set bgetfirstweekday() . New in version 2.0.

prcal (year,w[, I[c]]])

Prints the calendar for an entire year as returneddbgndar()

calendar (yeaf,w[,1[c]]])

Returns a 3-column calendar for an entire year as a multi-line string. Optional paramgeteasndc are for

date column width, lines per week, and number of spaces between month columns, respectively. Depends on
the first weekday as set Isgtfirstweekday() . The earliest year for which a calendar can be generated is
platform-dependent. New in version 2.0.

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned lgyntirae() function in the
time module, and returns the correspondingilk timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In factime.gmtime() andtimegm() are each others’ inverse. New in version 2.0.

See Also:

Moduledatetime (section 6.10):
Object-oriented interface to dates and times with similar functionality toitle module.

Moduletime (section 6.11):
Low-level time related functions.

5.20 cmd— Support for line-oriented command interpreters

5.20. cmd— Support for line-oriented command interpreters 237

The Cmdclass provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

classCmq [completeke&, stdir[, stdout]]])

A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiate Cmditself; rather, it's useful as a superclass of an interpreter class you define yourself in order to inherit
Cmds methods and encapsulate action methods.

The optional argumertompletekeys thereadline name of a completion key; it defaults T@b. If com-
pletekeyis notNone andreadline is available, command completion is done automatically.

The optional argumentstdin and stdout specify the input and output file objects that the Cmd instance or
subclass instance will use for input and output. If not specified, they will defasiftdstdirandsys.stdout

Changed in version 2.3: Ttetdinandstdoutparameters were added..

5.20.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])

Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrida® the
class member).

If the readline module is loaded, input will automatically inheritashlike history-list editing (e.g.
Control-P scrolls back to the last comman@pntrol-N forward to the next oneControl-F moves
the cursor to the right non-destructivefpntrol-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the stiEQF’ .

An interpreter instance will recognize a command nafaoe * if and only if it has a methodlo _foo() . As
a special case, a line beginning with the charac?éris dispatched to the methadb _help() . As another
special case, a line beginning with the characteér is dispatched to the methodo _shell() (if such a
method is defined).

This method will return when thgostcmd() method returns a true value. Te®pargument tgpostcmd()
is the return value from the command’s correspondiog*() method.

If completion is enabled, completing commands will be done automatically, and completing of commands args
is done by callingcomplete _foo() with argumentdext line, begidx andendidx textis the string prefix

we are attempting to match: all returned matches must begin witihétis the current input line with leading
whitespace removethegidxandendidxare the beginning and ending indexes of the prefix text, which could be
used to provide different completion depending upon which position the argument is in.

All subclasses o€mdinherit a predefinedo _help() . This method, called with an argumeébar’ , invokes
the corresponding methdtklp _bar() . With no argumentgdo _help() lists all available help topics (that
is, all commands with correspondihglp _*() methods), and also lists any undocumented commands.

onecmd(str)

Interpret the argument as though it had been typed in response to the prompt. This may be overridden, but
should not normally need to be; see firecmd() andpostcmd() methods for useful execution hooks. The
return value is a flag indicating whether interpretation of commands by the interpreter should stop. If there is
ado_*() method for the commanstr, the return value of that method is returned, otherwise the return value
from thedefault() method is returned.

emptyline ()

Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

238

Chapter 5. Miscellaneous Services

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

completedefault (text, line, begidx, endigx
Method called to complete an input line when no command-spexdifigplete _*() method is available. By
default, it returns an empty list.

precmd (line)
Hook method executed just before the commandlimeis interpreted, but after the input prompt is generated
and issued. This method is a stubdmd it exists to be overridden by subclasses. The return value is used as
the command which will be executed by theecmd() method; thgorecmd() implementation may re-write
the command or simply retutime unchanged.

postcmd (stop, ling
Hook method executed just after a command dispatch is finished. This method is a €t iih exists to
be overridden by subclasse$ine is the command line which was executed, atdpis a flag which indi-
cates whether execution will be terminated after the cafidstcmd() ; this will be the return value of the
onecmd() method. The return value of this method will be used as the new value for the internal flag which
corresponds tstopg returning false will cause interpretation to continue.

preloop ()
Hook method executed once whemdloop() is called. This method is a stub @©md it exists to be overrid-

den by subclasses.

postloop ()
Hook method executed once whemdloop() is about to return. This method is a stubdmd it exists to be
overridden by subclasses.

Instances o€mdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

intro
A string to issue as an intro or banner. May be overridden by givingttiniloop() method an argument.

doc _header
The header to issue if the help output has a section for documented commands.

misc _header
The header to issue if the help output has a section for miscellaneous help topics (that is, thehe arg)
methods without correspondimtp _*() methods).

undoc _header
The header to issue if the help output has a section for undocumented commands (that is, there(@re
methods without correspondimglp _*() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to =",

use _rawinput
A flag, defaulting to true. If truegmdloop() usesraw _input() to display a prompt and read the next
command; if falsesys.stdout.write() andsys.stdin.readline() are used. (This means that by
importing readline , on systems that support it, the interpreter will automatically supporacslike line

5.20. cmd— Support for line-oriented command interpreters 239

editing and command-history keystrokes.)

5.21 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that ofithahell. This
will often be useful for writing minilanguages, (for example, in run control files for Python applications) or for parsing
guoted strings.

Theshlex module defines the following functions:

split (s[, comment];)
Split the strings using shell-like syntax. [Eommentss False (the default), the parsing of comments in the
given string will be disabled (setting tttommenters member of theshlex instance to the empty string).
This function operates in POSIX mode. New in version 2.3.

Theshlex module defines the following class:

classshlex ([instrean], infile[, posix]]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file-/stream-like objeaeadf) andreadline()
methods, or a string (strings are accepted since Python 2.3). If no argument is given, input will be taken from
sys.stdin . The second optional argument is a filename string, which sets the initial value iofitee
member. If thenstreamargument is omitted or equal sys.stdin , this second argument defaults to “stdin”.
The posixargument was introduced in Python 2.3, and defines the operational mode. po4igis not true
(default), theshlex instance will operate in compatibility mode. When operating in POSIX mshiex
will try to be as close as possible to the POSIX shell parsing rules. See section 5.21.1.

See Also:

Module ConfigParser (section 5.17):
Parser for configuration files similar to the Windowisi® files.

5.21.1 shlex Objects

A shlex instance has the following methods:

get _token ()
Return a token. If tokens have been stacked ugirgh _token() , pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-dddlfegof is returned (the empty
string (") in non-POSIX mode, andone in POSIX mode).

push _token (str)
Push the argument onto the token stack.

read _token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filename
Whenshlex detects a source request (seeirce below) this method is given the following token as argu-
ment, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or there was
no previous source request in effect, or the previous source was a stream (syststtin), the result is

left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the file immediately
before it on the source inclusion stack is prepended (this behavior is like the way the C preprocessor handles

240 Chapter 5. Miscellaneous Services

#include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions, and
other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will clalbéiie
method of the sourced input stream when it returos.

For more explicit control of source stacking, use plush _source() andpop_source() methods.

push _source (strean{, filenamé)
Push an input source stream onto the input stack. If the filename argument is specified it will later be available
for use in error messages. This is the same method used internally bguheehook method. New in
version 2.1.

pop _source ()
Pop the last-pushed input source from the input stack. This is the same method used internally when the lexer
reache€OF on a stacked input stream. New in version 2.1.

error _leader ([file[,line]])
This method generates an error message leader in the format fxa@compiler error label; the format is
"%s", line %d: ' , where the %s is replaced with the name of the current source file and %d *
with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encouraipdex users to generate error messages in the standard, parseable
format understood by Emacs and othewi tools.

Instances ofhlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes jugt by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includesalblphanu-
merics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

escape
Characters that will be considered as escape. This will be only used in POSIX mode, and includg¢bjust *
default. New in version 2.3.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, inglsidessingle and
double quotes.

escapedquotes
Characters imuotes that will interpret escape characters define@gscape . This is only used in POSIX
mode, and includes just * by default. New in version 2.3.

whitespace _split
If True , tokens will only be split in whitespaces. This is useful, for example, for parsing command lines with
shlex , getting tokens in a similar way to shell arguments. New in version 2.3.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source requests.

5.21. shlex — Simple lexical analysis 241

It may be useful to examine this when constructing error messages.

instream
The input stream from which thighlex instance is reading characters.

source
This member idNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to theource ’ keyword in various shells. That is, the immediately following token
will opened as a filename and input taken from that stream Bo# at which point theclose() method of
that stream will be called and the input source will again become the original input stream. Source requests may
be stacked any number of levels deep.

debug
If this member is numeric antl or more, ashlex instance will print verbose progress output on its behavior.
If you need to use this, you can read the module source code to learn the details.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

eof
Token used to determine end of file. This will be set to the empty sttiny {n non-POSIX mode, and tdone
in POSIX mode. New in version 2.3.

5.21.2 Parsing Rules
When operating in non-POSIX modghlex will try to obey to the following rules.
e Quote characters are not recognized within worB®"(Not"Separate is parsed as the single word
Do"Not"Separate);
e Escape characters are not recognized;
e Enclosing characters in quotes preserve the literal value of all characters within the quotes;
e Closing quotes separate wordB¢"Separate is parsed a8Do" andSeparate);

o If whitespace _split isFalse , any character not declared to be a word character, whitespace, or a quote
will be returned as a single-character token. If Tisie , shlex will only split words in whitespaces;

e EOF is signaled with an empty string ();

e It's not possible to parse empty strings, even if quoted.
When operating in POSIX modshlex will try to obey to the following parsing rules.

e Quotes are stripped out, and do not separate wdids"Not"Separate" is parsed as the single word
DoNotSeparate);

e Non-quoted escape characters (e\d. preserve the literal value of the next character that follows;

e Enclosing characters in quotes which are not padsafapedquotes (e.qg.
all characters within the quotes;

) preserve the literal value of

e Enclosing characters in quotes which are pamsdapedquotes (e.g. "’) preserves the literal value of all
characters within the quotes, with the exception of the characters mentioeschipe . The escape characters
retain its special meaning only when followed by the quote in use, or the escape character itself. Otherwise the
escape character will be considered a normal character.

242 Chapter 5. Miscellaneous Services

e EOF is signaled with &lone value;

e Quoted empty strings’() are allowed;

5.21. shlex — Simple lexical analysis 243

244

CHAPTER
SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modeled aftextbe ©interfaces, but
they are available on most other systems as well. Here’s an overview:

0S

o0s.path
dircache
stat
statcache
statvfs
filecmp
subprocess
popen2
datetime
time

sched
mutex
getpass
curses
curses.textpad
curses.wrapper
curses.ascii
curses.panel
getopt
optparse
tempfile
erro

glob
fnmatch
shutil

locale
gettext
logging
platform

Miscellaneous operating system interfaces.
Common pathname manipulations.

Return directory listing, with cache mechanism.
Utilities for interpreting the results afs.stat()
Stat files, and remember results.

Constants for interpreting the resultasd.statvfs()
Compare files efficiently.

Subprocess management.

Subprocesses with accessible standard I/O streams.

Basic date and time types.

Time access and conversions.

General purpose event scheduler.

Lock and queue for mutual exclusion.

Portable reading of passwords and retrieval of the userid.

An interface to the curses library, providing portable terminal handling.

Emacs-like input editing in a curses window.

Terminal configuration wrapper for curses programs.

Constants and set-membership functionsafecii characters.

A panel stack extension that adds depth to curses windows.

Portable parser for command line options; support both short and long option names.
More convenient, flexible, and powerful command-line parsing library.

Generate temporary files and directories.

Standard errno system symbols.

UNIx shell style pathname pattern expansion.

UNIX shell style filename pattern matching.

High-level file operations, including copying.

Internationalization services.

Multilingual internationalization services.

Logging module for Python based on PEP 282.

Retrieves as much platform identifying data as possible.

, 0s.Istat() andos.fstat()

6.1 o0s — Miscellaneous operating system interfaces

This module provides a more portable way of using operating system dependent functionality than importing a oper-
ating system dependent built-in module lig@six ornt .

245

This module searches for an operating system dependent built-in modulaediker posix and exports the same
functions and data as found there. The design of all Python’s built-in operating system dependent modules is such that
as long as the same functionality is available, it uses the same interface; for example, the sty path)

returns stat information aboptthin the same format (which happens to have originated with the POSIX interface).

Extensions peculiar to a particular operating system are also available througé thedule, but using them is of
course a threat to portability!

Note that after the first times is imported, there i:0 performance penalty in using functions frams instead of
directly from the operating system dependent built-in module, so there shounltwrbason not to uses!

exceptionerror
This exception is raised when a function returns a system-related error (not for illegal argument types or other
incidental errors). This is also known as the built-in excep@@®Error . The accompanying value is a pair
containing the numeric error code framno and the corresponding string, as would be printed by the C func-
tion perror() . See the modulerrno , which contains names for the error codes defined by the underlying
operating system.

When exceptions are classes, this exception carries two attrilartes, andstrerror . The first holds
the value of the Grrno variable, and the latter holds the corresponding error messagesfremor()

For exceptions that involve a file system path (sucktadir() orunlink()), the exception instance will
contain a third attributefjlename , which is the file name passed to the function.

name
The name of the operating system dependent module imported. The following names have currently been
registered’posix’ ,’'nt’ ,’mac’ ,’0os2’ ,’ce’ ,’java’ ,’riscos’

path
The corresponding operating system dependent standard module for pathname operationposixbedis
or macpath . Thus, given the proper importss.path.split(file) is equivalent to but more portable
thanposixpath.split(file) . Note that this is also an importable module: it may be imported directly as
os.path

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For exarapigeronHOME’] is the pathname of
your home directory (on some platforms), and is equivalegetenv("HOME") in C.

This mapping is captured the first time tbe module is imported, typically during Python startup as part of
processingsite.py’. Changes to the environment made after this time are not reflectedenviron , except
for changes made by modifyir@s.environ directly.

If the platform supports thputenv() function, this mapping may be used to modify the environment as
well as query the environmenputenv() will be called automatically when the mapping is modifiétbte:
Callingputenv() directly does not changes.environ |, so it's better to modifyos.environ . Note: On
some platforms, including FreeBSD and Mac OS X, seténgiron may cause memory leaks. Refer to the
system documentation f@utenv()

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

chdir (path)
fchdir (fd)
getcwd ()
These functions are described in “Files and Directories” (section 6.1.4).

246 Chapter 6. Generic Operating System Services

ctermid ()
Return the filename corresponding to the controlling terminal of the process. Availabitityc. U

getegid ()
Return the effective group id of the current process. This corresponds to the ‘setid’ bit on the file being executed
in the current process. Availability: UXx.

geteuid ()
Return the current process’ effective user id. Availabilitysi.

getgid ()
Return the real group id of the current process. Availabilityi k.

getgroups ()
Return list of supplemental group ids associated with the current process. Availability: U

getlogin ()
Return the name of the user logged in on the controlling terminal of the process. For most pur-
poses, it is more useful to use the environment variable LOGNAME to find out who the user is, or
pwd.getpwuid(os.getuid())[0] to get the login name of the currently effective user ID. Availabil-
ity: UNIX.

getpgid (pid)
Return the process group id of the process with procepididIf pid is O, the process group id of the current
process is returned. Availability: \Ux. New in version 2.3.

getpgrp ()
Return the id of the current process group. Availabilityxiid.

getpid ()
Return the current process id. Availability:Nuk, Windows.

getppid ()
Return the parent’s process id. Availability NiX.

getuid ()
Return the current process’ user id. AvailabilitynLX.

getenv (varname{, value])
Return the value of the environment variabnameif it exists, orvalueif it doesn't. valuedefaults toNone.
Availability: most flavors of Wix, Windows.

putenv (varname, valug
Set the environment variable namesinameto the stringvalue Such changes to the environment affect sub-
processes started withs.system() , popen() orfork() andexecv() . Availability: most flavors of
UNIX, Windows.

Note: On some platforms, including FreeBSD and Mac OS X, settingiron may cause memory leaks.
Refer to the system documentation for putenv.

Whenputenv() is supported, assignments to itemsomenviron are automatically translated into cor-
responding calls tputenv() ; however, calls tqputenv() don’t updateos.environ , so it is actually
preferable to assign to items o$.environ

setegid (egid)
Set the current process’s effective group id. Availabilityxii.

seteuid (euid)
Set the current process’s effective user id. Availabilityaik.

setgid (gid)
Set the current process’ group id. Availability N .

setgroups (group9

6.1. os — Miscellaneous operating system interfaces 247

Set the list of supplemental group ids associated with the current proogssifs groupsmust be a sequence,
and each element must be an integer identifying a group. This operation is typical available only to the superuser.
Availability: UNIX. New in version 2.2.

setpgrp ()
Calls the system cafletpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).

See the Wix manual for the semantics. Availability: NUX .

setpgid (pid, pgrp
Calls the system cafletpgid() to set the process group id of the process witlpidito the process group
with id pgrp. See the Wix manual for the semantics. Availability: Nux.

setreuid (ruid, euid)
Set the current process’s real and effective user ids. AvailabilityxU

setregid (rgid, egid
Set the current process’s real and effective group ids. Availability:xU

getsid (pid)
Calls the system cafjetsid() . See the Wix manual for the semantics. Availability:Nux. New in version
2.4.

setsid ()
Calls the system cafletsid() . See the Wix manual for the semantics. Availability: NUx.

setuid (uid)
Set the current process’ user id. AvailabilityNX.

strerror (code
Return the error message corresponding to the error cattiedi| Availability: UNIX, Windows.

umask(masR
Set the current numeric umask and returns the previous umask. Availabikity, Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:
(sysnamg nodename release version maching. Some systems truncate the nodename to 8 charac-
ters or to the leading component; a better way to get the hostnaseekst.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of Wix.

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, modd, bufsizd |)
Return an open file object connected to the file descrifstoiThe modeandbufsizearguments have the same
meaning as the corresponding arguments to the buipien() function. Availability: Macintosh, Wix,
Windows.

Changed in version 2.3: When specified, thedeargument must now start with one of the lettar§ ‘w, or
‘a’, otherwise avalueError s raised.

popen (comman(ﬂ, mod{, bufsizd])
Open a pipe to or fromommand The return value is an open file object connected to the pipe, which can be read
or written depending on whetherodeis'r' (default) orw’ . Thebufsizeargument has the same meaning as
the corresponding argument to the builtapen() function. The exit status of the command (encoded in the
format specified fowait()) is available as the return value of thlese() method of the file object, except
that when the exit status is zero (termination without errdds)e is returned. Availability: Macintosh, NIX,
Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This was

248 Chapter 6. Generic Operating System Services

due to the use of thepopen() function from the libraries provided with Windows. Newer versions of Python
do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update mode+{y’). The file has no directory entries associated with it
and will be automatically deleted once there are no file descriptors for the file. Availability: Macintask, U
Windows.

For each of thespopen() variants, ifbufsizeis specified, it specifies the buffer size for the /O pipesode if
provided, should be the strify’ or't’ ; on Windows this is needed to determine whether the file objects should be
opened in binary or text mode. The default valuerfadeis 't’

Also, for each of these variants, orNik, cmdmay be a sequence, in which case arguments will be passed directly to
the program without shell intervention (as witk.spawnv()). If cmdis a string it will be passed to the shell (as
with os.system()).

These methods do not make it possible to retrieve the return code from the child processes. The only way to control
the input and output streams and also retrieve the return codes is to URBepbe3 andPopen4 classes from the
popen2 module; these are only available omLx.

For a discussion of possible deadlock conditions related to the use of these functions|lose€tntrol Issues
(section 6.9.2).

popen2 (cm({, mode[, bufsizd])
Executexmdas a sub-process. Returns the file objéctsild_stdin child_stdou) . Availability: Macintosh,
UNIX, Windows. New in version 2.0.

popen3 (cmc{, mode{, bufsizd])
Executexxmdas a sub-process. Returns the file objéaiild_stdin child_stdout child_stderr) . Avail-
ability: Macintosh, Wix, Windows. New in version 2.0.

popen4 (cmc{, mode{, bufsizd])
Executezmdas a sub-process. Returns the file objéctsild_stdin, child_stdout_and_stderr) . Availability:
Macintosh, Wix, Windows. New in version 2.0.

(Note thatchild_stdin, child_stdout and child_stderrare named from the point of view of the child process, i.e.
child_stdinis the child’s standard input.)

This functionality is also available in th@pen2 module using functions of the same names, but the return values of
those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptofd. Availability: Macintosh, Wix, Windows.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returroge:bg)
orpipe() . To close a “file object” returned by the built-in functiopen() or bypopen() orfdopen() ,
use itsclose() method.

dup (fd)
Return a duplicate of file descriptéd. Availability: Macintosh, Wix, Windows.

dup2 (fd, fd2
Duplicate file descriptofd to fd2, closing the latter first if necessary. Availability: Macintoshyid, Windows.

fdatasync (fd)
Force write of file with filedescriptoid to disk. Does not force update of metadata. Availabilityii.

fpathconf (fd, nameg

6.1. os — Miscellaneous operating system interfaces 249

Return system configuration information relevant to an open fil@mespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Jx 95, UNIX 98, and others). Some platforms define additional names as well. The
names known to the host operating system are given ipatieconf _names dictionary. For configuration
variables not included in that mapping, passing an integendaneis also accepted. Availability: Macintosh,

UNIX.

If nameis a string and is not known/alueError is raised. If a specific value farameis not supported by
the host system, even if it is includedpathconf _names, anOSError is raised witherrno.EINVAL for
the error number.

fstat (fd)
Return status for file descriptéd, like stat() . Availability: Macintosh, WNix, Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file desddiptke statvfs()
Availability: UNIX.

fsync (fd)
Force write of file with filedescriptdd to disk. On WX, this calls the nativésync() function; on Windows,
the MS_commit() function.

If you're starting with a Python file objedt first dof.flush() , and then dws.fsync(f.fileno()) ,
to ensure that all internal buffers associated viitare written to disk. Availability: Macintosh, WX, and
Windows starting in 2.2.3.

ftruncate (fd, length
Truncate the file corresponding to file descriptdy so that it is at mostength bytes in size. Availability:
Macintosh, Wix.

isatty (fd)
ReturnTrue if the file descriptorfd is open and connected to a tty(-like) device, disdse . Availability:
Macintosh, Wix.

Iseek (fd, pos, hoy
Set the current position of file descriptiaf to positionpos modified byhow. 0 to set the position relative to
the beginning of the filel to set it relative to the current positio@; to set it relative to the end of the file.
Availability: Macintosh, WNix, Windows.

open (file, ﬂags[, modd)
Open the filefile and set various flags accordingftagsand possibly its mode accordingitwode The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file. Availability: Macintosh, Nix, Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constaDt&R@KENLY
andO_WRONL)yare defined in this module too (see below).

Note: This function is intended for low-level I/0. For normal usage, use the built-in funcggam() , which
returns a “file object” wittread() andwrite() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descriftoraster slave for the pty and the tty,
respectively. For a (slightly) more portable approach, usepthie module. Availability: Macintosh, Some
flavors of WNIX.

pipe ()
Create a pipe. Return a pair of file descriptors w) usable for reading and writing, respectively. Availability:
Macintosh, Wix, Windows.

read (fd, n)
Read at mosh bytes from file descriptofd. Return a string containing the bytes read. If the end of the file
referred to byfd has been reached, an empty string is returned. Availability: Macintoshs Windows.

250 Chapter 6. Generic Operating System Services

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returroge:bg)
orpipe() . To read a “file object” returned by the built-in functiopen() or by popen() orfdopen() |,
orsys.stdin , useitsread() orreadline() methods.

tcgetpgrp (fd)
Return the process group associated with the terminal givefd lfgn open file descriptor as returned by
open()). Availability: Macintosh, WNIX.

tcsetpgrp (fd, pg
Set the process group associated with the terminal givéd tgn open file descriptor as returneddgyen())
to pg. Availability: Macintosh, WNIX.

ttyname (fd)
Return a string which specifies the terminal device associated with file-desddptbfd is not associated with
a terminal device, an exception is raised. Availability:Macintosk}XJ

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written. Availability: Macintosh,
UNIX, Windows.

Note: This function is intended for low-level I/O and must be applied to a file descriptor as returrge:bf)
orpipe() . To write a “file object” returned by the built-in functiampen() or by popen() orfdopen() |,
orsys.stdout orsys.stderr ,useitswrite() method.

The following data items are available for use in constructinglgsparameter to thepen() function.

O_RDONLY

O_WRONLY

O_RDWR

O_APPEND

O_CREAT

O_EXCL

O_TRUNC
Options for theflag argument to theopen() function. These can be bit-wise OR’d together. Availability:
Macintosh, Wix, Windows.

O_DSYNC
O_RSYNC
O_SYNC
O_NDELAY
O_NONBLOCK
O_NOCTTY
More options for thdlag argument to thepen() function. Availability: Macintosh, Wix.

O_BINARY
Option for theflag argument to thepen() function. This can be bit-wise OR'd together with those listed
above. Availability: Windows.

O_NOINHERIT

O_SHORTLIVED

O_TEMPORARY

O_RANDOM

O_SEQUENTIAL

O_TEXT
Options for theflag argument to theopen() function. These can be bit-wise OR'd together. Availability:
Windows.

6.1. os — Miscellaneous operating system interfaces 251

6.1.4 Files and Directories

access (path, modg

Use the real uid/gid to test for accesgptth Note that most operations will use the effective uid/gid, therefore

this routine can be used in a suid/sgid environment to test if the invoking user has the specified quatiss to
modeshould beF_OKto test the existence gfath or it can be the inclusive OR of one or more RfOK
W_OK andX_OKTto test permissions. Retuilitue if access is allowed;alse if not. See the Wiix man page
acces§?) for more information. Availability: Macintosh, Wix, Windows.

F_OK
Value to pass as thmodeparameter oficcess() to test the existence ghath

R_OK
Value to include in thenodeparameter oiccess() to test the readability gbath

W_OK
Value to include in thenodeparameter oficcess() to test the writability ofpath

X_OK
Value to include in thenodeparameter oficcess() to determine ifpathcan be executed.

chdir (path)
Change the current working directorypath Availability: Macintosh, WNix, Windows.

fchdir (fd)
Change the current working directory to the directory represented by the file destdipitve descriptor must
refer to an opened directory, not an open file. Availabilityaid. New in version 2.3.

getcwd ()
Return a string representing the current working directory. Availability: Macintosix Windows.

getcwdu ()
Return a Unicode object representing the current working directory. Availability: Macintasix,, Windows.
New in version 2.3.

chroot (path
Change the root directory of the current procesgdth Availability: Macintosh, WNix. New in version 2.2.

chmod(path, modg

Change the mode gfathto the numeriaonode modemay take one of the following values (as defined in the

stat module):

S_ISUID
¢S_ISGID
oS_ENFMT
oS_ISVTX
oS_IREAD
oS_IWRITE
oS_IEXEC
oS_IRWXU
oS_IRUSR
oS_IWUSR
oS_IXUSR
oS_IRWXG
oS_IRGRP
oS_IWGRP

252 Chapter 6. Generic Operating System Services

oS_IXGRP
oS_IRWXO
¢S_IROTH
oS_IWOTH
eS_IXOTH

Availability: Macintosh, WNIx, Windows.

chown (path, uid, gig
Change the owner and group idmdithto the numeriaiid andgid. Availability: Macintosh, WNiX.

Ichown (path, uid, gig
Change the owner and group idmdthto the numeriaid and gid. This function will not follow symbolic links.
Availability: Macintosh, WNIX. New in version 2.3.

link (src, ds)
Create a hard link pointing terc nameddst Availability: Macintosh, Wix.

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not include
the special entries’ and’.. even if they are present in the directory. Availability: MacintoshNiiJ,
Windows.

Changed in version 2.3: On Windows NT/2k/XP and Unixpdithis a Unicode object, the result will be a list
of Unicode objects..

Istat (path
Like stat() , but do not follow symbolic links. Availability: Macintosh, \Ux.

mkfifo (path, modd)
Create a FIFO (a named pipe) namgath with numeric modenode The defaultmodeis 0666 (octal). The
current umask value is first masked out from the mode. Availability: Macintosinx U

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Notentkiifio() doesn’t open the

FIFO — it just creates the rendezvous point.

mknod(patl*[, mode=0600, devicb
Create a filesystem node (file, device special file or named pipe) named filemaouespecifies both the
permissions to use and the type of node to be created, being combined (bitwise OR) with aiEREGS,
S_IFCHR, S_IFBLK, and S_IFIFO (those constants are availablesiat). For S.IFCHR and SIFBLK,
devicedefines the newly created device special file (probably ussngnakedev()), otherwise it is ignored.
New in version 2.3.

major (devicg
Extracts a device major number from a raw device number. New in version 2.3.

minor (deviceg
Extracts a device minor number from a raw device number. New in version 2.3.

makedev (major, minoy
Composes a raw device number from the major and minor device numbers. New in version 2.3.

mkdir (patl"[, mod(ﬂ)
Create a directory namgzhthwith numeric modenode The defaulimodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out. Availability: Macintesh, U
Windows.

makedirs (patr{, mode])
Recursive directory creation function. Likekdir() , but makes all intermediate-level directories needed to

6.1. os — Miscellaneous operating system interfaces 253

contain the leaf directory. Throws @&mror exception if the leaf directory already exists or cannot be created.
The defaulinodeis 0777 (octal). This function does not properly handle UNC paths (only relevant on Windows
systems; Universal Naming Convention paths are those that uséhhst\path " syntax). New in version
15.2.

pathconf (path, namg
Return system configuration information relevant to a named filemespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Jx 95, UNIX 98, and others). Some platforms define additional names as well. The
names known to the host operating system are given ipaltieconf _names dictionary. For configuration
variables not included in that mapping, passing an integendaneis also accepted. Availability: Macintosh,
UNIX.

If nameis a string and is not known/alueError s raised. If a specific value farameis not supported by
the host system, even if itis includedpathconf _names, anOSError is raised witherrno.EINVAL for
the error number.

pathconf _names
Dictionary mapping names accepted figthconf() andfpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to the system.

Availability: Macintosh, WNIX.

readlink (path)
Return a string representing the path to which the symbolic link points. The result may be either
an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(path), resul) . Availability: Macintosh, WNiX.

remove (path)
Remove the filgpath If pathis a directory, OSError is raised; seemdir() below to remove a directory.
This is identical to theunlink() ~ function documented below. On Windows, attempting to remove a file that
is in use causes an exception to be raised; amnxJthe directory entry is removed but the storage allocated to
the file is not made available until the original file is no longer in use. Availability: Macintosinx |MWindows.

removedirs (path
Removes directories recursively. Works likadir() except that, if the leaf directory is successfully removed,
directories corresponding to rightmost path segments will be pruned way until either the whole path is consumed
or an error is raised (which is ignored, because it generally means that a parent directory is not empty). Throws
anerror exception if the leaf directory could not be successfully removed. New in version 1.5.2.

rename (src, ds)
Rename the file or directorcto dst If dstis a directoryOSError will be raised. On Wix, if dstexists and
is a file, it will be removed silently if the user has permission. The operation may fail on someflavors if
srcanddstare on different filesystems. If successful, the renaming will be an atomic operation (this is a POSIX
requirement). On Windows, stalready existsOSError will be raised even if it is a file; there may be no
way to implement an atomic rename wldstnames an existing file. Availability: MacintoshNux, Windows.

renames (old, new
Recursive directory or file renaming function. Works lilemame() , except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old name will be pruned away uemgvedirs() . New in version

15.2.
Note: This function can fail with the new directory structure made if you lack permissions needed to remove
the leaf directory or file.

rmdir (path
Remove the directorgath Availability: Macintosh, Wix, Windows.

stat (path
Perform astat() system call on the given path. The return value is an object whose attributes correspond to

254 Chapter 6. Generic Operating System Services

the members of thetat structure, namelyst _mode (protection bits)st _ino (inode number)st _dev
(device),st _nlink (number of hard links)st _uid (user ID of owner),st _gid (group ID of owner),
st _size (size of file, in bytes)st _atime (time of most recent access), _mtime (time of most recent
content modification)st _ctime (platform dependent; time of most recent metadata changenor,r the
time of creation on Windows).

Changed in version 2.3: Htat _float _times returns true, the time values are floats, measuring seconds.
Fractions of a second may be reported if the system supports that. On Mac OS, the times are always floats. See
stat _float _times for further discussion. .

On some Unix systems (such as Linux), the following attributes may also be ava#tihlblocks (number of
blocks allocated for file)st _blksize (filesystem blocksizekt _rdev (type of device if an inode device).

On Mac OS systems, the following attributes may also be availablersize , st _creator ,st _type .

On RISCOS systems, the following attributes are also availableftype (file type),st _attrs (attributes),
st _obtype (objecttype).

For backward compatibility, the return valuestét() is also accessible as a tuple of at least 10 integers giving
the most important (and portable) members ofdte¢ structure, in the ordest _mode, st _ino , st _dev,

st _nlink ,st _uid ,st _gid , st _size ,st _atime ,st _mtime , st _ctime . More items may be added
at the end by some implementations. The standard madaie defines functions and constants that are useful
for extracting information from atat structure. (On Windows, some items are filled with dummy values.)

Note: The exact meaning and resolution of thte_atime , st _mtime , andst _ctime members depends

on the operating system and the file system. For example, on Windows systems using the FAT or FAT32 file
systemsst _mtime has 2-second resolution, agtl_atime has only 1-day resolution. See your operating
system documentation for details.

Availability: Macintosh, WNix, Windows.
Changed in version 2.2: Added access to values as attributes of the returned object.

stat _float _times ([newvalue])
Determine whethestat _result represents time stamps as float objects. If newval is True, future calls to
stat() return floats, if it is False, future calls return ints. If newval is omitted, return the current setting.

For compatibility with older Python versions, accessitat _result as a tuple always returns integers. For
compatibility with Python 2.2, accessing the time stamps by field name also returns integers. Applications that
want to determine the fractions of a second in a time stamp can use this function to have time stamps represented
as floats. Whether they will actually observe non-zero fractions depends on the system.

Future Python releases will change the default of this setting; applications that cannot deal with floating point
time stamps can then use this function to turn the feature off.

It is recommended that this setting is only changed at program startup time_in thain__ module; libraries
should never change this setting. If an application uses a library that works incorrectly if floating point time
stamps are processed, this application should turn the feature off until the library has been corrected.

statvfs (path)
Perform astatvfs() system call on the given path. The return value is an object whose attributes describe the
filesystem on the given path, and correspond to the members sfdtwls structure, namelyt _frsize
f _blocks ,f _bfree ,f _bavail ,f _files ,f_ffree ,f _favail ,f_flag ,f _namemax Availabil-
ity: UNIX.
For backward compatibility, the return value is also accessible as a tuple whose values correspond to the at-
tributes, in the order given above. The standard mosliaierfs defines constants that are useful for extract-
ing information from astatvfs structure when accessing it as a sequence; this remains useful when writing
code that needs to work with versions of Python that don’t support accessing the fields as attributes.

Changed in version 2.2: Added access to values as attributes of the returned object.

symlink ('src, ds}
Create a symbolic link pointing terc nameddst Availability: UNIX.

6.1. os — Miscellaneous operating system interfaces 255

tempnam([dir[, prefix]])

Return a unigue path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in the directdityor a common location for temporary filesdir is omitted

or None. If given and notNone, prefixis used to provide a short prefix to the filename. Applications are
responsible for properly creating and managing files created using paths retuteetpoam() ; no automatic
cleanup is provided. On X, the environment variable TMPDIR overridds, while on Windows the TMP

is used. The specific behavior of this function depends on the C library implementation; some aspects are
underspecified in system documentationarning: Use oftempnam() is vulnerable to symlink attacks;
consider usingmpfile() instead. Availability: Macintosh, Nix, Windows.

tmpnam()

Return a unigue path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible for
properly creating and managing files created using paths returnéehgnam() ; no automatic cleanup is
provided.Warning: Use oftmpnam() is vulnerable to symlink attacks; consider ustngpfile() instead.
Availability: UNix, Windows. This function probably shouldn’t be used on Windows, though: Microsoft's
implementation otmpnam() always creates a name in the root directory of the current drive, and that's
generally a poor location for a temp file (depending on privileges, you may not even be able to open a file
using this name).

TMP_MAX

The maximum number of unique names ttrapnam() will generate before reusing names.

unlink (path)

Remove the filgpath This is the same function aesmove() ; the unlink() name is its traditional Nix
name. Availability: Macintosh, Nix, Windows.

utime (path, time}

Set the access and modified times of the file specifiegdiir If timesis None, then the file's access and
modified times are set to the current time. Otherwigeesmust be a 2-tuple of numbers, of the fo(ratime

mtimé which is used to set the access and modified times, respectively. Whether a directory can be given for
pathdepends on whether the operating system implements directories as files (for example, Windows does not).
Note that the exact times you set here may not be returned by a subsetént call, depending on the
resolution with which your operating system records access and modification timstatgge . Changed in

version 2.0: Added support fdtone for times Availability: Macintosh, WNix, Windows.

walk (top[, topdowrFTrue [onerroerone]])

walk() generates the file names in a directory tree, by walking the tree either top down or bottom up. For
each directory in the tree rooted at directtop (includingtopitself), it yields a 3-tuplg dirpath, dirnames
filename}.

dirpath is a string, the path to the directorgirnamesis a list of the names of the subdirectoriesdinpath
(excluding’.” and’..”). filenamesgs a list of the names of the non-directory filesdinpath. Note that the
names in the lists contain no path components. To get a full path (which begin®p)itb a file or directory in
dirpath, doos.path.join(dirpath, namg .

If optional argumentopdownis true or not specified, the triple for a directory is generated before the triples for
any of its subdirectories (directories are generated top dowripptfownis false, the triple for a directory is
generated after the triples for all of its subdirectories (directories are generated bottom up).

Whentopdownis true, the caller can modify thrdirnamedist in-place (perhaps usirdgl or slice assignment),
andwalk() will only recurse into the subdirectories whose names remadirimames this can be used to
prune the search, impose a specific order of visiting, or even to infeatk() about directories the caller
creates or renames before it resum@dk() again. Modifyingdirnameswhentopdownis false is ineffective,

because in bottom-up mode the directorieditmamesare generated befodérnamestself is generated.

By default errors from thes.listdir() call are ignored. If optional argumeanerroris specified, it should
be a function; it will be called with one argument, an os.error instance. It can report the error to continue with
the walk, or raise the exception to abort the walk. Note that the filename is availabldfitextiime attribute

256

Chapter 6. Generic Operating System Services

of the exception object.

Note: If you pass a relative pathname, don’t change the current working directory between resumptions of
walk() .walk() never changes the current directory, and assumes that its caller doesn't either.

Note: On systems that support symbolic links, links to subdirectories appdaniamedists, butwalk() will
not visit them (infinite loops are hard to avoid when following symbolic links). To visit linked directories, you
can identify them wittos.path.islink(path) , and invokewalk(path) on each directly.

This example displays the number of bytes taken by non-directory files in each directory under the starting
directory, except that it doesn’t look under any CVS subdirectory:

import os
from os.path import join, getsize
for root, dirs, files in os.walk('python/Lib/email’):
print root, "consumes",
print sum(getsize(join(root, name)) for name in files),
print "bytes in", len(files), "non-directory files"
if 'CVS’ in dirs:
dirs.remove('CVS’) # don't visit CVS directories

In the next example, walking the tree bottom up is essentiadlir() doesn't allow deleting a directory before
the directory is empty:

Delete everything reachable from the directory named in 'top’,
assuming there are no symbolic links.
CAUTION: This is dangerous! For example, if top == '/, it
could delete all your disk files.
import os
for root, dirs, files in os.walk(top, topdown=False):
for name in files:
os.remove(os.path.join(root, name))
for name in dirs:
os.rmdir(os.path.join(root, name))

New in version 2.3.

6.1.5 Process Management

These functions may be used to create and manage processes.

The variousexec*() functions take a list of arguments for the new program loaded into the process. In each case,
the first of these arguments is passed to the new program as its own name rather than as an argument a user may have
typed on a command line. For the C programmer, this iathg[0] passed to a program’eain() . For example,
‘os.execv('/bin/echo’, ['foo’, ’bar?) “will only print * bar ’ on standard output;féo " will seem

to be ignored.

abort ()
Generate &5IGABRT signal to the current process. OmLX, the default behavior is to produce a core
dump; on Windows, the process immediately returns an exit code d@e aware that programs which use
signal.signal() to register a handler fo8IGABRT will behave differently. Availability: Macintosh,
UNIX, Windows.

execl (path, arg0, argl, .).
execle (path, arg0, arg1l, ..., env
execlp (file, arg0, argl, .).
execlpe (file, arg0, argl, ..., env
execv (path, arg3

6.1. os — Miscellaneous operating system interfaces 257

execve (path, args, eny

execvp (file, arg9

execvpe (file, args, eny
These functions all execute a new program, replacing the current process; they do not returmxQihénew
executable is loaded into the current process, and will have the same process ID as the caller. Errors will be
reported a®©SError exceptions.

The ‘1 " and ‘v’ variants of theexec*() functions differ in how command-line arguments are passed. [The
variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written; the
individual parameters simply become additional parameters texttel*() functions. Thev’ variants are

good when the number of parameters is variable, with the arguments being passed in a list or tupdegss the
parameter. In either case, the arguments to the child process should start with the name of the command being
run, but this is not enforced.

The variants which include @' near the endéxeclp() , execlpe() ,execvp() ,andexecvpe()) will

use the PATH environment variable to locate the progfiten When the environment is being replaced (using

one of theexec*e() variants, discussed in the next paragraph), the new environment is used as the source of
the PATH variable. The other varianesxecl() , execle() ,execv() , andexecve() , will not use the

PATH variable to locate the executabpgthmust contain an appropriate absolute or relative path.

Forexecle() ,execlpe() ,execve() ,andexecvpe() (note thatthese all end ie”), the envparameter

must be a mapping which is used to define the environment variables for the new processedife |
execlp() , execv() , andexecvp() all cause the new process to inherit the environment of the current
process. Availability: Macintosh, iix, Windows.

_exit (n)
Exit to the system with status, without calling cleanup handlers, flushing stdio buffers, etc. Availability:
Macintosh, Wix, Windows.

Note: The standard way to exit &/s.exit(n) . _exit() should normally only be used in the child process
after afork()

The following exit codes are a defined, and can be used véttit() , although they are not required. These are
typically used for system programs written in Python, such as a mail server’s external command delivery program.

EX_OK
Exit code that means no error occurred. Availability: MacintoskjXJ New in version 2.3.

EX_USAGE
Exit code that means the command was used incorrectly, such as when the wrong number of arguments are
given. Availability: Macintosh, Wix. New in version 2.3.

EX_DATAERR
Exit code that means the input data was incorrect. Availability: MacintosixU New in version 2.3.

EX_NOINPUT
Exit code that means an input file did not exist or was not readable. Availability: Macintosl,. UNew in
version 2.3.

EX_NOUSER
Exit code that means a specified user did not exist. Availability: Macintosing U New in version 2.3.

EX_NOHOST
Exit code that means a specified host did not exist. Availability: MacintosinxU New in version 2.3.

EX_UNAVAILABLE
Exit code that means that a required service is unavailable. Availability: Macintogh, UNew in version 2.3.

EX_SOFTWARE
Exit code that means an internal software error was detected. Availability: Macintosk, UNew in version
2.3.

EX_OSERR

258 Chapter 6. Generic Operating System Services

Exit code that means an operating system error was detected, such as the inability to fork or create a pipe.
Availability: Macintosh, LNIX. New in version 2.3.

EX_OSFILE
Exit code that means some system file did not exist, could not be opened, or had some other kind of error.
Availability: Macintosh, LNIX. New in version 2.3.

EX_CANTCREAT
Exit code that means a user specified output file could not be created. Availability: Macintash, Blew in
version 2.3.

EX_IOERR
Exit code that means that an error occurred while doing I/O on some file. Availability: Macintosk, INew
in version 2.3.

EX_TEMPFAIL
Exit code that means a temporary failure occurred. This indicates something that may not really be an error,
such as a network connection that couldn’t be made during a retryable operation. Availability: Macintosh,
UNIX. New in version 2.3.

EX_PROTOCOL
Exit code that means that a protocol exchange was illegal, invalid, or not understood. Availability: Macintosh,
UNIX. New in version 2.3.

EX_NOPERM
Exit code that means that there were insufficient permissions to perform the operation (but not intended for file
system problems). Availability: Macintosh,NUx. New in version 2.3.

EX_CONFIG
Exit code that means that some kind of configuration error occurred. Availability: Macintoglk,. UNew in
version 2.3.

EX_NOTFOUND
Exit code that means something like “an entry was not found”. Availability: Macintosinx U New in version
2.3.

fork ()
Fork a child process. Retufhin the child, the child’s process id in the parent. Availability: MacintosijxJ

forkpty ()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a(paidl, of

fd) , wherepid is O in the child, the new child’s process id in the parent, &hid the file descriptor of the master
end of the pseudo-terminal. For a more portable approach, uggétheodule. Availability: Macintosh, Some
flavors of INIX.

kill (pid, sig
Kill the processid with signalsig. Constants for the specific signals available on the host platform are defined
inthesignal module. Availability: Macintosh, Wix.

killpg (pgid, sig
Kill the process groupgid with the signakig. Availability: Macintosh, Wnix. New in version 2.3.

nice (incremeny
Add incrementto the process’s “niceness”. Return the new niceness. Availability: Macintasix,.U

plock (op)
Lock program segments into memory. The valuepf(defined in<sys/lock.h>) determines which seg-
ments are locked. Availability: Macintosh,NUx .

popen (...)

popen2 (...
popen3 (...

6.1. os — Miscellaneous operating system interfaces 259

popend (...
Run child processes, returning opened pipes for communications. These functions are described in section 6.1.2.

spawnl (mode, path, .).

spawnle (mode, path, ..., env

spawnlp (mode, file, .).

spawnlpe (mode, file, ..., env

spawnv (mode, path, args

spawnve (mode, path, args, ehv

spawnvp (mode, file, args

spawnvpe (mode, file, args, env
Execute the programathin a new process. Iihodeis P_NOWAIT this function returns the process ID of the
new process; imodeis P_WAIT, returns the process’s exit code if it exits normally- @ignal wheresignal
is the signal that killed the process. On Windows, the process ID will actually be the process handle, so can be
used with thewaitpid() function.

The 1’ and ‘v’ variants of thespawn*() functions differ in how command-line arguments are passed. The

‘| * variants are perhaps the easiest to work with if the number of parameters is fixed when the code is written;
the individual parameters simply become additional parameters &ptwenl*() functions. Thev’ variants

are good when the number of parameters is variable, with the arguments being passed in a list or tuple as the
args parameter. In either case, the arguments to the child process must start with the name of the command
being run.

The variants which include a secongd’ ‘near the end gpawnlp() , spawnlpe() , spawnvp() , and
spawnvpe()) will use the PATH environment variable to locate the progfde When the environment

is being replaced (using one of tepawn*e() variants, discussed in the next paragraph), the new environ-
ment is used as the source of the PATH variable. The other vargpasnl() , spawnle() , spawnv() ,
andspawnve() , will not use the PATH variable to locate the executalpath must contain an appropriate
absolute or relative path.

For spawnle() , spawnlpe() , spawnve() , andspawnvpe() (note that these all end ire”), the env
parameter must be a mapping which is used to define the environment variables for the new process; the
spawnl() ,spawnlp() ,spawnv() , andspawnvp() all cause the new process to inherit the environment

of the current process.

As an example, the following calls gpawnlp() andspawnvpe() are equivalent:

import os
os.spawnlp(os.P_WAIT, ’'cp’, 'cp’, 'index.html’, ’/dev/null’)

L = [cp’, 'index.html’, */dev/null’]
os.spawnvpe(os.P_WAIT, ’‘cp’, L, 0s.environ)

Availability: UNix, Windows. spawnlp() , spawnlpe() , spawnvp() andspawnvpe() are not avail-
able on Windows. New in version 1.6.

P_NOWAIT

P_NOWAITO
Possible values for thmodeparameter to thepawn*() family of functions. If either of these values is given,
thespawn*() functions will return as soon as the new process has been created, with the process ID as the
return value. Availability: Macintosh, Nix, Windows. New in version 1.6.

P_WAIT
Possible value for thenodeparameter to thepawn*() family of functions. If this is given asnode the
spawn*() functions will not return until the new process has run to completion and will return the exit code
of the process the run is successful,-@ignal if a signal kills the process. Availability: Macintosh,Nu,
Windows. New in version 1.6.

P_DETACH

260 Chapter 6. Generic Operating System Services

P_OVERLAY
Possible values for themodeparameter to thepawn*() family of functions. These are less portable than
those listed aboveP_DETACHS similar toP_NOWAIT but the new process is detached from the console of
the calling process. P_OVERLAMSs used, the current process will be replaced;gpawn*() function will
not return. Availability: Windows. New in version 1.6.

startfile (path)
Start a file with its associated application. This acts like double-clicking the file in Windows Explorer, or giving
the file name as an argument to gtart command from the interactive command shell: the file is opened with
whatever application (if any) its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. patieparameter is relative to

the current directory. If you want to use an absolute path, make sure the first character is not d $tash ('
the underlying Win3Z5hellExecute() function doesn’t work if it is. Use thes.path.normpath()

function to ensure that the path is properly encoded for Win32. Availability: Windows. New in version 2.0.

system (commandl
Execute the command (a string) in a subshell. This is implemented by calling the Standard C function
system() , and has the same limitations. Changepdsix.environ , Sys.stdin , etc. are not reflected
in the environment of the executed command.

On UNIX, the return value is the exit status of the process encoded in the format specifieaitfpr . Note
that POSIX does not specify the meaning of the return value of thgs@m() function, so the return value
of the Python function is system-dependent.

On Windows, the return value is that returned by the system shell after ruomimgnandgiven by the Windows
environment variable COMSPEC: @mommand.comsystems (Windows 95, 98 and ME) this is alw#yson
cmd.exesystems (Windows NT, 2000 and XP) this is the exit status of the command run; on systems using a
non-native shell, consult your shell documentation.

Availability: Macintosh, WNix, Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (processor or other) times, in seconds. The
items are: user time, system time, children’s user time, children’s system time, and elapsed real time since a
fixed point in the past, in that order. See theik manual pagéimeg?2) or the corresponding Windows Platform
API documentation. Availability: Macintosh, Nux, Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if the
signal number is zero); the high bit of the low byte is set if a core file was produced. Availability: Macintosh,
UNIX.

waitpid (pid, option3
The details of this function differ on iix and Windows.
On UNIX: Wait for completion of a child process given by procesid, and return a tuple containing its
process id and exit status indication (encoded asv@it()). The semantics of the call are affected by the
value of the integeoptions which should bé for normal operation.

If pid is greater tha@, waitpid() requests status information for that specific procegsidiis O, the request
is for the status of any child in the process group of the current procqsisl.iff-1 , the request pertains to any
child of the current process. pid is less thanrl , status is requested for any process in the process gnoidp
(the absolute value gfid).

On Windows: Wait for completion of a process given by process haidjeand return a tuple containinmgd,
and its exit status shifted left by 8 bits (shifting makes cross-platform use of the function eagié)ess than
or equal ta0 has no special meaning on Windows, and raises an exception. The value of ogdgeshas no
effect. pid can refer to any process whose id is known, not necessarily a child processpavne() functions
called withP_NOWAITreturn suitable process handles.

6.1. os — Miscellaneous operating system interfaces 261

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availability:
Macintosh, WiX.

WCONTINUED
This option causes child processes to be reported if they have been continued from a job control stop since their
status was last reported. Availability: Someid systems. New in version 2.3.

WUNTRACED
This option causes child processes to be reported if they have been stopped but their current state has not been
reported since they were stopped. Availability: MacintosR)XJ New in version 2.3.

The following functions take a process status code as returnegdbym() , wait() , orwaitpid() as a param-
eter. They may be used to determine the disposition of a process.

WCOREDUI¢&atug
ReturnsTrue if a core dump was generated for the process, otherwise it refiaiss . Availability: Macin-
tosh, WINIX. New in version 2.3.

WIFCONTINUEDstatug
ReturnsTrue if the process has been continued from a job control stop, otherwise it rélalses . Availabil-
ity: UNIX. New in version 2.3.

WIFSTOPPEDstatug
ReturnsTrue if the process has been stopped, otherwise it retiatse . Availability: UNIX.

WIFSIGNALEL statug
ReturnsTrue if the process exited due to a signal, otherwise it retirase . Availability: Macintosh, WNiIX.

WIFEXITED(statug
ReturnsTrue if the process exited using thexit(2) system call, otherwise it returisalse . Availability:
Macintosh, Wix.

WEXITSTATUS$ statug
If WIFEXITED(statug is true, return the integer parameter to theét(2) system call. Otherwise, the return
value is meaningless. Availability: Macintoshnix.

WSTOPSIGstatug
Return the signal which caused the process to stop. Availability: Macintastx.U

WTERMSIGstatug
Return the signal which caused the process to exit. Availability: Macintosin U

6.1.6 Miscellaneous System Information

confstr (namg
Return string-valued system configuration valugemespecifies the configuration value to retrieve; it may be a
string which is the name of a defined system value; these names are specified in a number of standards (POSIX,
UNIx 95, UNIX 98, and others). Some platforms define additional names as well. The names known to the host
operating system are given in thenfstr _names dictionary. For configuration variables not included in that
mapping, passing an integer foameis also accepted. Availability: Macintosh Nux .

If the configuration value specified Imameisn’t defined, the empty string is returned.

If nameis a string and is not known/alueError is raised. If a specific value farameis not supported by
the host system, even if it is includedéonfstr _names, anOSError is raised witherrno.EINVAL for
the error number.

confstr _names
Dictionary mapping names accepteddmnfstr() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availability: Macintosh,

262 Chapter 6. Generic Operating System Services

UNIX.

getloadavg ()
Return the number of processes in the system run queue averaged over the last 1, 5, and 15 minutes or raises
OSError if the load average was unobtainable.

New in version 2.3.

sysconf (namg
Return integer-valued system configuration values. If the configuration value specifieghigysn’t defined,
-1 isreturned. The comments regarding tizeneparameter foconfstr() apply here as well; the dictionary
that provides information on the known names is giversysconf _names. Availability: Macintosh, WNIX.

sysconf _names
Dictionary mapping names accepteddysconf() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availability: Macintosh,
UNIX.

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined insheath module.

curdir
The constant string used by the operating system to refer to the current directory. For exampier POSIX
or’” for Mac OS 9. Also available vias.path

pardir
The constant string used by the operating system to refer to the parent directory. For exampléor POSIX
or:;’ for Mac OS 9. Also available vias.path

sep

The character used by the operating system to separate pathname components, for exXafmpROSIX or
‘. for Mac OS 9. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() andos.path.join() — but it is occasionally useful. Also available \oa.path

altsep
An alternative character used by the operating system to separate pathname compoims,ibonly one
separator character exists. This is set/todn Windows systems whergep is a backslash. Also available via
os.path

extsep
The character which separates the base filename from the extension; for examplé, ithéds.py’. Also
available viaos.path . New in version 2.2,

pathsep
The character conventionally used by the operating system to separate search path components (as in PATH),
such as:'’ for POSIX or *; ' for Windows. Also available vias.path

defpath
The default search path used &yec*p*() andspawn*p*() if the environment doesn’t have’BATH’
key. Also available vias.path

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
such as\n’” for POSIX or'\r for Mac OS, or multiple characters, for exampglén’ for Windows.

devnull
The file path of the null device. For examplé&dev/null’ for POSIX or'Dev:Nul’ for Mac OS 9. Also
available viaos.path . New in version 2.4.

6.1. os — Miscellaneous operating system interfaces 263

6.1.7 Miscellaneous Functions

urandom (n)
Return a string oh random bytes suitable for cryptographic use.

This function returns random bytes from an OS-specific randomness source. The returned data should be un-
predictable enough for cryptographic applications, though its exact quality depends on the OS implementation.
On a UNIX-like system this will query /dev/urandom, and on Windows it will use CryptGenRandom. If a
randomness source is not foumdhtimplementedError will be raised. New in version 2.4.

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

Warning: On Windows, many of these functions do not properly support UNC pathnasmgunc() and
ismount() do handle them correctly.

abspath (path
Return a normalized absolutized version of the pathngath On most platforms, this is equivalent to
normpath(join(os.getcwd(), path)) . New in version 1.5.2.

basename (path)
Return the base name of pathnapagh This is the second half of the pair returneddpjit(path) . Note that
the result of this function is different from theNux basenameprogram; wherdasenameor '/foo/bar/’
returnsbar’ , thebasename() function returns an empty string ().

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all phghsifrlist is empty,
return the empty string’(). Note that this may return invalid paths because it works a character at a time.

dirname (path
Return the directory name of pathnapegh This is the first half of the pair returned Bplit(path) .

exists (path
ReturnTrue if pathrefers to an existing path. ReturRalse for broken symbolic links.

lexists (path
ReturnTrue if path refers to an existing path. Returfisue for broken symbolic links. Equivalent to
exists() on platforms lackings.Istat() . New in version 2.4.

expanduser (path)
Return the argument with an initial component of or ‘™ user replaced by thatisers home directory. An
initial *~ " is replaced by the environment variable HOME; an initiauser is looked up in the password
directory through the built-in modulewd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of thebioamé or ‘ ${ namé ' are
replaced by the value of environment variabeme Malformed variable names and references to non-existing
variables are left unchanged.

getatime (path)
Return the time of last access path The return value is a number giving the number of seconds since the
epoch (see theme module). Rais@s.error if the file does not exist or is inaccessible. New in version
1.5.2. Changed in version 2.3:dk.stat _float _times() returns True, the result is a floating point
number.

getmtime (path
Return the time of last modification giath The return value is a number giving the number of seconds since

264 Chapter 6. Generic Operating System Services

the epoch (see thene module). Rais@s.error if the file does not exist or is inaccessible. New in version
1.5.2. Changed in version 2.3:d6.stat _float _times() returns True, the result is a floating point
number.

getctime (path)
Return the system'’s ctime which, on some systems (likex) is the time of the last change, and, on others
(like Windows), is the creation time fgrath The return value is a number giving the number of seconds since
the epoch (see thtene module). Rais@s.error if the file does not exist or is inaccessible. New in version
2.3.

getsize (path
Return the size, in bytes, path Raiseos.error if the file does not exist or is inaccessible. New in version
15.2.

isabs (path
ReturnTrue if pathis an absolute pathname (begins with a slash).

isfile (path
ReturnTrue if pathis an existing regular file. This follows symbolic links, so batink() andisfile()
can be true for the same path.

isdir (path)
ReturnTrue if pathis an existing directory. This follows symbolic links, so basghnk() andisdir()
can be true for the same path.

islink (path)
ReturnTrue if pathrefers to a directory entry that is a symbolic link. Alwdyalse if symbolic links are not
supported.

ismount (path)
ReturnTrue if pathnamepathis amount point a point in a file system where a different file system has been
mounted. The function checks whethmaths parent, path'..’, is on a different device thapath, or whether
‘path..” and pathpoint to the same i-node on the same device — this should detect mount points forall U
and POSIX variants.

join (pathl[, pathz[,]])
Joins one or more path components intelligently. If any component is an absolute path, all previous compo-
nents are thrown away, and joining continues. The return value is the concatengpiatihhfand optionally
path2 etc., with exactly one directory separatos(sep) inserted between components, unlgath2is empty.
Note that on Windows, since there is a current directory for each dva/@ath.join("c:", "foo")
represents a path relative to the current directory on d@veg“c:foo’), not ‘c:\\foo’.

normcase (path)
Normalize the case of a pathname. ORI¥, this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level referenc&®$Be,p/./B and
Alfool..IB all becomeA/B . It does not normalize the case (usrmcase() for that). On Windows, it
converts forward slashes to backward slashes. It should be understood that this may change the meaning of the
path if it contains symbolic links!

realpath (path)
Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path.
Availability: UNIX. New in version 2.2.

samefile (pathl, path?
ReturnTrue if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception iba.stat() call on either pathname fails. Availability: Macintosh,
UNIX.

6.2. os.path — Common pathname manipulations 265

sameopenfile (fpl, fp2d
ReturnTrue if the file objectsfpl andfp2 refer to the same file. The two file objects may represent different
file descriptors. Availability: Macintosh, KiX.

samestat (statl, stat®
ReturnTrue if the stat tuplesstatl and stat2 refer to the same file. These structures may have been re-

turned byfstat() ,Istat() , orstat() . This function implements the underlying comparison used by
samefile() andsameopenfile() . Availability: Macintosh, WNIX.
split (path

Split the pathnamgath into a pair,(head tail) wheretail is the last pathname component ameld is
everything leading up to that. Thail part will never contain a slash; ffathends in a slashail will be empty.

If there is no slash ipath headwill be empty. If pathis empty, bottheadandtail are empty. Trailing slashes
are stripped fronmeadunless it is the root (one or more slashes only). In nearly all cgsag, head tail)
equalspath(the only exception being when there were multiple slashes sepahatautjrom tail).

splitdrive (path)
Split the pathnampathinto a pair(drive, tail) wheredriveis either a drive specification or the empty string.
On systems which do not use drive specificatiairsje will always be the empty string. In all caseBjve +
tail will be the same apath New in version 1.3.

splitext (path
Split the pathnameathinto a pair(root, ex such thatoot + ext == path andextis empty or begins
with a period and contains at most one period.

walk (path, visit, arg
Calls the functiorvisit with argumentg arg, dirname name$ for each directory in the directory tree rooted
at path (including path itself, if it is a directory). The argumertdirnamespecifies the visited directory, the
argumennamedists the files in the directory (gotten froos. listdir(dirnamg). Thevisit function may
modify namedo influence the set of directories visited beldisname e.g., to avoid visiting certain parts of the
tree. (The object referred to mameanust be modified in place, usimtel or slice assignment.)

Note: Symbolic links to directories are not treated as subdirectories, andwthli() therefore will
not visit them. To visit linked directories you must identify them witl.path.islink(file) and
os.path.isdir(file) , and invokewalk() as necessary.

Note: The newens.walk() generator supplies similar functionality and can be easier to use.

supports _unicode _filenames
True if arbitrary Unicode strings can be used as file names (within limitations imposed by the file system), and
if os.listdir() returns Unicode strings for a Unicode argument. New in version 2.3.

6.3 dircache — Cached directory listings

Thedircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir (path
Return a directory listing gbath, as gotten fronos.listdir() . Note that unlespathchanges, further call
to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to return
atuple?)

opendir (path
Same adistdir() . Defined for backwards compatibility.

266 Chapter 6. Generic Operating System Services

annotate (head, lis}
Assumdist is a list of paths relative thead and append, in place, &to each path which points to a directory.

>>> jmport dircache

>>> a = dircache.listdir(’/")
>>> g = a[:] # Copy the return value so we can change 'a
>>> a

['bin’, ’boot’, 'cdrom’, 'dev’, ’etc’, 'floppy’, 'home’, 'initrd’, 'lib’, ’lost+
found’, 'mnt’, ’'proc’, ’root’, 'sbin’, 'tmp’, 'usr’, ’var’, 'vmlinuz’]

>>> dircache.annotate(’/’, a)

>>> a

[bin/; ’boot/, 'cdrom/’, 'dev/, ’etcl’, 'floppy/, home/’, ’initrd/, ’lib/
', ‘lost+found/’, 'mnt/’, 'proc/’, ‘root/’, 'shin/’, 'tmp/’, 'usr/’, 'var/’, 'vm

linuz’]
6.4 stat — Interpreting stat() results
Thestat module defines constants and functions for interpreting the resutis.stat() , 0s.fstat() and
os.Istat() (if they exist). For complete details about thiat() , fstat() andlstat() calls, consult the

documentation for your system.
Thestat module defines the following functions to test for specific file types:

S_ISDIR (mode¢
Return non-zero if the mode is from a directory.

S_ISCHR(mod§
Return non-zero if the mode is from a character special device file.

S_ISBLK (modg
Return non-zero if the mode is from a block special device file.

S_ISREG(modg
Return non-zero if the mode is from a regular file.

S_ISFIFO (modg
Return non-zero if the mode is from a FIFO (named pipe).

S_ISLNK(modg
Return non-zero if the mode is from a symbolic link.

S_ISSOCK(mode
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S_IMODK modg
Return the portion of the file’s mode that can be sebbychmod() —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S_IFMT(modg
Return the portion of the file’'s mode that describes the file type (used [##8¥() functions above).

Normally, you would use thes.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overheadstdti)e system call for each
test. These are also useful when checking for information about a file that isn’t handbedoyh | like the tests

for block and character devices.

6.4. stat — Interpreting stat() results 267

All the variables below are simply symbolic indexes into the 10-tuple returnemstsiat() , 0s.fstat() or
os.Istat()

ST_MODE

Inode protection mode.
ST_INO

Inode number.
ST_DEV

Device inode resides on.
ST_NLINK

Number of links to the inode.
ST_UID

User id of the owner.
ST_GID

Group id of the owner.
ST_SIZE

Size in bytes of a plain file; amount of data waiting on some special files.
ST_ATIME

Time of last access.
ST_MTIME

Time of last modification.
ST_CTIME

The “ctime” as reported by the operating system. On some systems (like) i the time of the last metadata
change, and, on others (like Windows), is the creation time (see platform documentation for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most flavors ofix (including Linux in particular), the “size” is the number of bytes
waiting to be read at the time of the call ds.stat() , 0s.fstat() , or os.Istat() ; this can sometimes be
useful, especially for polling one of these special files after a non-blocking open. The meaning of the size field for
other character and block devices varies more, depending on the implementation of the underlying system call.

Example:

268 Chapter 6. Generic Operating System Services

import 0s, sys
from stat import *

def walktree(top, callback):
"'recursively descend the directory tree rooted at top,
calling the callback function for each regular file™

for f in os.listdir(top):

pathname = os.path.join(top, f)

mode = os.stat(pathname)[ST_MODE]

if S_ISDIR(mode):
It's a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It's a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print 'Skipping %s’ % pathname

def visitfile(file):
print ‘visiting’, file

if _name__ =='_ main__"
walktree(sys.argv[1], visitfile)

6.5 statcache — An optimization of os.stat()

Deprecated since release 2.2Iseos .stat() directly instead of using the cache; the cache introduces a very high
level of fragility in applications using it and complicates application code with the addition of cache management
support.

Thestatcache module provides a simple optimizationds.stat() : remembering the values of previous invo-
cations.

Thestatcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical fos.stat() , except for remembering the result for future
invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previatat() calls.

forget (path
Forget the result oftat(path) , if any.

forget _prefix (prefix)
Forget all results oftat(path) for pathstarting withprefix

forget _dir (prefiy
Forget all results oftat(path) for patha file in the directoryprefix includingstat(prefix) .

forget _except _prefix (prefiy

6.5. statcache = — An optimization of os.stat() 269

Similar toforget _prefix() , but for allpathvaluesnot starting withprefix

Example:

>>> import o0s, statcache

>>> statcache.stat(’.")

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.’)

(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

Thestatvfs module defines constants so interpreting the resob gtatvfs() , Which returns a tuple, can be
made without remembering “magic numbers.” Each of the constants defined in this modulmdettef the entry in
the tuple returned bgs.statvfs() that contains the specified information.

F_BSIZE
Preferred file system block size.

F_FRSIZE
Fundamental file system block size.

F_BLOCKS
Total number of blocks in the filesystem.

F_BFREE
Total number of free blocks.

F_BAVAIL
Free blocks available to non-super user.

F_FILES
Total number of file nodes.

F_FFREE
Total number of free file nodes.

F_FAVAIL
Free nodes available to non-super user.

F_FLAG
Flags. System dependent: statvfs() man page.

F_NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

Thefilecmp module defines functions to compare files and directories, with various optional time/correctness trade-
offs.

Thefilecmp module defines the following functions:

cmp(1, f2[, Sha||0V\[, us&statcache]])
Compare the files namédtl andf2, returningTrue if they seem equakalse otherwise.

270 Chapter 6. Generic Operating System Services

Unlessshallowis given and is false, files with identicas.stat() signatures are taken to be equal. Changed
in version 2.3use_statcachas obsolete and ignored..

Files that were compared using this function will not be compared again unlesostetnt() signature
changes.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles (dirl, dir2, commoﬁ, shallovx[, us&statcacha])
Returns three lists of file namegatch mismatch errors. matchcontains the list of files match in both di-
rectories,mismatchincludes the names of those that don’t, @mdos lists the names of files which could not
be compared. Files may be listedarrors because the user may lack permission to read them or many other
reasons, but always that the comparison could not be done for some reason.

Thecommorparameter is a list of file names found in both directories. Sitelowanduse_statcachgparam-
eters have the same meanings and default values &ikefonp.cmp()

Example:

>>> import filecmp

>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)
True

>>> filecmp.cmp(’libundoc.tex’, ’lib.tex’)
False

6.7.1 The dircmp class

dircmp instances are built using this constructor:

classdircmp (a, b[ignore[, hide]])
Construct a new directory comparison object, to compare the direct@esi b. ignoreis a list of names
to ignore, and defaults tpRCS’, 'CVS’, ’tags’] . hideis a list of names to hide, and defaults to
[os.curdir, os.pardir]

Thedircmp class provides the following methods:

report ()
Print (tosys.stdout) a comparison betweemandb.

report _partial _closure ()
Print a comparison betweerandb and common immediate subdirectories.

report _full _closure ()
Print a comparison betweenandb and common subdirectories (recursively).

Thedircmp offers a number of interesting attributes that may be used to get various bits of information about the
directory trees being compared.

Note that via__getattr __() hooks, all attributes are computed lazily, so there is no speed penalty if only those
attributes which are lightweight to compute are used.
left _list

Files and subdirectories m filtered byhideandignore

right _list
Files and subdirectories I filtered byhideandignore

common
Files and subdirectories in bodhandb.

6.7. filecmp — File and Directory Comparisons 271

left _only
Files and subdirectories only @

right _only
Files and subdirectories only n

common_dirs
Subdirectories in both andb.

common._files
Files in botha andb

common_funny
Names in botha andb, such that the type differs between the directories, or names for vasichat()
reports an error.

same_files
Files which are identical in bothandb.
diff _files

Files which are in botla andb, whose contents differ.

funny _files
Files which are in botla andb, but could not be compared.

subdirs
A dictionary mapping names itcommon_.dirs to dircmp objects.

6.8 subprocess — Subprocess management

New in version 2.4.

Thesubprocess module allows you to spawn new processes, connect to their input/output/error pipes, and obtain
their return codes. This module intends to replace several other, older modules and functions, such as:

0s.system
0s.spawn*
0s.popen*
popen2.*
commands.*

Information about how theubprocess module can be used to replace these modules and functions can be found
in the following sections.

6.8.1 Using the subprocess Module

This module defines one class calledpen:

classPopen(args, bufsize=0, executable=None, stdin=None, stdout=None, stderr=None, préexblone,
close fds=False, shell=False, cwd=None, env=None, universewlines=False, startupinfo=None,
creationflags=0
Arguments are:
argsshould be a string, or a sequence of program arguments. The program to execute is normally the first item
in the args sequence or string, but can be explicitly set by using the executable argument.

On UNIx, with shell=False(default): In this case, the Popen class useexecvp() to execute the child

272 Chapter 6. Generic Operating System Services

program.argsshould normally be a sequence. A string will be treated as a sequence with the string as the only
item (the program to execute).

On UNIx, with shell=True If args is a string, it specifies the command string to execute through the shell.
If argsis a sequence, the first item specifies the command string, and any additional items will be treated as
additional shell arguments.

On Windows: thePopen class uses CreateProcess() to execute the child program, which operates on strings.
If argsis a sequence, it will be converted to a string using lisi2cmdline method. Please note that

not all MS Windows applications interpret the command line the same ligdgcmdline is designed for
applications using the same rules as the MS C runtime.

bufsize if given, has the same meaning as the corresponding argument to the built-in open() fuhctieans
unbuffered,l means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which usually means fully buffered. The default value for
bufsizeis O (unbuffered).

The executableargument specifies the program to execute. It is very seldom needed: Usually, the program to
execute is defined by thergs argument. Ifshell=True the executableargument specifies which shell to use.

On UNIX, the default shell is /bin/sh. On Windows, the default shell is specified by the COMSPEC environment
variable.

stdin, stdoutandstderr specify the executed programs’ standard input, standard output and standard error file
handles, respectively. Valid values @&PE, an existing file descriptor (a positive integer), an existing file
object, andNone. PIPE indicates that a new pipe to the child should be created. Withe, no redirection

will occur; the child’s file handles will be inherited from the parent. Additionatgerrcan beSTDOUTwhich
indicates that the stderr data from the applications should be captured into the same file handle as for stdout.

If preexecfn is set to a callable object, this object will be called in the child process just before the child is
executed.

If close_fdsis true, all file descriptors except 1 and2 will be closed before the child process is executed.
If shellis True , the specified command will be executed through the shell.

If cwdis notNone, the current directory will be changed to cwd before the child is executed.

If envis notNone, it defines the environment variables for the new process.

If universal_ newlinesis True , the file objects stdout and stderr are opened as a text files, but lines may be
terminated by any ofn’ , the Unix end-of-line conventiorly’ , the Macintosh convention dr\n’ , the
Windows convention. All of these external representations are se&m' as by the Python programNote:

This feature is only available if Python is built with universal newline support (the default). Also, the newlines
attribute of the file objectstdout , stdin andstderr are not updated by the communicate() method.

The startupinfoandcreationflagsif given, will be passed to the underlying CreateProcess() function. They can
specify things such as appearance of the main window and priority for the new process. (Windows only)

Convenience Functions

This module also defines one shortcut function:

call (*args, **kwargs)
Run command with arguments. Wait for command to complete, then returattiracode attribute.

The arguments are the same as for the Popen constructor. Example:

retcode = call(["Is", "-I"])

6.8. subprocess — Subprocess management 273

Exceptions

Exceptions raised in the child process, before the new program has started to execute, will be re-raised in the par-
ent. Additionally, the exception object will have one extra attribute call@ttl _traceback , which is a string
containing traceback information from the childs point of view.

The most common exception raiseddSError . This occurs, for example, when trying to execute a non-existent file.
Applications should prepare f@SError exceptions.

A ValueError will be raised ifPopen is called with invalid arguments.

Security

Unlike some other popen functions, this implementation will never call /bin/sh implicitly. This means that all charac-
ters, including shell metacharacters, can safely be passed to child processes.

6.8.2 Popen Objects

Instances of th€open class have the following methods:

poll ()
Check if child process has terminated. Returns returncode attribute.
wait ()

Wait for child process to terminate. Returns returncode attribute.

communicate (input=Nong
Interact with process: Send data to stdin. Read data from stdout and stderr, until end-of-file is reached. Wait for
process to terminate. The optiorsddliinargument should be a string to be sent to the child procedioe, if
no data should be sent to the child.

communicate() returns a tuple (stdout, stderr).
Note: The data read is buffered in memory, so do not use this method if the data size is large or unlimited.

The following attributes are also available:

stdin
If the stdinargument iPIPE, this attribute is a file object that provides input to the child process. Otherwise, it
is None.

stdout
If the stdoutargument iPIPE, this attribute is a file object that provides output from the child process. Other-
wise, itisNone.

stderr
If the stderr argument iSPIPE, this attribute is file object that provides error output from the child process.
Otherwise, it isNone.

pid
The process ID of the child process.

returncode

The child return code. ANone value indicates that the process hasn’t terminated yet. A negative value -N
indicates that the child was terminated by signal Nu(XJ only).

6.8.3 Replacing Older Functions with the subprocess Module

In this section, "a ==¢, b” means that b can be used as a replacement for a.

274 Chapter 6. Generic Operating System Services

Note: All functions in this section fail (more or less) silently if the executed program cannot be found; this module
raises arOSError exception.

In the following examples, we assume that the subprocess module is imported with "from subprocess import *”.

Replacing /bin/sh shell backquote

output="mycmd myarg’
==>
output = Popen(["'mycmd”, "myarg"], stdout=PIPE).communicate()[0]

Replacing shell pipe line

output=‘dmesg | grep hda‘

==>

pl = Popen(['dmesg"], stdout=PIPE)

p2 = Popen(["grep”, "hda"], stdin=pl.stdout, stdout=PIPE)
output = p2.communicate()[0]

Replacing os.system()

sts = os.system("mycmd" + " myarg")

==>

p = Popen("mycmd" + " myarg", shell=True)
sts = os.waitpid(p.pid, 0)

Notes:

e Calling the program through the shell is usually not required.

e It's easier to look at theeturncode attribute than the exit status.

A more realistic example would look like this:

try:
retcode = call("mycmd" + " myarg", shell=True)
if retcode < O:
print >>sys.stderr, "Child was terminated by signal", -retcode
else:
print >>sys.stderr, "Child returned”, retcode
except OSError, e:
print >>sys.stderr, "Execution failed:", e

Replacing os.spawn*

P_NOWAIT example:

6.8. subprocess — Subprocess management 275

pid = os.spawnlp(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg")
==>
pid = Popen([*/bin/mycmd”, "myarg"]).pid

P_WAIT example:

retcode = os.spawnlp(os.P_WAIT, "/bin/mycmd", "mycmd", "myarg")
==>
retcode = call(["/bin/mycmd", "myarg"])

Vector example:

os.spawnvp(os.P_NOWAIT, path, args)
==>
Popen([path] + args[1:])

Environment example:

os.spawnlpe(os.P_NOWAIT, "/bin/mycmd", "mycmd", "myarg", env)
==>
Popen(["/bin/mycmd", "myarg"], env={"PATH": "/usr/bin"})

Replacing os.popen*

pipe = os.popen(cmd, mode='r’, bufsize)
==>

pipe

Popen(cmd, shell=True, bufsize=bufsize, stdout=PIPE).stdout

pipe = os.popen(cmd, mode='w’, bufsize)
==>
pipe

Popen(cmd, shell=True, bufsize=bufsize, stdin=PIPE).stdin

(child_stdin, child_stdout) = os.popen2(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdin, child_stdout) = (p.stdin, p.stdout)

276 Chapter 6. Generic Operating System Services

(child_stdin,
child_stdout,
child_stderr) = os.popen3(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,
stdin=PIPE, stdout=PIPE, stderr=PIPE, close_fds=True)
(child_stdin,
child_stdout,
child_stderr) = (p.stdin, p.stdout, p.stderr)

(child_stdin, child_stdout_and_stderr) = os.popen4(cmd, mode, bufsize)
==>
p = Popen(cmd, shell=True, bufsize=bufsize,

stdin=PIPE, stdout=PIPE, stderr=STDOUT, close_fds=True)
(child_stdin, child_stdout_and_stderr) = (p.stdin, p.stdout)

Replacing popen2.*

Note: If the cmd argument to popen2 functions is a string, the command is executed through /bin/sh. If it is a list, the
command is directly executed.

(child_stdout, child_stdin) = popen2.popen2('somestring”, bufsize, mode)
==>
p = Popen(['somestring"], shell=True, bufsize=bufsize
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

(child_stdout, child_stdin) = popen2.popen2(["'mycmd", "myarg"], bufsize, mode)
==>
p = Popen(["'mycmd", "myarg"], bufsize=bufsize,
stdin=PIPE, stdout=PIPE, close_fds=True)
(child_stdout, child_stdin) = (p.stdout, p.stdin)

The popen2.Popen3 and popen3.Popen4 basically works as subprocess.Popen, except that:

e subprocess.Popen raises an exception if the execution fails
¢ thecapturestderrargument is replaced with ttetderrargument.
¢ stdin=PIPE and stdout=PIPE must be specified.

e popen? closes all file descriptors by default, but you have to specify_didseTrue with subprocess.Popen.

6.9 popen2 — Subprocesses with accessible 1/0 streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain their return codes
under WINIX and Windows.

6.9. popen2 — Subprocesses with accessible 1/0 streams 277

Note that starting with Python 2.0, this functionality is available using functions fromshmodule which have the
same names as the factory functions here, but the order of the return values is more intuitivesimtheule variants.

The primary interface offered by this module is a trio of factory functions. For each of thésésiteis specified,

it specifies the buffer size for the 1/0 pipenode if provided, should be the string’ or’t’ ; on Windows this is
needed to determine whether the file objects should be opened in binary or text mode. The default vahekei®or

p

On UNIX, cmd may be a sequence, in which case arguments will be passed directly to the program without shell
intervention (as wittos.spawnv()). If cmdis a string it will be passed to the shell (as withsystem()).

The only way to retrieve the return codes for the child processes is by usimplile or wait() methods on
the Popen3 andPopen4 classes; these are only available orik. This information is not available when using
thepopen2() , popen3() , andpopen4() functions, or the equivalent functions in the module. (Note that the
tuples returned by thes module’s functions are in a different order from the ones returned bgapen2 module.)

popen2 (cmc{, bufsizé, mode]])
Executexmdas a sub-process. Returns the file objéctsild_stdout child_stdin) .

popen3 (cm({, bufsiz{, mode]])
Executexmdas a sub-process. Returns the file objéactsild_stdout child_stdin, child_stderr) .

popen4 (cmc{, bufsizé, modd])
Executexcmdas a sub-process. Returns the file objéatkild_stdout.and_stderr, child_stdin). New in
version 2.0.

On UNIX, a class defining the objects returned by the factory functions is also available. These are not used for the
Windows implementation, and are not available on that platform.

classPopen3 (cmc{, capturestdelf, bufsize]])
This class represents a child process. Normdllgpen3 instances are created using thepen2() and
popen3() factory functions described above.

If not using one of the helper functions to cre®®pen3 objects, the parametemdis the shell command to
execute in a sub-process. Ttapturestderiflag, if true, specifies that the object should capture standard error
output of the child process. The default is false. If tudsizeparameter is specified, it specifies the size of the
I/O buffers to/from the child process.

classPopen4 (cmc{, bufsize])
Similar toPopen3, but always captures standard error into the same file object as standard output. These are
typically created usingopen4() . New in version 2.0.

6.9.1 Popen3 and Popen4 Objects

Instances of th€open3 andPopen4 classes have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.

wait ()
Waits for and returns the status code of the child process. The status code encodes both the return code of the
process and information about whether it exited usingettig) system call or died due to a signal. Functions
to help interpret the status code are defined irothenodule; see section 6.1.5 for tii¢() family of functions.

The following attributes are also available:

fromchild
A file object that provides output from the child process. Popen4 instances, this will provide both the
standard output and standard error streams.

tochild

278 Chapter 6. Generic Operating System Services

A file object that provides input to the child process.

childerr
A file object that provides error output from the child process;ajpturestderrwas true for the constructor,
otherwiseNone. This will always beNone for Popen4 instances.

pid
The process ID of the child process.

6.9.2 Flow Control Issues

Any time you are working with any form of inter-process communication, control flow needs to be carefully thought
out. This remains the case with the file objects provided by this module (asstimeodule equivalents).

When reading output from a child process that writes a lot of data to standard error while the parent is reading from
the child’s standard output, a deadlock can occur. A similar situation can occur with other combinations of reads and
writes. The essential factors are that more thBC_PIPE _BUFbytes are being written by one process in a blocking
fashion, while the other process is reading from the other process, also in a blocking fashion.

There are several ways to deal with this situation.

The simplest application change, in many cases, will be to follow this model in the parent process:

import popen2

r, w, e = popen2.popen3(’python slave.py’)
e.readlines()

r.readlines()

r.close()

e.close()

w.close()

with code like this in the child:

import os
import sys

note that each of these print statements
writes a single long string

print >>sys.stderr, 400 * ’this is a test\n’
os.close(sys.stderr.fileno())
print >>sys.stdout, 400 * ’this is another test\n’

In particular, note thasys.stderr must be closed after writing all data, madlines() won't return. Also
note thatos.close() must be used, asys.stderr.close() won't closestderr (otherwise assigning to
sys.stderr will silently close it, so no further errors can be printed).

Applications which need to support a more general approach should integrate /O over pipes wibltutf)
loops, or use separate threads to read each of the individual files provided by whipbpeer() function or
Popen* class was used.

6.10 datetime — Basic date and time types

6.10. datetime — Basic date and time types 279

New in version 2.3.

Thedatetime module supplies classes for manipulating dates and times in both simple and complex ways. While
date and time arithmetic is supported, the focus of the implementation is on efficient member extraction for output
formatting and manipulation.

There are two kinds of date and time objects: “naive” and “aware”. This distinction refers to whether the object has
any notion of time zone, daylight saving time, or other kind of algorithmic or political time adjustment. Whether a
naivedatetime object represents Coordinated Universal Time (UTC), local time, or time in some other timezone
is purely up to the program, just like it's up to the program whether a particular number represents metres, miles, or
mass. Naivalatetime objects are easy to understand and to work with, at the cost of ignoring some aspects of
reality.

For applications requiring moralatetime andtime objects have an optional time zone information member,
tzinfo , that can contain an instance of a subclass of the abshiatd class. Thesézinfo objects capture
information about the offset from UTC time, the time zone name, and whether Daylight Saving Time is in effect. Note
that no concretézinfo classes are supplied by tdatetime module. Supporting timezones at whatever level

of detail is required is up to the application. The rules for time adjustment across the world are more political than
rational, and there is no standard suitable for every application.

Thedatetime module exports the following constants:

MINYEAR
The smallest year number allowed inlate or datetime object. MINYEARis 1.

MAXYEAR
The largest year number allowed irdate or datetime object. MAXYEARS 9999 .

See Also:

Modulecalendar (section 5.19):
General calendar related functions.

Moduletime (section 6.11):
Time access and conversions.

6.10.1 Available Types

classdate
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes:year , month , andday .

classtime
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 sec-
onds (there is no notion of "leap seconds” here). Attributesur , minute , second , microsecond
andtzinfo

classdatetime
A combination of a date and a time. Attributeszear , month, day, hour , minute , second ,
microsecond , andtzinfo

classtimedelta
A duration expressing the difference between tlate , time , ordatetime instances to microsecond reso-
lution.

classtzinfo
An abstract base class for time zone information objects. These are usedlaydtime andtime classes to
provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight saving
time).

Objects of these types are immutable.

280 Chapter 6. Generic Operating System Services

Objects of thadate type are always naive.

An objectd of type time or datetime may be naive or awared is aware ifd.tzinfo is not None and
d.tzinfo.utcoffset(d) does not returNone. If d.tzinfo is None, or if d.tzinfo is not None but
d.tzinfo.utcoffset(d) returnsNone, dis naive.

The distinction between naive and aware doesn’t apptiniedelta objects.

Subclass relationships:

object
timedelta
tzinfo
time
date
datetime

6.10.2 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

classtimedelta ([days[, secondE, microseconc{s miIIisecondg, minute{, hours[, weeks]]]]]]])
All arguments are optional and default@ Arguments may be ints, longs, or floats, and may be positive or
negative.

Only days secondsindmicrosecondsire stored internally. Arguments are converted to those units:

oA millisecond is converted to 1000 microseconds.
eA minute is converted to 60 seconds.

eAn hour is converted to 3600 seconds.

oA week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

e¢0 <= microseconds< 1000000
e0 <= seconds< 3600*24 (the number of seconds in one day)
¢-999999999 <= days <= 999999999

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from all
arguments are combined and their sum is rounded to the nearest microsecond. If no argument is a float, the
conversion and normalization processes are exact (no information is lost).

If the normalized value of days lies outside the indicated ra@gerflowError is raised.
Note that normalization of negative values may be surprising at first. For example,

>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes are:
min
The most negativémedelta object,timedelta(-999999999)

6.10. datetime — Basic date and time types 281

max
The most positivdimedelta object,timedelta(days=999999999, hours=23, minutes=59,
seconds=59, microseconds=999999)

resolution
The smallest possible difference between non-equal timedelta objects,

timedelta(microseconds=1)

Note that, because of normalizatidimedelta.max >-timedelta.min . -timedelta.max is not repre-
sentable as imedelta object.

Instance attributes (read-only):

Attribute | Value
days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds Between 0 and 999999 inclusive
Supported operations:
Operation Result
t1 = t2 + t3 Sum oft2 andt3. Afterwardst1-t2 == t3 andt1-t3 ==t2 are true. (1)
tl = t2 - t3 Difference oft2 andt3. Afterwardstl ==1t2 - t3 andt2 ==t1 + t3 are true. (1)
t1 =t2* i or t1 =i * t2 | Delta multiplied by an integer or long. Afterwartls// i == t2 is true, provided !'= 0 .
Ingeneraltl *i==t1*(i-1) + tlis true. (1)
t1 =t2 // i The floor is computed and the remainder (if any) is thrown away. (3)
+tl Returns gimedelta object with the same value. (2)
-1 equivalent tadimedelta (-tl.days-t1l.secondstl.microsecondsand tot1* -1. (1)(4)
abs(t) equivalentto twhent.days >= 0 ,andtotwhent.days < 0 . (2)
Notes:

(1) This is exact, but may overflow.
(2) This is exact, and cannot overflow.
(3) Division by 0 raiseZeroDivisionError

(4) -timedelta.maxs not representable agimedelta object.

In addition to the operations listed abowmedelta objects support certain additions and subtractions datte
anddatetime objects (see below).

Comparisons ofimedelta objects are supported with thienedelta object representing the smaller duration
considered to be the smaller timedelta. In order to stop mixed-type comparisons from falling back to the default
comparison by object address, whetinaedelta object is compared to an object of a different typgpeError

is raised unless the comparisorris or = . The latter cases retuffalse or True , respectively.

timedelta objects are hashable (usable as dictionary keys), support efficient pickling, and in Boolean contexts, a
timedelta object is considered to be true if and only if it isn’t equatitoedelta(0)

6.10.3 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions. January 1 of year 1 is called day number 1, January 2 of year 1 is called day

282 Chapter 6. Generic Operating System Services

number 2, and so on. This matches the definition of the "proleptic Gregorian” calendar in Dershowitz and Reingold’s
book Calendrical Calculationswhere it's the base calendar for all computations. See the book for algorithms for
converting between proleptic Gregorian ordinals and many other calendar systems.

classdate (year, month, day
All arguments are required. Arguments may be ints or longs, in the following ranges:

eMINYEAR <=year <= MAXYEAR
el <= month <= 12
el <= day <= number of days in the given month and year

If an argument outside those ranges is givéalueError is raised.
Other constructors, all class methods:

today ()
Return the current local date. This is equivalenil&ébe.fromtimestamp(time.time())

fromtimestamp (timestamp
Return the local date corresponding to the POSIX timestamp, such as is returtiree tiyne() . This may
raiseValueError , if the timestamp is out of the range of values supported by the platfdooaltime()
function. It's common for this to be restricted to years from 1970 through 2038. Note that on non-POSIX sys-
tems that include leap seconds in their notion of a timestamp, leap seconds are igrfovettinyestamp()

fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordi-
nal 1. ValueError is raised unlesd <= ordinal <= date.max.toordinal() . For any dated,
date.fromordinal(d.toordinal()) == d.

Class attributes:

min

The earliest representable dadate(MINYEAR, 1, 1)
max

The latest representable dadate(MAXYEAR, 12, 31)
resolution

The smallest possible difference between non-equal date obijentslelta(days=1)
Instance attributes (read-only):

year
BetweenMINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation | Result
date2 = datel + timedelta| date2istimedeltadays days removed frordatel (1)
date2 = datel - timedelta| Computesiate2such thatate2 + timedelta == datel (2)
timedelta = datel - date2| (3)
datel < date2 datelis considered less thatate2whendate1lprecedeslate2in time. (4)

Notes:

6.10. datetime — Basic date and time types 283

(1) date2is moved forward in time itimedeltadays > 0 , or backward iftimedeltadays < 0 . Afterward
date2 - datel == timedeltadays . timedeltaseconds and timedeltamicroseconds are ignored.
OverflowError is raised ifdate2year would be smaller thaMINYEARor larger tharMAXYEAR

(2) This isn't quite equivalent to datel + (-timedelta), because -timedelta in isolation can overflow in cases where
datel - timedelta does ndimedeltaseconds andtimedeltamicroseconds are ignored.

(3) This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta ==
datel after.

(4) In other wordsdatel < date2 if and only if dateltoordinal() < date2toordinal() . In order
to stop comparison from falling back to the default scheme of comparing object addresses, date comparison
normally raisesTypeError if the other comparand isn’t alsodate object. HoweverNotimplemented
is returned instead if the other comparand hdenetuple attribute. This hook gives other kinds of date
objects a chance at implementing mixed-type comparison. If not, wkiatea object is compared to an object
of a different typeTypeError is raised unless the comparisorsis or = . The latter cases retufralse or
True , respectively.

Dates can be used as dictionary keys. In Boolean contextiat@l| objects are considered to be true.

Instance methods:

replace (year, month, day
Return a date with the same value, except for those members given new values by whichever keyword ar-
guments are specified. For exampledif== date(2002, 12, 31) , thend.replace(day=26) ==
date(2002, 12, 26)

timetuple ()

Return aime.struct _time such as returned kyme.localtime() . The hours, minutes and seconds
are 0, and the DST flag is -1.d.timetuple() is equivalent totime.struct _time((d.year,
d.month, d.day, 0, 0, O, d.weekday(), d.toordinal() - date(d.year, 1,

1).toordinal() + 1, -1))

toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. #fateargbject

d, date.fromordinal(d.toordinal()) == d.

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For exdate(2002,
12, 4).weekday() == , @ Wednesday. See alsmweekday()

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For exdatg(2002,
12, 4).isoweekday() == , @ Wednesday. See alseekday() ,isocalendar()

isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The 1ISO calendar is a widely wused variant of the Gregorian calendar. See
http://www.phys.uu.nl/ vgent/calendar/isocalendar.htm for a good explanation.

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian yeatr.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004, so thae(2003, 12, 29).isocalendar() == (2004, 1,
1) anddate(2004, 1, 4).isocalendar() == (2004, 1, 7) .

isoformat ()
Return a string representing the date in ISO 8601 format, 'YYYY-MM-DD'. For exangatg (2002, 12,
4).isoformat() == '2002-12-04’

284 Chapter 6. Generic Operating System Services

__str __()
For a dated, str(d) is equivalent tal.isoformat()

ctime ()
Return a string representing the date, for example date(2002, 12, 4).ctime() == 'Wed Dec 4 00:00:00 2002'.
d.ctime() is equivalent tdime.ctime(time.mktime(d.timetuple())) on platforms where the
native Cctime() function (whichtime.ctime() invokes, but whictdate.ctime() does not invoke)

conforms to the C standard.

stritime (formaf)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. See the sectiatriitme () behavior.

6.10.4 datetime Objects

A datetime object is a single object containing all the information frordade object and @&ime object. Like
adate object,datetime assumes the current Gregorian calendar extended in both directions; like a time object,
datetime assumes there are exactly 3600*24 seconds in every day.

Constructor:

classdatetime (year, month, da&, hour[, minute[, secontﬂ, microseconﬂ, tzinfo]]]]])
The year, month and day arguments are requiteidfo may beNone, or an instance of &info subclass.
The remaining arguments may be ints or longs, in the following ranges:

eMINYEAR <=year <= MAXYEAR

el <= month <= 12

el <= day <= number of days in the given month and year
0 <= hour < 24

e0 <= minute < 60

e0 <= second< 60

0 <= microsecond< 1000000

If an argument outside those ranges is givéalueError is raised.

Other constructors, all class methods:

today ()
Return the current local datetime, withtzinfo None . This is equivalent to
datetime.fromtimestamp(time.time()) . See alsmow() , fromtimestamp()

now([tz])

Return the current local date and time. If optional arguntzigtNone or not specified, this is likeoday()
but, if possible, supplies more precision than can be gotten from going throtigie.sime() timestamp

(for example, this may be possible on platforms supplying tlye@meofday() function).
Else tz must be an instance of a clasdzinfo subclass, and the current date
and time are converted totZs time zone. In this case the result is equivalent to
tzfromutc(datetime.utcnow().replace(tzinfo= t2)) . See alsdoday() , utcnow()

utcnow ()

Return the current UTC date and time, witinfo None . This is likenow() , but returns the current UTC
date and time, as a naidatetime object. See alsnow() .

fromtimestamp (timestamﬁ, tz])
Return the local date and time corresponding to the POSIX timestamp, such as is retutineel tyie()

6.10. datetime — Basic date and time types 285

If optional argumentz is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returnedatetime object is naive.

Else tz must be an instance of a classtzinfo subclass, and the times-
tamp is converted totZs time zone. In this case the result is equivalent to
tzfromutc(datetime.utcfromtimestamp(timestamjpreplace(tzinfo= t2) .

fromtimestamp() may raiseValueError , if the timestamp is out of the range of values supported by
the platform Clocaltime() orgmtime() functions. It's common for this to be restricted to years in 1970

through 2038. Note that on non-POSIX systems that include leap seconds in their notion of a timestamp, leap

seconds are ignored Hyomtimestamp() , and then it's possible to have two timestamps differing by a
second that yield identicalatetime objects. See alsatcfromtimestamp()

utcfromtimestamp (timestamp
Return the UTCdatetime corresponding to the POSIX timestamp, wittinfo None . This may raise
ValueError , if the timestamp is out of the range of values supported by the platfogmi@®ne() function.
It's common for this to be restricted to years in 1970 through 2038. Sedratatimestamp()

fromordinal (ordinal)
Return thedatetime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueError israised unlesé <= ordinal <= datetime.max.toordinal() . The hour, minute,
second and microsecond of the result are all O,taimdo is None.

combine (date, tim@
Return a newdatetime object whose date members are equal to the gilate object’s, and whose
time andtzinfo members are equal to the givéime object’'s. For anydatetime objectd, d ==
datetime.combine(d.date(), d.timetz()) . If date is adatetime object, its time andzinfo
members are ignored.

Class attributes:

min
The earliest representaldatetime |, datetime(MINYEAR, 1, 1, tzinfo=None)

max
The latest representablelatetime , datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None)

resolution

The smallest possible difference between non-edatdtime objectstimedelta(microseconds=1)
Instance attributes (read-only):

year
BetweenMINYEARandMAXYEARclusive.

month
Between 1 and 12 inclusive.

day
Between 1 and the number of days in the given month of the given year.

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

286 Chapter 6. Generic Operating System Services

tzinfo
The object passed as ttenfoargument to thelatetime constructor, oNone if none was passed.

Supported operations:

Operation | Result
datetime2 = datetimel+ timedelta| (1)
datetime2 = datetimel- timedelta| (2)
timedelta = datetimel- datetime2| (3)
datetimel< datetime2 Comparegslatetime to datetime . (4)

(1) datetime2 is a duration of timedelta removed from datetimel, moving forward in titimeeifleltadays ¢ O, or
backward iftimedeltadays 0. The result has the sartenfo member as the input datetime, and datetime2
- datetimel == timedelta afte©verflowError is raised if datetime2.year would be smaller thaiNYEAR
or larger tharMAXYEARNote that no time zone adjustments are done even if the input is an aware object.

(2) Computes the datetime2 such that datetime2 + timedelta == datetimel. As for addition, the result has the same
tzinfo member as the input datetime, and no time zone adjustments are done even if the input is aware. This
isn’'t quite equivalent to datetimel + (-timedelta), because -timedelta in isolation can overflow in cases where
datetimel - timedelta does not.

(3) Subtraction of alatetime from adatetime is defined only if both operands are naive, or if both are aware.
If one is aware and the other is naivigjpeError is raised.

If both are naive, or both are aware and have the samé member, thézinfo members are ignored,
and the resultis imedelta objectt such thatlatetime2+ t == datetimel No time zone adjustments are
done in this case.

If both are aware and have differeittinfo members,a-b acts as ifa and b were first converted
to naive UTC datetimes first. The result (s.replace(tzinfo=None) - a.utcoffset()) -
(b.replace(tzinfo=None) - b.utcoffset()) except that the implementation never overflows.

(4) datetimelis considered less thatatetime2vhendatetimelprecedeslatetimedn time.

If one comparand is naive and the other is awdgmeError s raised. If both comparands are aware, and
have the sam&info member, the commotzinfo member is ignored and the base datetimes are com-
pared. If both comparands are aware and have différgmio =~ members, the comparands are first adjusted

by subtracting their UTC offsets (obtained fraalf.utcoffset()). Note: In order to stop comparison

from falling back to the default scheme of comparing object addresses, datetime comparison normally raises
TypeError if the other comparand isn't alsodatetime object. HoweverNotimplemented s returned

instead if the other comparand hatiraetuple attribute. This hook gives other kinds of date objects a chance

at implementing mixed-type comparison. If not, whedadetime object is compared to an object of a dif-
ferent type,TypeError is raised unless the comparisorris or = . The latter cases retuffalse or True ,
respectively.

datetime objects can be used as dictionary keys. In Boolean contextiat@itime objects are considered to be
true.

Instance methods:

date ()
Returndate object with same year, month and day.

time ()
Returntime object with same hour, minute, second and microsectnidfo is None. See also method
timetz()

timetz ()
Returntime object with same hour, minute, second, microsecond, and tzinfo members. See also method
time()

6.10. datetime — Basic date and time types 287

replace ([year[, montt{, da){, hour[, minute[, secontﬂ, microseconﬂ, tzinfo]]]]]]]])
Return a datetime with the same members, except for those members given new values by whichever keyword
arguments are specified. Note thzihfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time members.

astimezone (t2
Return adatetime object with newtzinfo membertz, adjusting the date and time members so the result is
the same UTC time aself, but intZs local time.

tz must be an instance oftainfo subclass, and itatcoffset() anddst() methods must not return
None. self must be awaresglf.tzinfo ~ must not béNone, andself.utcoffset() must not returNone).

If self.tzinfo is tz, self.astimezone(tz) is equal toself: no adjustment of date or time members is
performed. Else the result is local time in time zdnerepresenting the same UTC timesdf: afterastz =
dtastimezone(t2),astz - astzutcoffset() will usually have the same date and time membemdtas

- dt.utcoffset() . The discussion of clagginfo explains the cases at Daylight Saving Time transition
boundaries where this cannot be achieved (an issue otynibdels both standard and daylight time).

If you merely want to attach a time zone objerto a datetimelt without adjustment of date and time members,
usedt.replace(tzinfo= t2) . If you merely want to remove the time zone object from an aware datetime
without conversion of date and time members, diseeplace(tzinfo=None)

Note that the defaulizinfo.fromutc() method can be overridden intainfo subclass to affect the
result returned bastimezone() . Ignoring error casesstimezone() acts like:

def astimezone(self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc(utc)

utcoffset ()
If tzinfo is None, returnsNone, else returnself.tzinfo.utcoffset(self) , and raises an exception if
the latter doesn’t returNone, or atimedelta object representing a whole number of minutes with magnitude
less than one day.

dst ()
If tzinfo is None, returnsNone, else returnself.tzinfo.dst(self) , and raises an exception if the latter
doesn’t returrNone, or atimedelta object representing a whole number of minutes with magnitude less
than one day.

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(self) , raises an exception if the latter
doesn’t returrNone or a string object,

timetuple ()

Return atime.struct _time such as returned biyme.localtime() . d.timetuple() is equiva-
lent to time.struct _time((d.year, d.month, d.day, d.hour, d.minute, d.second,
d.weekday(), d.toordinal() - date(d.year, 1, 1).toordinal() + 1, dst)) The

tm_isdst flag of the resultis set according to thst() method:tzinfo isNone ordst() returnsNone,
tm_isdst issetto-l;elseifdst() returns anon-zero valuem_isdst is settol; elsetm _isdst is set
to 0.

utctimetuple 0
If datetime instanced is naive, this is the same dgimetuple() except thatm _isdst is forced to 0
regardless of what.dst() returns. DST is never in effect for a UTC time.

288 Chapter 6. Generic Operating System Services

If dis awared is normalized to UTC time, by subtractimgutcoffset() , and atime.struct _time

for the normalized time is returnedin _isdst is forced to 0. Note that the resultsn _year member may
be MINYEAR1 or MAXYEARL, if d.year wasMINYEARor MAXYEARINd UTC adjustment spills over a year
boundary.

toordinal ()
Return the proleptic Gregorian ordinal of the date. The sanseléslate().toordinal()

weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as
self.date().weekday() . See alsasoweekday()

isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as
self.date().isoweekday() . See alsaveekday() , isocalendar()

isocalendar ()
Return a 3-tuple, (ISO vyear, ISO week number, ISO weekday). The same as
self.date().isocalendar()

isoformat ([sep])
Return a string representing the date and time in ISO 8601 format, YYYY-MM-DDTHH:MM:SS.mmmmmm
or, if microsecond is 0, YYYY-MM-DDTHH:MM:SS

If utcoffset() does not returiNone, a 6-character string is appended, giving the UTC offset in (signed)
hours and minutes: YYYY-MM-DDTHH:MM:SS.mmmmmm-+HH:MM or, ihicrosecond is 0 YYYY-
MM-DDTHH:MM:SS+HH:MM

The optional argumersep(default’T’) is a one-character separator, placed between the date and time portions
of the result. For example,

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
def utcoffset(self, dt): return timedelta(minutes=-399)

>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(’)
'2002-12-25 00:00:00-06:39’

__str __()
For adatetime instanced, str(d) is equivalent tal.isoformat(’ ’)

ctime ()
Return a string representing the date and time, for exangd¢etime(2002, 12, 4, 20,
30, 40).ctime() == 'Wed Dec 4 20:30:40 2002’ . d.ctime() is equivalent to
time.ctime(time.mktime(d.timetuple())) on platforms where the native @ime() function
(which time.ctime() invokes, but whichdatetime.ctime() does not invoke) conforms to the C
standard.

stritime (formaf)
Return a string representing the date and time, controlled by an explicit format string. See the section on
strftime() behavior.

6.10.5 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

classtime (hour[, minute[, seconcﬂ, microsecon[i, tzinfo]]]])
All arguments are optionatzinfomay beNone, or aninstance of&info subclass. The remaining arguments

6.10. datetime — Basic date and time types 289

may be ints or longs, in the following ranges:

0 <= hour < 24

¢0 <= minute < 60

e0 <= second< 60

0 <= microsecond< 1000000 .

If an argument outside those ranges is givéalueError is raised. All default tad) excepttzinfo, which
defaults taNone.

Class attributes:
min
The earliest representaliiee , time(0, 0, 0, 0)

max
The latest representaltiene |, time(23, 59, 59, 999999)

resolution
The smallest possible difference between non-etjime objects,timedelta(microseconds=1) , al-
though note that arithmetic dime objects is not supported.

Instance attributes (read-only):

hour
In range(24)

minute
In range(60)

second
In range(60)

microsecond
In range(1000000)

tzinfo
The object passed as the tzinfo argument tdithe constructor, oNone if none was passed.

Supported operations:

e comparison ofime totime , whereais considered less thdnwhena precede$ in time. If one comparand is
naive and the other is awarBypeError is raised. If both comparands are aware, and have the zamie
member, the commotzinfo member is ignored and the base times are compared. If both comparands
are aware and have differetsfinfo = members, the comparands are first adjusted by subtracting their UTC
offsets (obtained fronself.utcoffset()). In order to stop mixed-type comparisons from falling back to
the default comparison by object address, wheim& object is compared to an object of a different type,
TypeError israised unless the comparisorris or = . The latter cases retuffalse or True , respectively.

e hash, use as dict key
o efficient pickling
e in Boolean contexts, ime object is considered to be true if and only if, after converting it to minutes and

subtractingutcoffset() (or O if that's None), the result is non-zero.

Instance methods:

290 Chapter 6. Generic Operating System Services

replace ([hour[, minute[, secontﬂ, microsecon[i, tzinfo]]]]])
Return atime with the same value, except for those members given new values by whichever keyword argu-
ments are specified. Note thainfo=None can be specified to create a nafime from an awardime
without conversion of the time members.

isoformat ()
Return a string representing the time in ISO 8601 format, HH:MM:SS.mmmmmm or, if self.microsecond
is 0, HH:MM:SS If utcoffset() does not returrNone, a 6-character string is appended, giving the
UTC offset in (signed) hours and minutes: HH:MM:SS.mmmmmm+HH:MM or, if self.microsecond is O,
HH:MM:SS+HH:MM

_str __()
For a timet, str(t) is equivalent td.isoformat()

stritime (forma)
Return a string representing the time, controlled by an explicit format string. See the sectioftioe()
behavior.

utcoffset ()
If tzinfo is None, returnsNone, else returnself.tzinfo.utcoffset(None) , and raises an excep-
tion if the latter doesn’t returiNone or atimedelta object representing a whole number of minutes with
magnitude less than one day.

dst ()
If tzinfo is None, returnsNone, else returnself.tzinfo.dst(None) , and raises an exception if the
latter doesn’t returiNone, or atimedelta object representing a whole number of minutes with magnitude
less than one day.

tzname ()
If tzinfo is None, returnsNone, else returnself.tzinfo.tzname(None) , Or raises an exception if the
latter doesn’t returtNone or a string object.

6.10.6 tzinfo Objects

tzinfo is an abstract base clase, meaning that this class should not be instantiated directly. You need to derive a
concrete subclass, and (at least) supply implementations of the stanidéod methods needed by thiatetime
methods you use. Thiatetime module does not supply any concrete subclassesndd

An instance of (a concrete subclasstafpfo can be passed to the constructorsdatetime andtime objects.
The latter objects view their members as being in local time, anttihf® object supports methods revealing offset
of local time from UTC, the name of the time zone, and DST offset, all relative to a date or time object passed to them.

Special requirement for pickling: #&info subclass must have an.init __ method that can be called with no
arguments, else it can be pickled but possibly not unpickled again. This is a technical requirement that may be relaxed
in the future.

A concrete subclass ¢finfo may need to implement the following methods. Exactly which methods are needed
depends on the uses made of andaitetime objects. If in doubt, simply implement all of them.

utcoffset (' self, d)
Return offset of local time from UTC, in minutes east of UTC. If local time is west of UTC, this should be
negative. Note that this is intended to be the total offset from UTC; for examplézifife object represents
both time zone and DST adjustmenis;offset() should return their sum. If the UTC offset isn't known,
returnNone. Else the value returned must béimedelta object specifying a whole number of minutes in
the range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset must be less than one day). Most
implementations ofitcoffset() will probably look like one of these two:

6.10. datetime — Basic date and time types 291

return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class

If utcoffset() does not returNone, dst() should not returiNone either.
The default implementation aftcoffset() raisesNotimplementedError

dst (self, d)
Return the daylight saving time (DST) adjustment, in minutes east of UTNpoe if DST information isn't
known. Returrtimedelta(0) if DST is not in effect. If DST is in effect, return the offset atiraedelta
object (seaitcoffset() for details). Note that DST offset, if applicable, has already been added to the UTC
offset returned bytcoffset() , SO there’s no need to consdkt() unless you're interested in obtaining
DST info separately. For exampléatetime.timetuple() calls itstzinfo member'sdst() method
to determine how thém _isdst flag should be set, andinfo.fromutc() callsdst() to account for

DST changes when crossing time zones.
An instancetz of atzinfo subclass that models both standard and daylight times must be consistent in this

sense:
tz.utcoffset(dt) - tzdst(dt)

must return the same result for evatgtetime dt with dt.tzinfo == tz For sandzinfo subclasses,

this expression yields the time zone’s "standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementatiordatetime.astimezone() relies on this, but cannot
detect violations; it's the programmer’s responsibility to ensure it. tfiafo subclass cannot guarantee

this, it may be able to override the default implementationtzoffo.fromutc() to work correctly with

astimezone() regardless.
Most implementations adst() will probably look like one of these two:

def dst(self):
a fixed-offset class: doesn't account for DST
return timedelta(0)

or

def dst(self):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time. Then

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)

else:
return timedelta(0)

The default implementation afst() raisesNotimplementedError

tzname (self, d)
Return the time zone name corresponding tadi@time objectdt, as a string. Nothing about string names is
defined by thelatetime module, and there’s no requirement that it mean anything in particular. For example,
"GMT”, "UTC”, "-500", "-5:00", "EDT", "US/Eastern”, "America/New York” are all valid replies. Return
None if a string name isn’t known. Note that this is a method rather than a fixed string primarily because some
tzinfo subclasses will wish to return different names depending on the specific valupagsed, especially
if the tzinfo class is accounting for daylight time.

The default implementation atname() raisesNotimplementedError

These methods are called bydatetime or time object, in response to their methods of the same names. A
datetime object passes itself as the argument, artiree object passedlone as the argument. Azinfo

292 Chapter 6. Generic Operating System Services

subclass’s methods should therefore be prepared to acdeptgument oNone, or of classdatetime

When None is passed, it's up to the class designer to decide the best response. For example, rikomeirng
appropriate if the class wishes to say that time objects don't participate tzitifie protocols. It may be more
useful forutcoffset(None) to return the standard UTC offset, as there is no other convention for discovering the
standard offset.

When adatetime object is passed in response tdatetime method,dt.tzinfo is the same object aelf.
tzinfo methods can rely on this, unless user code ¢aiilfo methods directly. The intent is that th@nfo
methods interpratt as being in local time, and not need worry about objects in other timezones.

There is one mori&zinfo method that a subclass may wish to override:

fromutc (self, d)
This is called from the defaultlatetime.astimezone() implementation. When called from that,
dt.tzinfo is self, anddt's date and time members are to be viewed as expressing a UTC time. The pur-
pose offromutc() is to adjust the date and time members, returning an equivalent datetsed’snlocal
time.

Mosttzinfo subclasses should be able to inherit the defaoihutc() implementation without problems.

It's strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc() implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations ofistimezone() andfromutc() may not produce the result you want if the result is one

of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the defdtdmutc() implementation acts like:

def fromutc(self, dt):
raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()
raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst()
raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

Exampletzinfo classes:
from datetime import tzinfo, timedelta, datetime

ZERO = timedelta(0)
HOUR = timedelta(hours=1)

A UTC class.
class UTC(tzinfo):

def utcoffset(self, dt):
return ZERO

6.10. datetime — Basic date and time types 293

def tzname(self, dt):
return "UTC"

def dst(self, dt):
return ZERO

utc = UTC()

A class building tzinfo objects for fixed-offset time zones.

Note that FixedOffset(0, "UTC") is a different way to build a
UTC tzinfo object.

class FixedOffset(tzinfo):
""Fixed offset in minutes east from UTC.""

def __init_ (self, offset, name):
self.__offset = timedelta(minutes = offset)
self.__name = name
def utcoffset(self, dt):

return self.__ offset

def tzname(self, dt):
return self.__name

def dst(self, dt):
return ZERO

A class capturing the platform’s idea of local time.
import time as _time

STDOFFSET = timedelta(seconds = -_time.timezone)

if _time.daylight:
DSTOFFSET

else:
DSTOFFSET

timedelta(seconds = -_time.altzone)

STDOFFSET
DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone(tzinfo):

def utcoffset(self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst(self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname(self, dt):
return _time.tzname([self._isdst(dt)]

def _isdst(self, dt):
tt = (dt.year, dt.month, dt.day,

294 Chapter 6. Generic Operating System Services

dt.hour, dt.minute, dt.second,
dt.weekday(), 0, -1)

stamp = _time.mktime(tt)

tt = _time.localtime(stamp)

return tt.tm_isdst > 0

Local = LocalTimezone()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after(dt):
days to_go = 6 - dt.weekday()

if days_to_go:
dt += timedelta(days_to_go)
return dt

In the US, DST starts at 2am (standard time) on the first Sunday in April.
DSTSTART = datetime(1, 4, 1, 2)

and ends at 2am (DST time; lam standard time) on the last Sunday of Oct.
which is the first Sunday on or after Oct 25.

DSTEND = datetime(1, 10, 25, 1)

class USTimeZone(tzinfo):

def __init__ (self, hours, reprname, stdname, dsthame):
self.stdoffset = timedelta(hours=hours)
self.reprname = reprname
self.stdname = stdname
self.dsthame = dstname
def __repr__(self):
return self.reprname

def tzname(self, dt):
if self.dst(dt):
return self.dstname
else:
return self.stdname

def utcoffset(self, dt):
return self.stdoffset + self.dst(dt)

def dst(self, dt):

if dt is None or dt.tzinfo is None:
An exception may be sensible here, in one or both cases.
It depends on how you want to treat them. The default
fromutc() implementation (called by the default astimezone()
implementation) passes a datetime with dt.tzinfo is self.
return ZERO

assert dt.tzinfo is self

Find first Sunday in April & the last in October.
start = first_sunday_on_or_after(DSTSTART.replace(year=dt.year))
end = first_sunday_on_or_after(DSTEND.replace(year=dt.year))

Can’t compare naive to aware objects, so strip the timezone from
dt first.
if start <= dt.replace(tzinfo=None) < end:

6.10. datetime — Basic date and time types 295

return HOUR
else:
return ZERO

Eastern = USTimeZone(-5, "Eastern", "EST", "EDT")
Central = USTimeZone(-6, "Central’, "CST", "CDT")
Mountain = USTimeZone(-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone(-8, "Pacific", "PST", "PDT")

Note that there are unavoidable subtleties twice per yeartasinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the first Sunday in April, and ends the minute after 1:59 (EDT) on the last Sunday in
October:

uTtC 3MM 4MM 5MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM OMM 1:MM 2:MM 3:MM
EDT 23:MM O:MM 1.MM 2:MM 3:MM 4:MM

start 22:MM 23:MM O:MM 1:.MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the "start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM doesn't
really make sense on that day, astimezone(Eastern) won't deliver a result witthour == 2 on the day
DST begins. In order foastimezone() to make this guarantee, thanfo.dst() method must consider times

in the "missing hour” (2:MM for Eastern) to be in daylight time.

When DST ends (the "end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unambigu-
ously in local wall time: the last hour of daylight time. In Eastern, that's times of the form 5:MM UTC on the day
daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again. Local
times of the form 1:MM are ambiguouastimezone() = mimics the local clock’s behavior by mapping two adjacent

UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM both map
to 1:MM when converted to Eastern. In order fstimezone() to make this guarantee, theinfo.dst()

method must consider times in the "repeated hour” to be in standard time. This is easily arranged, as in the example,
by expressing DST switch times in the time zone’s standard local time.

Applications that can't bear such ambiguities should avoid using hytinféb subclasses; there are no ambiguities
when using UTC, or any other fixed-offsginfo ~ subclass (such as a class representing only EST (fixed offset -5
hours), or only EDT (fixed offset -4 hours)).

6.10.7 strftime() Behavior

date , datetime , andtime objects all support atrftime(~ formaf) method, to create a string representing the
time under the control of an explicit format string. Broadly speakéhgtrftime(fmt) acts like theime mod-
ule’stime.strftime(fmt, d.timetuple()) although not all objects supportianetuple() method.

Fortime objects, the format codes for year, month, and day should not be used, as time objects have no such values.
If they're used anywayl 900 is substituted for the year, afidfor the month and day.

Fordate objects, the format codes for hours, minutes, and seconds should not be s, abjects have no such
values. If they're used anywa,is substituted for them.

For a naive object, th&zand%Zformat codes are replaced by empty strings.

For an aware object:

296 Chapter 6. Generic Operating System Services

%z utcoffset() is transformed into a 5-character string of the form +HHMM or -HHMM, where HH is a 2-
digit string giving the number of UTC offset hours, and MM is a 2-digit string giving the number of UTC
offset minutes. For example, utcoffset() returnstimedelta(hours=-3, minutes=-30) , %zis
replaced with the string0330’

%Z If tzname() returnsNone, %Zis replaced by an empty string. Otherw#is replaced by the returned value,
which must be a string.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s
strftime() function, and platform variations are common. The documentation for Pythorés module lists

the format codes that the C standard (1989 version) requires, and those work on all platforms with a standard C
implementation. Note that the 1999 version of the C standard added additional format codes.

The exact range of years for whishrftime() works also varies across platforms. Regardless of platform, years
before 1900 cannot be used.

6.11 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are available on all
platforms. Most of the functions defined in this module call platform C library functions with the same name. It may
sometimes be helpful to consult the platform documentation, because the semantics of these functions varies among
platforms.

An explanation of some terminology and conventions is in order.

e Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For WX, the epoch is 1970. To find out what the epoch is, loafmatime(0)

e The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; fonlX, it is typically in 2038.

e Year 2000 (Y2K) issues Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting
astruct _time (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are
supported if the module variabéecept2dyear is a non-zero integer; this variable is initializedltainless
the environment variable PYTHONY2K is set to a non-empty string, in which case it is initializédTaus,
you can set PYTHONY2K to a non-empty string in the environment to require 4-digit years for all year input.
When 2-digit years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99
are mapped to 1969-1999, and values 0-68 are mapped to 2000-2068. Values 100-1899 are always illegal.
Note that this is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2al, would add 1900 to
year values below 1900.

e UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

e DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing
the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

e The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on mostix systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

6.11. time — Time access and conversions 297

e On the other hand, the precision tihe() andsleep() is better than their Nix equivalents: times
are expressed as floating point numbeise() returns the most accurate time available (usingiu
gettimeofday() where available), andleep() will accept a time with a nonzero fraction (X
select() is used to implement this, where available).

e The time value as returned yntime() , localtime() , andstrptime() , and accepted bysctime()
mktime() andstrftime() , is a sequence of 9 integers. The return valuemaime() , localtime() .
andstrptime() also offer attribute names for individual fields.

Index | Attribute Values
0 tm _year (for example, 1993)
1 tm_mon range [1,12]
2 tm_mday | range [1,31]
3 tm _hour range [0,23]
4 tm_min range [0,59]
5 tm _sec range [0,61]; seé€l) in strftime() description
6 tm _wday range [0,6], Monday is O
7 tm _yday range [1,366]
8 tm _isdst 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled
as described under “Year 2000 (Y2K) issues” above-1Aargument as the daylight savings flag, passed to
mktime() will usually result in the correct daylight savings state to be filled in.

When a tuple with an incorrect length is passed to a function expecstgiet _time , or having elements
of the wrong type, &ypeError s raised.

Changed in version 2.2: The time value sequence was changed from a tupirtimta _time , with the
addition of attribute names for the fields.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be set
to false if the environment variable PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local
DST timezone is east of UTC (as in Western Europe, including the UK). Only use tlagliht is nonzero.

asctime ([t])
Convert a tuple ostruct _time representing a time as returneddmytime() or localtime() to a 24-
character string of the following forniSun Jun 20 23:21:05 1993 . If tis not provided, the current
time as returned blpcaltime() is used. Locale information is not used &igctime() . Note: Unlike the
C function of the same name, there is no trailing newline. Changed in version 2.1: Altdavég omitted.

clock ()
On UNIX, return the current processor time as a floating point number expressed in seconds. The precision, and
in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same
name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns wall-clock seconds elapsed since the first call to this function, as a floating
point number, based on the Win32 functiQueryPerformanceCounter() . The resolution is typically
better than one microsecond.

ctime ([secs])
Convert a time expressed in seconds since the epoch to a string representing local tiseesidf not
provided or None, the current time as returned Hime() is used. ctime(sec$ is equivalent to

298 Chapter 6. Generic Operating System Services

asctime(localtime(secd) . Locale information is not used bgtime() . Changed in version 2.1:
Allowed secgto be omitted. Changed in version 2.4sHcsis None, the current time is used.

daylight
Nonzero if a DST timezone is defined.

gmtime ([secé)
Convert a time expressed in seconds since the epocstta@ _time in UTC in which the dst flag is always
zero. Ifsecsis not provided oNone, the current time as returned bijme() is used. Fractions of a second
are ignored. See above for a description ofsheict _time object. Seealendar.timegm() for the
inverse of this function. Changed in version 2.1: Allovss=tsto be omitted. Changed in version 2.4sHcs
is None, the current time is used.

localtime ([secs])
Like gmtime() but converts to local time. I§ecsis not provided oMNone, the current time as returned by
time() isused. The dstflag is setiowhen DST applies to the given time. Changed in version 2.1: Allowed
secdo be omitted. Changed in version 2.4sHcsis None, the current time is used.

mktime (t)
This is the inverse function dbcaltime() . Its argument is thetruct _time or full 9-tuple (since the
dst flag is needed; usé as the dst flag if it is unknown) which expresses the timedal time, not UTC. It
returns a floating point number, for compatibility wiime() . If the input value cannot be represented as a
valid time, eitherOverflowError or ValueError will be raised (which depends on whether the invalid
value is caught by Python or the underlying C libraries). The earliest date for which it can generate a time is
platform-dependent.

sleep (sec$
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time. The actual suspension time may be less than that requested because any caught signal
will terminate thesleep() following execution of that signal’s catching routine. Also, the suspension time
may be longer than requested by an arbitrary amount because of the scheduling of other activity in the system.

stritime (format[, t])
Convertatuple ostruct _time representing a time as returneddmtime() orlocaltime() to a string
as specified by thiermatargument. It is not provided, the current time as returneddmaltime() is used.
formatmust be a stringValueError s raised if any field irt is outside of the allowed range. Changed in
version 2.1: Allowed to be omitted. Changed in version 2MalueError raised if a field int is out of

range..
The following directives can be embedded in thematstring. They are shown without the optional field width
and precision specification, and are replaced by the indicated charactersiritthe() result:

6.11. time — Time access and conversions 299

Directive | Meaning Notes

%a Locale’s abbreviated weekday name.

%A Locale’s full weekday name.

%b Locale’s abbreviated month name.

%B Locale’s full month name.

%cC Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%l Hour (12-hour clock) as a decimal number [01,12].
%)j Day of the year as a decimal number [001,366].

%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM. Q)
%S Second as a decimal number [00,61]. (2)
%U Week number of the year (Sunday as the first day of |thg3)
week) as a decimal number [00,53]. All days in a new ygar
preceding the first Sunday are considered to be in week|O.
%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the(3)
week) as a decimal number [00,53]. All days in a new ypar
preceding the first Monday are considered to be in week| 0.

%X Locale’s appropriate date representation.

%X Locale’s appropriate time representation.

%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.

%Z Time zone name (no characters if no time zone exists).
%% A literal * 9% character.

Notes:

(L)When used with thetrptime() function, the%pdirective only affects the output hour field if tlél
directive is used to parse the hour.

(2)The range really i§ to 61; this accounts for leap seconds and the (very rare) double leap seconds.

(3)When used with thetrptime() function, %Uand%Ware only used in calculations when the day of the
week and the year are specified.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet email standard.

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
'Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the Pitél *
a directive in the following order; this is also not portable. The field width is normally 2 exceptjfarhere it
is 3.

strptime (string[, format])

Parse a string representing a time according to a format. The return valgéricts _time as returned by
gmtime() orlocaltime() . Theformatparameter uses the same directives as those ussdtioye() ;

1The use of6Zis now deprecated, but tlézescape that expands to the preferred hour/minute offset is not supported by all ANSI C libraries.
Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to 4-digit years long
before the year 2000. The 4-digit year has been mandated by RFC 2822, which obsoletes RFC 822.

Chapter 6. Generic Operating System Services

it defaults to"%a %b %d %H:%M:%S %Which matches the formatting returned tyme() . If string
cannot be parsed accordingftomat ValueError is raised. If the string to be parsed has excess data after
parsing,ValueError is raised. The default values used to fill in any missing datg%960, 1, 1, O,

0,0 0 1, -1)

Support for the%oZdirective is based on the values containedzname and whetheraylight s true.
Because of this, it is platform-specific except for recognizing UTC and GMT which are always known (and are
considered to be non-daylight savings timezones).

struct _time
The type of the time value sequence returnedybitime() , localtime() , andstrptime() . New n
version 2.2.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than 1
second. While this function normally returns non-decreasing values, it can return a lower value than a previous
call if the system clock has been set back between the two calls.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

tzset ()
Resets the time conversion rules used by the library routines. The environment variable TZ specifies how this is
done. New in version 2.3.

Availability: UNIX.

Note: Although in many cases, changing the TZ environment variable may affect the output of functions like
localtime without callingtzset |, this behavior should not be relied on.

The TZ environment variable should contain no whitespace.
The standard format of the TZ environment variable is: (whitespace added for clarity)

std offset [dst [offset],start[/time], end[/time]]]]
Where:

std and dstThree or more alphanumerics giving the timezone abbreviations. These will be propagated into
time.tzname

offsetThe offset has the formt hh[:mm[:ss]]. This indicates the value added the local time to arrive at UTC.
If preceded by a ’-’, the timezone is east of the Prime Meridian; otherwise, it is west. If no offset follows
dst, summer time is assumed to be one hour ahead of standard time.

start[/time,end[/time]] Indicates when to change to and back from DST. The format of the start and end dates are one
of the following:

JnThe Julian day (1 j=n j= 365). Leap days are not counted, so in all years February 28 is day 59 and
March 1 is day 60.
nThe zero-based Julian day (0 p=j= 365). Leap days are counted, and it is possible to refer to
February 29.
Mm.n.dThed'th day (0 j=d j= 6) or weekn of monthm of the year (1 j=nj=5, 1 j=m = 12, where week 5
means "the lastl day in monthm” which may occur in either the fourth or the fifth week). Week 1 is
the first week in which the'th day occurs. Day zero is Sunday.

time has the same format as offset except that no leading sign (-’ or '+’) is allowed. The default, if time is
not given, is 02:00:00.

6.11. time — Time access and conversions 301

>>> os.environ['TZ’] = 'EST+05EDT,M4.1.0,M10.5.0’

>>> time.tzset()

>>> time.strftime('%X %X %Z')

'02:07:36 05/08/03 EDT’

>>> os.environ[TZ'] = 'AEST-10AEDT-11,M10.5.0,M3.5.0’
>>> time.tzset()

>>> time.strftime('%X %x %Z’)

'16:08:12 05/08/03 AEST’

On many Unix systems (including *BSD, Linux, Solaris, and Darwin), it is more convenient to use the system’s
zoneinfo (zfilg(5)) database to specify the timezone rules. To do this, set the TZ environment variable to the
path of the required timezone datafile, relative to the root of the systems 'zoneinfo’ timezone database, usually
located at/usr/share/zoneinfo’. For example,US/Eastern’ , 'Australia/Melbourne’ ,'Egypt’ or
'Europe/Amsterdam’

>>> os.environ['TZ’] = 'US/Eastern’
>>> time.tzset()

>>> time.tzname

(CEST’, 'EDT)

>>> os.environ['TZ'] = 'Egypt’

>>> time.tzset()

>>> time.tzname

(CEET’, 'EEST)

See Also:

Moduledatetime (section 6.10):
More object-oriented interface to dates and times.

Modulelocale (section 6.27):
Internationalization services. The locale settings can affect the return values for some of the functions in the
time module.

Modulecalendar (section 5.19):
General calendar-related functiotisnegm() is the inverse ogmtime() from this module.

6.12 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

classscheduler (timefunc, delayfunc
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” —timefuncshould be callable without arguments, and return a number (the “time”,
in any units whatsoever). Thaelayfuncfunction should be callable with one argument, compatible with the
output oftimefung and should delay that many time unitselayfuncwill also be called with the argument
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

302 Chapter 6. Generic Operating System Services

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()

>>> def print_some_times():
print time.time()
s.enter(5, 1, print_time, ())
s.enter(10, 1, print_time, ())
s.run()
print time.time()

>>> print_some_times()
930343690.257

From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.12.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argumet
Schedule a new event. Thiene argument should be a numeric type compatible with the return value of the
timefuncfunction passed to the constructor. Events scheduled for the tiaewill be executed in the order of
their priority.
Executing the event means executaggion(* argumeny . argumentimust be a sequence holding the parameters
for action

Return value is an event which may be used for later cancellation of the eveot(sad()).

enter (delay, priority, action, argumeit
Schedule an event fatelaymore time units. Other then the relative time, the other arguments, the effect and
the return value are the same as thosesfuaerabs()

cancel (evenj
Remove the event from the queue. elfentis not an event currently in the queue, this method will raise a
RuntimeError

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using tledayfunc function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Eitheractionor delayfunccan raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raiseadtipn, the event will not be attempted in future calls
torun()

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

6.13 mutex — Mutual exclusion support

6.13. mutex — Mutual exclusion support 303

Themutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not require
(or imply) threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

classmutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or n{dumction argumen} pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first queue
entry is removed and ifsinction argumen} pair called, implying it now has the lock.

Of course, no multi-threading is implied — hence the funny interfacéoftk() , where a function is called
once the lock is acquired.

6.13.1 Mutex Objects

mutex objects have following methods:

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and retlime , otherwise, returiralse .

lock (function, argument
Executefunction argumeny , unless the mutex is locked. In the case it is locked, place the function and argu-
ment on the queue. Sealock for explanation of wheffunctior(argumeny is executed in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.14 getpass — Portable password input

Thegetpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using thestrimg, which defaults
to’Password: ' . Availability: Macintosh, WNix, Windows.

getuser ()
Return the “login name” of the user. Availability: Nux, Windows.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order, and
returns the value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which suppanivthenodule, otherwise, an exception is raised.

6.15 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for timirses library and converted to a package.

Thecurses module provides an interface to the curses library, the de-facto standard for portable advanced terminal
handling.

While curses is most widely used in thenlx environment, versions are available for DOS, OS/2, and possibly other
systems as well. This extension module is designed to match the API of ncurses, an open-source curses library hosted

304 Chapter 6. Generic Operating System Services

on Linux and the BSD variants of UX.
See Also:

Module curses.ascii (section 6.18):
Utilities for working with Asclii characters, regardless of your locale settings.

Modulecurses.panel (section 6.19):
A panel stack extension that adds depth to curses windows.

Modulecurses.textpad (section 6.16):
Editable text widget for curses supportiBgacslike bindings.

Modulecurses.wrapper (section 6.17):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python

(http://www.python.org/doc/howto/curses/curses.html)
Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond, is available on the
Python Web site.

The ‘Demol/curses/’ directory in the Python source distribution contains some example programs using the curses
bindings provided by this module.

6.15.1 Functions

The modulecurses defines the following exception:

exceptionerror
Exception raised when a curses library function returns an error.

Note: Wheneverx or y arguments to a function or a method are optional, they default to the current cursor location.
Wheneveiattr is optional, it defaults té&_NORMAL

The modulecurses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a fixed
high value. Included for historical reasons; in former times, it was used to write output loops for time delays
and occasionally to change interfaces depending on the line speed.

beep ()
Emit a short attention sound.

can _change _color ()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off and
characters are available to be read one by one. However, unlike raw mode, special characters (interrupt, quit,
suspend, and flow control) retain their effects on the tty driver and calling program. Callingafifdt then
cbreak() leaves the terminal in cbreak mode.

color _content (color_numbej
Returns the intensity of the red, green, and blue (RGB) components in thecotdbarnumber which must be
betweerD andCOLORSA 3-tuple is returned, containing the R,G,B values for the given color, which will be
betweerD (no component) anl000 (maximum amount of component).

color _pair (color_numbe)
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A_STANDOUTA_REVERSEand the otheA_* attributes.pair _number() is the counterpart to this

6.15. curses — Terminal handling for character-cell displays 305

function.

curs _set (visibility)
Sets the cursor statevisibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def _prog _mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls to
reset _prog _mode() will restore this mode.

def _shell _mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using curses.
(Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent calls to
reset _shell _mode() will restore this mode.

delay _output (m9g
Inserts aimsmillisecond pause in output.

doupdate ()
Update the physical screen. The curses library keeps two data structures, one representing the current physical
screen contents and a virtual screen representing the desired next stadeuptate() ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated byautrefresh() call after write operations such asldstr()

have been performed on a window. The normediesh() call is simply noutrefresh() followed by
doupdate() ;if you have to update multiple windows, you can speed performance and perhaps reduce screen
flicker by issuingnoutrefresh() calls on all windows, followed by a singlboupdate()

echo ()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Undek Wperating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

filter ()
Thefilter() routine, if used, must be called befargtscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cudl, cuul, cuu, vpa are disabled; and the home string
is set to the value of cr. The effect is that the cursor is confined to the current line, and so are screen updates.
This may be used for enabling cgaracter-at-a-time line editing without touching the rest of the screen.

flash ()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal producelodep() .

flushinp ()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet been
processed by the program.

getmouse ()
After getch() returnsKEY_MOUSHo signal a mouse event, this method should be call to retrieve the queued
mouse event, represented as a 5-typte x, y, z bstat§. id is an ID value used to distinguish mul-
tiple devices, and, y, z are the event's coordinates.z i6 currently unused.).bstateis an integer value
whose bits will be set to indicate the type of event, and will be the bitwise OR of one or more of the fol-
lowing constants, wherg is the button number from 1 to BUTTOMN_PRESSEDBUTTOM_RELEASED
BUTTON_CLICKED, BUTTOMN_DOUBLECLICKED, BUTTOM_TRIPLE _CLICKED, BUTTONSHIFT,

306 Chapter 6. Generic Operating System Services

BUTTONCTRL BUTTONALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1 is
returned.

getwin (file)
Reads window related data stored in the file by an egoliéwin() call. The routine then creates and initial-
izes a new window using that data, returning the new window object.

has _colors ()
Returns true if the terminal can display colors; otherwise, it returns false.

has _ic ()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for historical
reasons only, as all modern software terminal emulators have such capabilities.

has _il ()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling re-
gions. This function is included for historical reasons only, as all modern software terminal emulators have such
capabilities.

has _key (ch)
Takes a key valueh, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenth3
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immediately
available to the program. However, after blocking tiemthstenths of seconds, an exception is raised if nothing
has been typed. The valuetehthsmust be a number between 1 and 255. sebreak() to leave half-delay
mode.

init _color (color_number,r, g, b
Changes the definition of a color, taking the number of the color to be changed followed by three RGB values (for
the amounts of red, green, and blue components). The vak@af numbemust be betweei andCOLORS
Each ofr, g, b, must be a value betweéhand1000. Wheninit _color() is used, all occurrences of that
color on the screen immediately change to the new definition. This function is a no-op on most terminals; it is
active only ifcan _change _color() returnsl.

init _pair (pair_number, fg, by
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The vaphsrohumbermust be between
1 andCOLORPAIRS - 1 (theO color pair is wired to white on black and cannot be changed). The value of
fg andbg arguments must be betwe@rand COLORSIf the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair are changed to the new definition.

initscr ()
Initialize the library. Returns &indowObject which represents the whole scre®ote: If there is an error
opening the terminal, the underlying curses library may cause the interpreter to exit.

isendwin ()
Returns true iendwin() has been called (that is, the curses library has been deinitialized).

keyname (k)
Return the name of the key numbetedThe name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed by the
corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string consisting
of the prefix ‘M-’ followed by the name of the corresponding ASCII character.

killchar ()
Returns the user’s current line kill character. UndenX)operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

6.15. curses — Terminal handling for character-cell displays 307

longname ()
Returns a string containing the terminfo long name field describing the current terminal. The maximum length
of a verbose description is 128 characters. It is defined only after the dailldor()

meta (ye9
If yesis 1, allow 8-bit characters to be input.yiésis 0, allow only 7-bit chars.

mouseinterval (interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them to be
recognized as a click, and returns the previous interval value. The default value is 200 msec, or one fifth of a
second.

mousemask(mousemagk
Sets the mouse events to be reported, and returns a(tapllmask oldmask . availmaskindicates which
of the specified mouse events can be reported; on complete failure it retwldsriskis the previous value of
the given window’s mouse event mask. If this function is never called, no mouse events are ever reported.

napms(mg
Sleep formsmilliseconds.

newpad (nlines, ncol}
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad is
returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated with
a particular part of the screen. Pads can be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (such as from scrolling or echoing of input) do
not occur. Theefresh() andnoutrefresh() methods of a pad require 6 arguments to specify the part
of the pad to be displayed and the location on the screen to be used for the display. The arguments are pminrow,
pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper left corner of the pad region
to be displayed and the s arguments define a clipping box on the screen within which the pad region is to be
displayed.

newwin ([nlines, ncols] begin_y, begin_x)
Return a new window, whose left-upper corner is(dtegin.y, beginx), and whose height/width is
nlinegncols

By default, the window will extend from the specified position to the lower right corner of the screen.

nl ()

Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho ()
Leave echo mode. Echoing of input characters is turned off.

nonl ()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation of
newline into newline/return on output (but this does not change the behawaoidoh(’\n’) , which always

does the equivalent of return and line feed on the virtual screen). With translation off, curses can sometimes
speed up vertical motion a little; also, it will be able to detect the return key on input.

noqiflush ()
When the nogqiflush routine is used, normal flush of input and output queues associated with the INTR, QUIT
and SUSP characters will not be done. You may want toraadiflush() in a signal handler if you want

output to continue as though the interrupt had not occurred, after the handler exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

308 Chapter 6. Generic Operating System Services

pair _content (pair_numbej
Returns atupl¢ fg, bg) containing the colors for the requested color pair. The valyof numbemust be
betweer0D andCOLORPAIRS - 1.

pair _number (attr)
Returns the number of the color-pair set by the attribute vattre color _pair() is the counterpart to this
function.

putp (string)
Equivalent taputs(str, 1, putchar) ; emits the value of a specified terminfo capability for the current
terminal. Note that the output of putp always goes to standard output.

qifiush ([flag])
If flagis false, the effect is the same as callmagiflush() . If flagis true, or no argument is provided, the
queues will be flushed when these control characters are read.

raw ()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow control
keys are turned off; characters are presented to curses input functions one by one.

reset _prog _mode()
Restores the terminal to “program” mode, as previously savetkby prog _mode() .

reset _shell _mode()
Restores the terminal to “shell” mode, as previously saveddfy_shell _mode() .

setsyx (v, %)
Sets the virtual screen cursoryiox. If y andx are both -1, then leaveok is set.

setupterm ([termstr, fd])
Initializes the terminaltermstris a string giving the terminal name; if omitted, the value of the TERM envi-
ronment variable will be usedd is the file descriptor to which any initialization sequences will be sent; if not
supplied, the file descriptor fays.stdout will be used.

start _color ()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right aft@itscr()

start _color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables in theurses module, COLOR&NdCOLORPAIRS, containing the maximum number

of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the values they
had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a curses
program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag (capnamg
Returns the value of the Boolean capability corresponding to the terminfo capabilityaagomame The value
-1 isreturned iftapnames not a Boolean capability, d@r if it is canceled or absent from the terminal descrip-
tion.

tigetnum (capnamég
Returns the value of the numeric capability corresponding to the terminfo capabilityazgmame The value
-2 is returned ifcapnameis not a numeric capability, orl if it is canceled or absent from the terminal
description.

tigetstr ~ (capnamg
Returns the value of the string capability corresponding to the terminfo capability capmame None is

6.15. curses — Terminal handling for character-cell displays 309

returned ifcapnames not a string capability, or is canceled or absent from the terminal description.

tparm (str[,...])
Instantiates the stringtr with the supplied parameters, whateshould be a parameterized string obtained from
the terminfo database. E.gparm(tigetstr("cup"”), 5, 3) could result if\033[6;4H’ , the exact
result depending on terminal type.

typeahead (fd)
Specifies that the file descriptfit be used for typeahead checkingfdfis -1 , then no typeahead checking is
done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating the
screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or doupdate is
called again, allowing faster response to commands typed in advance. This function allows specifying a different
file descriptor for typeahead checking.

unctrl (ch)
Returns a string which is a printable representation of the charetteControl characters are displayed as a
caret followed by the character, for exampl€ @s Printing characters are left as they are.

ungetch (ch)
Pushch so the nexgetch() will return it. Note: Only onech can be pushed befogetch() s called.

ungetmouse (id, X, Y, z, bstate
Push &KEY_MOUSEevent onto the input queue, associating the given state data with it.

use _env (flag)
If used, this function should be called befanéscr() or newterm are called. Whdlagis false, the values
of lines and columns specified in the terminfo database will be used, even if environment variables LINES and
COLUMNS (used by default) are set, or if curses is running in a window (in which case default behavior would
be to use the window size if LINES and COLUMNS are not set).

use _default _colors ()
Allow use of default values for colors on terminals supporting this feature. Use this to support transparency
in your application. The default color is assigned to the color number -1. After calling this function,
init _pair(x, curses.COLOR _RED, -1) initializes, forinstance, color paito a red foreground color
on the default background.

6.15.2 Window Objects

Window objects, as returned liyitscr() andnewwin() above, have the following methods:

addch ([y, x,] ch[, attr])
Note: A charactermeans a C character (arsclii code), rather then a Python character (a string of length 1).
(This note is true whenever the documentation mentions a character.) Thedmd()in is handy for conveying
strings to codes.

Paint charactechat(y, x) with attributesattr, overwriting any character previously painter at that location.
By default, the character position and attributes are the current settings for the window object.

addnstr ([y, x,] str, n[, attr])
Paint at mosh characters of the stringtr at (y, X) with attributesattr, overwriting anything previously on
the display.

addstr ([y, x,] str[, attr])
Paint the stringstr at(y, x) with attributesattr, overwriting anything previously on the display.

attroff ~ (attr)
Remove attributattr from the “background” set applied to all writes to the current window.

attron (attr)

310 Chapter 6. Generic Operating System Services

Add attributeattr from the “background” set applied to all writes to the current window.

attrset (attr)
Set the “background” set of attributesdtir. This set is initially O (no attributes).

bkgd (ch[, attr])
Sets the background property of the window to the charattexith attributesattr. The change is then applied
to every character position in that window:

eThe attribute of every character in the window is changed to the new background attribute.
eWherever the former background character appears, it is changed to the new background character.

bkgdset (ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of at-
tributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that are written
into the window. Both the character and attribute parts of the background are combined with the blank charac-
ters. The background becomes a property of the character and moves with the character through any scrolling
and insert/delete line/character operations.

border ([Is], rs[, s, by, [, [, bi[, br] 1111111)

Draw a border around the edges of the window. Each parameter specifies the character to use for a specific part
of the border; see the table below for more details. The characters can be specified as integers or as one-character
strings.

Note: A O value for any parameter will cause the default character to be used for that parameter. Keyword
parameters canotbe used. The defaults are listed in this table:

Parameter | Description Default value

Is Left side ACS_VLINE

rs Right side ACS_VLINE

ts Top ACS HLINE

bs Bottom ACS HLINE

tl Upper-left corner | ACS_.ULCORNER
tr Upper-right corner | ACS_URCORNER
bl Bottom-left corner | ACS_BLCORNER
br Bottom-right corner] ACS_ BRCORNER

box ([vertch, horct])
Similar toborder() , but bothls andrs arevertchand bothts and bs ardiorch The default corner characters
are always used by this function.

clear ()
Like erase() , but also causes the whole window to be repainted upon next aatfresh()

clearok (yes
If yesis 1, the next call taefresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

clrtoeol ()

Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position of
the window.

delch ([y, x])
Delete any character ét, x) .

6.15. curses — Terminal handling for character-cell displays 311

deleteln ()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin ([nlines, ncols] begin_y, begin x)
An abbreviation for “derive window"derwin() is the same as callingubwin() , except thabegin_y and
begin_x are relative to the origin of the window, rather than relative to the entire screen. Returns a window
object for the derived window.

echochar (ch[, attr])
Add charactechwith attributeattr, and immediately callefresh() on the window.

enclose (v, X
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location of a
mouse event.

erase ()
Clear the window.

getbegyx ()
Return atuplé y, X) of co-ordinates of upper-left corner.

getch ([y, x])
Get a character. Note that the integer returned doébave to be imscii range: function keys, keypad keys
and so on return numbers higher than 256. In no-delay mode, -1 is returned if there is no input.

getkey ([y, x])
Get a character, returning a string instead of an integegeth() does. Function keys, keypad keys and so
on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is no
input.

getmaxyx ()
Return atupl€ y, x) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y and
X. Returns-1,-1 if this window has no parent.

getstr ([y, x])
Read a string from the user, with primitive line editing capacity.

getyx ()
Return atupld€y, x) of current cursor position relative to the window’s upper-left corner.

hiine ([y, x,] ch,
Display a horizontal line starting &ty, Xx) with lengthn consisting of the characteh.

idcok (flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the terminal; if
flagis true, use of character insertion and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

idlok (ye9
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line inser-
tion/deletion are disabled.

immedok (flag)
If flagis true, any change in the window image automatically causes the window to be refreshed; you no longer
have to calrefresh() yourself. However, it may degrade performance considerably, due to repeated calls to
wrefresh. This option is disabled by default.

inch ([y, x])

312 Chapter 6. Generic Operating System Services

Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

insch ([y, x,] ch[, attr])
Paint charactechat(y, X) with attributesattr, moving the line from position right by one character.

insdelln (nlineg
Insertsnlineslines into the specified window above the current line. Thliees bottom lines are lost. For
negativenlines deletenlineslines starting with the one under the cursor, and move the remaining lines up. The
bottomnlineslines are cleared. The current cursor position remains the same.

insertin ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr ([y, x,] str, n[, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up to
n characters. If is zero or negative, the entire string is inserted. All characters to the right of the cursor are
shifted right, with the rightmost characters on the line being lost. The cursor position does not change (after
moving toy, x, if specified).

insstr ([y, x,] str [attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the rightmost characters on the line being lost. The
cursor position does not change (after moving,te, if specified).

instr ([y, x] [n])
Returns a string of characters, extracted from the window starting at the current cursor positiop, if at
specified. Attributes are stripped from the characters.idfspecifiedjnstr() returns return a string at most
n characters long (exclusive of the trailing NUL).

is _linetouched (line)
Returns true if the specified line was modified since the last cadiftesh() ; otherwise returns false. Raises
acurses.error exception ifline is not valid for the given window.

is _wintouched ()
Returns true if the specified window was modified since the last cadiftesh() ; otherwise returns false.

keypad (ye9
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpcateddy. If
yesis 0, escape sequences will be left as is in the input stream.

leaveok (ye9g
If yesis 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

move(hew_y, new x)
Move cursor tq new_y, new.x) .

mvderwin (Y, X
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the screen.

mvwin (New_y, new x)
Move the window so its upper-left corner is(atew_y, new_x) .

nodelay (ye9
If yesis 1, getch() will be non-blocking.

notimeout (ye9
If yesis 1, escape sequences will not be timed out.

6.15. curses — Terminal handling for character-cell displays 313

If yesis 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh ()
Mark for refresh but wait. This function updates the data structure representing the desired state of the window,
but does not force an update of the physical screen. To accomplish thatpgpdate()

overlay (destwir[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmahol
Overlay the window on top adlestwin The windows need not be the same size, only the overlapping region is
copied. This copy is non-destructive, which means that the current background character does not overwrite the
old contents oflestwin

To get fine-grained control over the copied region, the second fororertay/() can be usedsminrowand
smincolare the upper-left coordinates of the source window, and the other variables mark a rectangle in the
destination window.

overwrite (destwir[, sminrow, smincol, dminrow, dmincol, dmaxrow, dma>}¢ol
Overwrite the window on top oflestwin The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents destwin

To get fine-grained control over the copied region, the second forovexrfwrite() can be usedsminrow
andsmincolare the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

putwin (file)
Writes all data associated with the window into the provided file object. This information can be later retrieved
using thegetwin() function.

redrawln (beg, num
Indicates that theumscreen lines, starting at lifeeg are corrupted and should be completely redrawn on the
nextrefresh() call.

redrawwin ()
Touches the entire window, causing it to be completely redrawn on theefessh() call.

refresh ([pminrow, pmincol, sminrow, smincol, smaxrow, sma}):ol
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad createdewipiad() . The
additional parameters are needed to indicate what part of the pad and screen are ipvoimezivandpmincol

specify the upper left-hand corner of the rectangle to be displayed in thespaigkow smincol smaxrow and
smaxcolspecify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates, since the rectangles must be the
same size. Both rectangles must be entirely contained within their respective structures. Negative values of
pminrow pmincol sminrow or smincolare treated as if they were zero.

scroll [Iines = 1])
Scroll the screen or scrolling region upwardlmeslines.

scrollok (flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling region,
either as a result of a newline action on the bottom line, or typing the last character of the last flag.idlf
false, the cursor is left on the bottom line.fldg is true, the window is scrolled up one line. Note that in order
to get the physical scrolling effect on the terminal, it is also necessary timlt()

setscrreg (top, botton
Set the scrolling region from linpto line bottom All scrolling actions will take place in this region.

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

314 Chapter 6. Generic Operating System Services

standout ()
Turn on attributeA_STANDOUT

subpad ([nlines, ncols] begin_y, begin x)
Return a sub-window, whose upper-left corner is(dtegin.y, begin x), and whose width/height is
ncolgnlines

subwin ([nlines, ncols] begin_y, begin x)
Return a sub-window, whose upper-left corner is(d&tegin.y, beginx), and whose width/height is
ncolgnlines

By default, the sub-window will extend from the specified position to the lower right corner of the window.
syncdown ()

Touches each location in the window that has been touched in any of its ancestor windows. This routine is called
by refresh() , so it should almost never be necessary to call it manually.

syncok (flag)
If called withflag set to true, thesyncup() is called automatically whenever there is a change in the window.

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the windovddlayis negative, blocking read is used (which
will wait indefinitely for input). If delayis zero, then non-blocking read is used, and -1 will be returned by
getch() if no input is waiting. Ifdelayis positive, thergetch() will block for delay milliseconds, and
return -1 if there is still no input at the end of that time.

touchline (start, coun}
Pretendcountlines have been changed, starting with Igtert.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin ()
Marks all lines in the window as unchanged since the last caéftesh()

vline ([y, x,] ch,n
Display a vertical line starting gty, x) with lengthn consisting of the characteh.

6.15.3 Constants

Thecurses module defines the following data members:

ERR
Some curses routines that return an integer, sudeth() |, returnERRupon failure.

OK
Some curses routines that return an integer, suctapmss() , returnOKupon success.

version
A string representing the current version of the module. Also availahle @srsion

Several constants are available to specify character cell attributes:

6.15. curses — Terminal handling for character-cell displays 315

Attribute Meaning
A_ALTCHARSET] Alternate character set mode.

A_BLINK Blink mode.
A_BOLD Bold mode.
A_DIM Dim mode.
A_NORMAL Normal attribute.

A_STANDOUT Standout mode.
A_UNDERLINE | Underline mode.

Keys are referred to by integer constants with names starting WHY*'. The exact keycaps available are system
dependent.

Key constant Key

KEY_MIN Minimum key value
KEY_BREAK Break key (unreliable)
KEY_DOWN Down-arrow

KEY_UP Up-arrow

KEY_LEFT Left-arrow

KEY_RIGHT Right-arrow

KEY_HOME Home key (upward+left arrow)
KEY_BACKSPACEH Backspace (unreliable)
KEY_FO Function keys. Up to 64 function keys are supported.
KEY_Fn Value of function keyn

KEY_DL Delete line

KEY_IL Insert line

KEY_DC Delete character

KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen

KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line

KEY_SF Scroll 1 line forward

KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page

KEY_PPAGE Previous page

KEY_STAB Set tab

KEY_CTAB Clear tab

KEY_CATAB Clear all tabs

KEY_ENTER Enter or send (unreliable)
KEY_SRESET Soft (partial) reset (unreliable)
KEY_RESET Reset or hard reset (unreliable)
KEY_PRINT Print

KEY_LL Home down or bottom (lower left)
KEY_Al Upper left of keypad

KEY_A3 Upper right of keypad

KEY_B2 Center of keypad

KEY_C1 Lower left of keypad

KEY_C3 Lower right of keypad
KEY_BTAB Back tab

KEY_BEG Beg (beginning)
KEY_CANCEL Cancel

KEY_CLOSE Close

KEY_COMMAND | Cmd (command)

KEY_COPY Copy

316 Chapter 6. Generic Operating System Services

Key constant

Key

KEY_CREATE
KEY_END
KEY_EXIT
KEY_FIND
KEY_HELP
KEY_MARK
KEY_MESSAGE
KEY_MOVE
KEY_NEXT
KEY_OPEN
KEY_OPTIONS
KEY_PREVIOUS
KEY_REDO
KEY_REFERENCE
KEY_REFRESH
KEY_REPLACE
KEY_RESTART
KEY_RESUME
KEY_SAVE
KEY_SBEG
KEY_SCANCEL
KEY_SCOMMAND
KEY_SCOPY
KEY_SCREATE
KEY_SDC
KEY_SDL
KEY_SELECT
KEY_SEND
KEY_SEOL
KEY_SEXIT
KEY_SFIND
KEY_SHELP
KEY_SHOME
KEY_SIC
KEY_SLEFT
KEY_SMESSAGE
KEY_SMOVE
KEY_SNEXT
KEY_SOPTIONS
KEY_SPREVIOUS
KEY_SPRINT
KEY_SREDO
KEY_SREPLACE
KEY_SRIGHT
KEY_SRSUME
KEY_SSAVE
KEY_SSUSPEND
KEY_SUNDO
KEY_SUSPEND
KEY_UNDO
KEY_MOUSE
KEY_RESIZE

KEY_MAX

Create

End

Exit

Find

Help

Mark

Message

Move

Next

Open

Options

Prev (previous)
Redo

Ref (reference)
Refresh

Replace

Restart

Resume

Save

Shifted Beg (beginning)
Shifted Cancel
Shifted Command
Shifted Copy
Shifted Create
Shifted Delete char
Shifted Delete line
Select

Shifted End
Shifted Clear line
Shifted Dxit
Shifted Find
Shifted Help
Shifted Home
Shifted Input
Shifted Left arrow
Shifted Message
Shifted Move
Shifted Next
Shifted Options
Shifted Prev
Shifted Print
Shifted Redo
Shifted Replace
Shifted Right arrow
Shifted Resume
Shifted Save
Shifted Suspend
Shifted Undo
Suspend

Undo

Mouse event has occurred
Terminal resize event
Maximum key value

6.15. curses

— Terminal handling for character-cell displays

317

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function keys
(KEY_F1, KEY_F2, KEY_F3, KEY_F4) available, and the arrow keys mapped®Y_UP, KEY_DOWNKEY_LEFT
andKEY_RIGHT in the obvious way. If your machine has a PC keyboard, it is safe to expect arrow keys and twelve
function keys (older PC keyboards may have only ten function keys); also, the following keypad mappings are stan-

dard:
Keycap Constant
Insert KEY _IC
Delete KEY_DC
Home KEY_HOME
End KEY_END
Page Up KEY _NPAGE
Page Down | KEY_PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal, and
will generally be available on software emulations such as X terminals. When there is no graphic available, curses falls
back on a crude printable ASCII approximatidiote: These are available only afteritscr()

ACS code

has been called.

Meaning

ACS BBSS
ACS_BLOCK
ACS_BOARD
ACS BSBS

ACS BSSB

ACS BSSS
ACS BTEE

ACS BULLET
ACS_CKBOARD
ACS DARROW
ACS DEGREE
ACS_DIAMOND
ACS_GEQUAL
ACS HLINE
ACS LANTERN
ACS LARROW
ACS_LEQUAL
ACS_LLCORNER
ACS LRCORNER
ACS LTEE

ACS NEQUAL
ACS_PI
ACS_PLMINUS
ACS_PLUS
ACS RARROW
ACS RTEE

ACS S1

ACS S3
ACS_S7
ACS_S9

ACS _SBBS

ACS SBSB

alternate name for upper right corner
solid square block

board of squares

alternate name for horizontal line
alternate name for upper left corner
alternate name for top tee
bottom tee

bullet

checker board (stipple)

arrow pointing down

degree symbol

diamond
greater-than-or-equal-to
horizontal line

lantern symbol

left arrow

less-than-or-equal-to

lower left-hand corner

lower right-hand corner

left tee

not-equal sign

letter pi

plus-or-minus sign

big plus sign

right arrow

right tee

scan line 1

scan line 3

scan line 7

scan line 9

alternate name for lower right corner
alternate name for vertical line

318

Chapter 6. Generic Operating System Services

ACS code Meaning

ACS SBSS alternate name for right tee

ACS SSBB alternate name for lower left corner
ACS_SSBS alternate name for bottom tee
ACS_SSSB alternate name for left tee

ACS SSSS alternate name for crossover or big plus
ACS_STERLING | pound sterling

ACS TTEE top tee

ACS_UARROW | up arrow

ACS _ULCORNER upper left corner
ACS_URCORNER upper right corner
ACS VLINE vertical line

The following table lists the predefined colors:

Constant Color
COLORBLACK Black
COLORBLUE Blue

COLORCYAN Cyan (light greenish blue)
COLORGREEN Green
COLORMAGENTA Magenta (purplish red)
COLORRED Red

COLORWHITE White

COLORYELLOW | Yellow

6.16 curses.textpad — Text input widget for curses programs

New in version 1.6.

Thecurses.textpad module provides dextbox class that handles elementary text editing in a curses window,
supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x, FrameMaker,
and many other programs). The module also provides a rectangle-drawing function useful for framing text boxes or
for other purposes.

The modulecurses.textpad defines the following function:

rectangle (‘win, uly, ulx, Iry, IrY
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates relative
to that window. The second and third arguments are the y and x coordinates of the upper left hand corner of
the rectangle to be drawn; the fourth and fifth arguments are the y and x coordinates of the lower right hand
corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that make this possible
(including xterm and most other software terminal emulators). Otherwise it will be drawn with ASCII dashes,
vertical bars, and plus signs.

6.16.1 Textbox objects

You can instantiate @iextbox object as follows:

classTextbox (win)
Return a textbox widget object. Thén argument should be a cursééndowObject in which the textbox is

6.16. curses.textpad — Text input widget for curses programs 319

to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of the containing
window, with coordinate¢0, 0) . The instance’'stripspaces flag is initially on.

Textbox objects have the following methods:

edit ([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination keystrokes
is entered. lfvalidator is supplied, it must be a function. It will be called for each keystroke entered with the
keystroke as a parameter; command dispatch is done on the result. This method returns the window contents as
a string; whether blanks in the window are included is affected bgttfijgspaces =~ member.

do _command ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action

Control-A Go to left edge of window.

Control-B Cursor left, wrapping to previous line if appropriate.
Control-D Delete character under cursor.

Control-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Control-F Cursor right, wrapping to next line when appropriate.
Control-G Terminate, returning the window contents.

Control-H Delete character backward.

Control-J Terminate if the window is 1 line, otherwise insert newline.
Control-K If line is blank, delete it, otherwise clear to end of line.
Control-L Refresh screen.

Control-N Cursor down; move down one line.

Control-O Insert a blank line at cursor location.

Control-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

Constant Keystroke
KEY_LEFT Control-B
KEY_RIGHT Control-F
KEY_UP Control-P
KEY_DOWN Control-N
KEY_BACKSPACH Control-h

All other keystrokes are treated as a command to insert the given character and move right (with line wrapping).

gather ()
This method returns the window contents as a string; whether blanks in the window are included is affected by
the stripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to the end
of that line instead, and trailing blanks are stripped when the window contents are gathered.

6.17 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one functiorrapper() , which runs another function which should be the rest of your curses-
using application. If the application raises an exceptwmrgpper() will restore the terminal to a sane state before
re-raising the exception and generating a traceback.

wrapper (func, ..)

320 Chapter 6. Generic Operating System Services

Wrapper function that initializes curses and calls another functiorwg restoring normal keyboard/screen be-
havior on error. The callable objeftincis then passed the main window 'stdscr’ as its first argument, followed
by any other arguments passedu@pper()

Before calling the hook functiorwrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores cooked
mode, turns on echo, and disables the terminal keypad.

6.18 curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies name constants f®cCll characters and functions to test membership in
variousAscli character classes. The constants supplied are names for control characters as follows:

Name | Meaning
NUL
SOH | Start of heading, console interrupt
STX | Start of text

ETX End of text

EOT | End of transmission

ENQ | Enquiry, goes wittACKflow control
ACK | Acknowledgement

BEL | Bell
BS Backspace
TAB | Tab

HT Alias for TAB: “Horizontal tab”
LF Line feed

NL Alias for LF: “New line”

VT Vertical tab

FF Form feed

CR Carriage return
SO Shift-out, begin alternate character set
Sl Shift-in, resume default character set

DLE | Data-link escape

DC1 XON, for flow control

DC2 Device control 2, block-mode flow control
DC3 | XOFF, for flow control

DC4 Device control 4

NAK | Negative acknowledgement
SYN | Synchronous idle

ETB End transmission block
CAN | Cancel

EM End of medium

SUB | Substitute

ESC | Escape

FS File separator

GS Group separator

RS Record separator, block-mode terminator
us Unit separator

SP Space

DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter

6.18. curses.ascii — Utilities for ASCII characters 321

conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum (c)
Checks for amscii alphanumeric character; it is equivalentigaipha(c¢) or isdigit(c) .
isalpha (c)
Checks for amascii alphabetic character; it is equivalent teupper(¢) or islower(c’.
isascii (c)
Checks for a character value that fits in the 7A@t set.
isblank (c)
Checks for amscii whitespace character.
iscntrl (c)
Checks for arascii control character (in the range 0x00 to 0x1f).
isdigit (c)
Checks for amascii decimal digit, 0’ through ‘9’. This is equivalent to¢ in string.digits ’
isgraph (c)
Checks forascii any printable character except space.
islower (c)
Checks for amscii lower-case character.
isprint (c)
Checks for anyscii printable character including space.
ispunct (c)
Checks for any printablescii character which is not a space or an alphanumeric character.
isspace (c)
Checks forascii white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.
isupper (c)

Checks for amscii uppercase letter.

isxdigit ~ (c¢)
Checks for amscii hexadecimal digit. This is equivalent to ‘in string.hexdigits

isctrl (¢)
Checks for amscii control character (ordinal values 0 to 31).

ismeta (C)
Checks for a nomscii character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the built-in
functionord()

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they do
not actually know anything about the host machine’s character encoding. For functions that know about the character
encoding (and handle internationalization properly) seestiieg = module.

The following two functions take either a single-character string or integer byte value; they return a value of the same
type.

ascii (¢
Return the ASCII value corresponding to the low 7 bitg.of
ctrl (¢

Return the control character corresponding to the given character (the character bit value is bitwise-anded with

322 Chapter 6. Generic Operating System Services

0x1f).

alt (¢
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl (¢)
Return a string representation of thecii charactec. If ¢ is printable, this string is the character itself. If the
character is a control character (0x00-0x1f) the string consists of a catefdflowed by the corresponding
uppercase letter. If the character issgcil delete (0x7f) the string i§?" . If the character has its meta bit
(0x80) set, the meta bit is stripped, the preceding rules applied) amiépended to the result.

controlnames
A 33-element string array that contains t&ci1l mnemonics for the thirty-twascii control characters from 0
(NUL) to Ox1f (US), in order, plus the mnemoniSP for the space character.

6.19 curses.panel — A panel stack extension for curses.

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the visible
portions of each window will be displayed. Panels can be added, moved up or down in the stack, and removed.

6.19.1 Functions

The modulecurses.panel defines the following functions:

bottom _panel ()
Returns the bottom panel in the panel stack.

new_panel (‘win)
Returns a panel object, associating it with the given windomw

top _panel ()
Returns the top panel in the panel stack.

update _panels ()
Updates the virtual screen after changes in the panel stack. This does nuirsal.doupdate() , SO
you'll have to do this yourself.

6.19.2 Panel Objects

Panel objects, as returned bgw_panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window’s depth
in the panel stack.

Panel objects have the following methods:

above ()
Returns the panel above the current panel.

below ()
Returns the panel below the current panel.

bottom ()
Push the panel to the bottom of the stack.

6.19. curses.panel — A panel stack extension for curses. 323

hidden ()
Returns true if the panel is hidden (not visible), false otherwise.

hide ()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move(y, X
Move the panel to the screen coordinatgs X) .

replace (win)
Change the window associated with the panel to the window

set _userptr (obj)
Set the panel’s user pointerobj. This is used to associate an arbitrary piece of data with the panel, and can be
any Python object.

show()
Display the panel (which might have been hidden).

top ()
Push panel to the top of the stack.

userptr ()
Returns the user pointer for the panel. This might be any Python object.

window ()
Returns the window object associated with the panel.

6.20 getopt — Parser for command line options

This module helps scripts to parse the command line argumestsiargv . It supports the same conventions as

the UNIX getopt() function (including the special meanings of arguments of the ferrand ‘-- ’). Long options

similar to those supported by GNU software may be used as well via an optional third argument. This module provides
a single function and an exception:

getopt (args, optiong, Ion@options])
Parses command line options and parameter &sgs is the argument list to be parsed, without the leading
reference to the running program. Typically, this measys.argv[l:] ', optionsis the string of option
letters that the script wants to recognize, with options that require an argument followed by a cglae.("
the same format thatux getopt() uses).

Note: Unlike GNU getopt() , after a non-option argument, all further arguments are considered also non-
options. This is similar to the way non-GNUNWX systems work.

long_options if specified, must be a list of strings with the names of the long options which should be sup-
ported. The leading-" characters should not be included in the option name. Long options which require an
argument should be followed by an equal sige’)' To accept only long optiongptionsshould be an empty

string. Long options on the command line can be recognized so long as they provide a prefix of the option name
that matches exactly one of the accepted options. For exampdegif optionsis ['foo’, 'frob’] , the
option--fo will match as--foo, but--f will not match uniquely, s@etoptError will be raised.

The return value consists of two elements: the first is a ligtagtion value pairs; the second is the list of
program arguments left after the option list was stripped (this is a trailing sliasgsf. Each option-and-value

pair returned has the option as its first element, prefixed with a hyphen for short optionsxe.g),or two
hyphens for long options (e.g-;long-option’), and the option argument as its second element, or an
empty string if the option has no argument. The options occur in the list in the same order in which they were
found, thus allowing multiple occurrences. Long and short options may be mixed.

gnu _getopt (args, optiong, IongLoptions])
This function works likegetopt() , except that GNU style scanning mode is used by default. This means

324 Chapter 6. Generic Operating System Services

that option and non-option arguments may be intermixed.gettept() function stops processing options as
soon as a hon-option argument is encountered.

If the first character of the option string is ‘+’, or if the environment variable POSIXCORRECT is set, then
option processing stops as soon as a hon-option argument is encountered.

exceptionGetoptError

This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised. The attributes
msg andopt give the error message and related option; if there is no specific option to which the exception
relatesppt is an empty string.

Changed in version 1.6: Introduc&sktoptError as a synonym foerror

exceptionerror
Alias for GetoptError ; for backward compatibility.

An example using only Nix style options:

>>> jmport getopt

>>> args = '-a -b -cfoo -d bar al a2’.split()
>>> args

[-a’, -b’, '-cfoo’, '-d’, 'bar’, 'al’, 'a2’]

>>> optlist, args = getopt.getopt(args, 'abc:d:’)
>>> optlist

[("al! ”)v ("b,! ”)v ("C’v ’foo’), (l'd’l ’bar,)]

>>> args

[al’, 'a2]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x al a2’
>>> args = s.split()
>>> args

[--condition=foo’, ’--testing’, ’'--output-file’, 'abc.def’, '-x’, 'al’, 'a2’]
>>> optlist, args = getopt.getopt(args, X, [
‘condition=", 'output-file=", 'testing’])
>>> optlist
[(--condition’, 'foo’), (--testing’, ™), (--output-file’, 'abc.def’), (-x’,
")
>>> argS
[al’, 'a2’]

In a script, typical usage is something like this:

6.20. getopt — Parser for command line options 325

import getopt, sys

def main():
try:
opts, args = getopt.getopt(sys.argv[l:], "ho:v", ["help", "output="])
except getopt.GetoptError:
print help information and exit:
usage()
sys.exit(2)
output = None
verbose = False
for o, a in opts:
if o == "-v"
verbose = True
if o in ("-h", "--help"):

usage()
sys.exit()
if o in ("-0", "--output"):
output = a
..
if _name__ =="_ main__"
main()

See Also:

Moduleoptparse (section 6.21):
More object-oriented command line option parsing.

6.21 optparse — More powerful command line option parser

New in version 2.3.

optparse is a more convenient, flexible, and powerful library for parsing command-line optionsgttapt
optparse uses a more declarative style of command-line parsing: you create an instaBptiaiParser
populate it with options, and parse the command lomparse allows users to specify options in the conventional
GNU/POSIX syntax, and additionally generates usage and help messages for you.

Here’s an example of usingptparse in a simple script:

from optparse import OptionParser
(]
parser = OptionParser()
parser.add_option("-f", "--file", dest="filename",
help="write report to FILE", metavar="FILE")
parser.add_option("-q", "--quiet",
action="store_false", dest="verbose", default=True,
help="don’t print status messages to stdout")

(options, args) = parser.parse_args()

With these few lines of code, users of your script can now do the “usual thing” on the command-line, for example:

326 Chapter 6. Generic Operating System Services

<yourscript> --file=outfile -q

As it parses the command lineptparse sets attributes of theptions object returned byarse _args()

based on user-supplied command-line values. Wbemse _args() returns from parsing this command line,
options.filename will be "outfile" andoptions.verbose will be False . optparse supports both

long and short options, allows short options to be merged together, and allows options to be associated with their
arguments in a variety of ways. Thus, the following command lines are all equivalent to the above example:

<yourscript> -f outfile --quiet
<yourscript> --quiet --file outfile
<yourscript> -q -foutfile
<yourscript> -gfoutfile

Additionally, users can run one of

<yourscript> -h
<yourscript> --help

andoptparse will print out a brief summary of your script's options:

usage: <yourscript> [options]

options:
-h, --help show this help message and exit
-f FILE, --file=FILE write report to FILE
-q, --quiet don’t print status messages to stdout

where the value ofourscriptis determined at runtime (normally frogys.argv[0]).

6.21.1 Background

optparse was explicitly designed to encourage the creation of programs with straightforward, conventional
command-line interfaces. To that end, it supports only the most common command-line syntax and semantics con-
ventionally used under W X. If you are unfamiliar with these conventions, read this section to acquaint yourself with
them.

Terminology

argument a string entered on the command-line, and passed by the shetettd() or execv() . In Python,
arguments are elements g§s.argv[1:] (sys.argv[0] is the name of the program being executed).
UNix shells also use the term “word”.

Itis occasionally desirable to substitute an argument list otherdysuargv[1:] , SO you should read “argu-
ment” as “an element afys.argv[1:] , or of some other list provided as a substitutesfips.argv[1:]

option an argument used to supply extra information to guide or customize the execution of a program. There are
many different syntaxes for options; the traditionalitd syntax is a hyphen (“-") followed by a single letter,
e.g."-x" or"-F" . Also, traditional WNix syntax allows multiple options to be merged into a single argument,

6.21. optparse — More powerful command line option parser 327

e.g. "-x -F" s equivalent td'-xF" . The GNU project introducett-" followed by a series of hyphen-
separated words, e.d'--file" or "--dry-run" . These are the only two option syntaxes provided by
optparse

Some other option syntaxes that the world has seen include:

¢ a hyphen followed by a few letters, e.gpf* (this isnotthe same as multiple options merged into a
single argument)

e a hyphen followed by a whole word, e.gfile" (this is technically equivalent to the previous syntax,
but they aren’t usually seen in the same program)

e a plus sign followed by a single letter, or a few letters, or a word,"&. , "+rgb"
e aslash followed by a letter, or a few letters, or a word, &ffy. , "/file"

These option syntaxes are not supporteptparse , and they never will be. This is deliberate: the first
three are non-standard on any environment, and the last only makes sense if you're exclusively targeting VMS,
MS-DOS, and/or Windows.

option argument an argument that follows an option, is closely associated with that option, and is consumed from
the argument list when that option is. Witiptparse , option arguments may either be in a separate argument
from their option:

-f foo
--file foo

or included in the same argument:

-ffoo
--file=foo

Typically, a given option either takes an argument or it doesn’t. Lots of people want an “optional option argu-
ments” feature, meaning that some options will take an argument if they see it, and won't if they don’t. This is
somewhat controversial, because it makes parsing ambigudus if takes an optional argument ahy" is
another option entirely, how do we interpteab” ? Because of this ambiguitgptparse does not support

this feature.

positional argument something leftover in the argument list after options have been parsed, i.e. after options and
their arguments have been parsed and removed from the argument list.

required option an option that must be supplied on the command-line; note that the phrase “required option” is self-
contradictory in Englishoptparse doesn’t prevent you from implementing required options, but doesn't give
you much help at it either. Seexamples/required _1l.py andexamples/required _2.py inthe
optparse source distribution for two ways to implement required options wyitparse

For example, consider this hypothetical command-line:

prog -v --report /tmp/report.txt foo bar

-v" and"--report" are both options. Assuming thateport takes one argumertmp/report.txt" is
an option argumentfoo" and"bar" are positional arguments.

What are options for?

Options are used to provide extra information to tune or customize the execution of a program. In case it wasn'’t
clear, options are usuallgptional A program should be able to run just fine with no options whatsoever. (Pick a

328 Chapter 6. Generic Operating System Services

random program from the iix or GNU toolsets. Can it run without any options at all and still make sense? The
main exceptions arénd , tar , anddd—all of which are mutant oddballs that have been rightly criticized for their
non-standard syntax and confusing interfaces.)

Lots of people want their programs to have “required options”. Think about it. If it's required, thewityptional If
there is a piece of information that your program absolutely requires in order to run successfully, that's what positional
arguments are for.

As an example of good command-line interface design, consider the hemhlglity, for copying files. It doesn’t
make much sense to try to copy files without supplying a destination and at least one source.cpldaite,if you
run it with no arguments. However, it has a flexible, useful syntax that does not require any options at all:

cp SOURCE DEST
cp SOURCE ... DEST-DIR

You can get pretty far with just that. Mosp implementations provide a bunch of options to tweak exactly how
the files are copied: you can preserve mode and modification time, avoid following symlinks, ask before clobbering
existing files, etc. But none of this distracts from the core missiapofvhich is to copy either one file to another, or
several files to another directory.

What are positional arguments for?

Positional arguments are for those pieces of information that your program absolutely, positively requires to run.

A good user interface should have as few absolute requirements as possible. If your program requires 17 distinct pieces
of information in order to run successfully, it doesn’t much matwvyou get that information from the user—maost
people will give up and walk away before they successfully run the program. This applies whether the user interface
is a command-line, a configuration file, or a GUI: if you make that many demands on your users, most of them will
simply give up.

In short, try to minimize the amount of information that users are absolutely required to supply—use sensible defaults
whenever possible. Of course, you also want to make your programs reasonably flexible. That's what options are for.
Again, it doesn’t matter if they are entries in a config file, widgets in the “Preferences” dialog of a GUI, or command-
line options—the more options you implement, the more flexible your program is, and the more complicated its
implementation becomes. Too much flexibility has drawbacks as well, of course; too many options can overwhelm
users and make your code much harder to maintain.

6.21.2 Tutorial

While optparse is quite flexible and powerful, it's also straightforward to use in most cases. This section covers the
code patterns that are common to apgparse -based program.

First, you need to import the OptionParser class; then, early in the main program, create an OptionParser instance:

from optparse import OptionParser

[.]

parser = OptionParser()

Then you can start defining options. The basic syntax is:

6.21. optparse — More powerful command line option parser 329

parser.add_option(opt_str, ...,
attr=value, ...)

Each option has one or more option strings, sucli-els or "-file" , and several option attributes that tell
optparse what to expect and what to do when it encounters that option on the command line.

Typically, each option will have one short option string and one long option string, e.g.:

parser.add_option("-f", "--file", ...)

You're free to define as many short option strings and as many long option strings as you like (including zero), as long
as there is at least one option string overall.

The option strings passedadd _option() are effectively labels for the option defined by that call. For brevity, we
will frequently refer toencountering an optionn the command line; in realitpptparse encountersption strings
and looks up options from them.

Once all of your options are defined, instrogtparse to parse your program’s command line:

(options, args) = parser.parse_args()

(If you like, you can pass a custom argument lisptose _args() , but that's rarely necessary: by default it uses
sys.argv[1:] J)

parse _args() returns two values:

e options , an object containing values for all of your options—e.g'-ifile" takes a single string argu-
ment, therpptions.file will be the filename supplied by the user,Mone if the user did not supply that
option

e args , the list of positional arguments leftover after parsing options

This tutorial section only covers the four most important option attribigegon , type , dest (destination), and
help . Of theseaction is the most fundamental.

Understanding option actions

Actions telloptparse what to do when it encounters an option on the command line. There is a fixed set of actions
hard-coded intmptparse ; adding new actions is an advanced topic covered in se@@pkxtendingoptparse

Most actions telbptparse to store a value in some variable—for example, take a string from the command line and
store it in an attribute obptions

If you don't specify an option actiomptparse defaults tostore

The store action

The most common option actionssore , which tellsoptparse to take the next argument (or the remainder of the
current argument), ensure that it is of the correct type, and store it to your chosen destination.

For example:

330 Chapter 6. Generic Operating System Services

parser.add_option("-f*, "--file",
action="store", type="string", dest="filename")

Now let's make up a fake command line and agkparse to parse it:

args = [-f, "foo.txt"]
(options, args) = parser.parse_args(args)

When optparse sees the option stringtf" , it consumes the next argumerifpo.txt" , and stores it in
options.filename . So, after this call tparse _args() , options.filename is "foo.txt"

Some other option types supported dyytparse areint andfloat . Here’'s an option that expects an integer
argument:

parser.add_option("-n", type="int", dest="num")

Note that this option has no long option string, which is perfectly acceptable. Also, there’s no explicit action, since the
default isstore

Let’s parse another fake command-line. This time, we’ll jam the option argument right up against the option: since
"-n42" (one argument) is equivalent'ten 42" (two arguments), the code

(options, args) = parser.parse_args(["-n42"])
print options.num

will print "42" .

If you don’t specify a typepptparse assumestring . Combined with the fact that the default actiorsiere
that means our first example can be a lot shorter:

parser.add_option("-f", "--file", dest="filename")

If you don't supply a destinatiomptparse figures out a sensible default from the option strings: if the first long op-
tion string is"--foo-bar" , then the default destinationfiso _bar . If there are no long option stringsptparse
looks at the first short option string: the default destinatior'ffir isf .

optparse also includes built-inong andcomplex types. Adding types is covered in secti@f, Extending
optparse

Handling boolean (flag) options
Flag options—set a variable to true or false when a particular option is seen—are quite compitpanse supports

them with two separate actiorstore _true andstore _false . For example, you might haveverbose flag
that is turned on witf-v" and off with"-q"

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose")

Here we have two different options with the same destination, which is perfectly OK. (It just means you have to be a

6.21. optparse — More powerful command line option parser 331

bit careful when setting default values—see below.)

Whenoptparse encounter$-v* on the command line, it setgtions.verbose to True ; when it encounters
"-q" , options.verbose is set toFalse .

Other actions
Some other actions supported igtparse are:

store _const store a constant value
append append this option’s argument to a list
count increment a counter by one

callback call a specified function

These are covered in section 6.21.3, Reference Guide and section 6.21.4, Option Callbacks.

Default values

All of the above examples involve setting some variable (the “destination”) when certain command-line options are
seen. What happens if those options are never seen? Since we didn’t supply any defaults, they ar&atheefltiois

is usually fine, but sometimes you want more contopitparse lets you supply a default value for each destination,
which is assigned before the command line is parsed.

First, consider the verbose/quiet example. If we vaptparse to setverbose toTrue unless'-q" is seen, then

we can do this:

parser.add_option("-v", action="store_true", dest="verbose", default=True)
parser.add_option("-q", action="store_false", dest="verbose")

Since default values apply to tidestinatiorrather than to any particular option, and these two options happen to have
the same destination, this is exactly equivalent:

parser.add_option("-v", action="store_true", dest="verbose")
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Consider this:

parser.add_option("-v", action="store_true", dest="verbose", default=False)
parser.add_option("-q", action="store_false", dest="verbose", default=True)

Again, the default value foverbose will be True : the last default value supplied for any particular destination is
the one that counts.

A clearer way to specify default values is thet _defaults() method of OptionParser, which you can call at any
time before callingparse _args()

332 Chapter 6. Generic Operating System Services

parser.set_defaults(verbose=True)
parser.add_option(...)
(options, args) = parser.parse_args()

As before, the last value specified for a given option destination is the one that counts. For clarity, try to use one
method or the other of setting default values, not both.

Generating help

optparse s ability to generate help and usage text automatically is useful for creating user-friendly command-line
interfaces. All you have to do is supplyhelp value for each option, and optionally a short usage message for your
whole program. Here’s an OptionParser populated with user-friendly (documented) options:

usage = "usage: %prog [options] argl arg2"
parser = OptionParser(usage=usage)
parser.add_option("-v", "--verbose",
action="store_true", dest="verbose", default=True,
help="make lots of noise [default]")
parser.add_option("-q", "--quiet",
action="store_false", dest="verbose",
help="be vewwy quiet (I'm hunting wabbits)")

parser.add_option("-f*, "--filename",
metavar="FILE", help="write output to FILE"),
parser.add_option("-m", "--mode",

default="intermediate",
help="interaction mode: novice, intermediate, "
"or expert [default: %default]")

If optparse encounters either"-h" or "--help" on the command-line, or if you just call
parser.print _help() , it prints the following to standard output:

usage: <yourscript> [options] argl arg2

options:
-h, --help show this help message and exit
-v, --verbose make lots of noise [default]
-q, --quiet be vewwy quiet (I'm hunting wabbits)

-f FILE, --flename=FILE
write output to FILE

-m MODE, --mode=MODE interaction mode: novice, intermediate, or
expert [default: intermediate]

(If the help output is triggered by a help opti@ptparse exits after printing the help text.)

There’s a lot going on here to heyptparse generate the best possible help message:

e the script defines its own usage message:

usage = "usage: %prog [options] argl arg2"

optparse expands "%prog" in the usage string to the name of the current program, i.e.
os.path.basename(sys.argv|[0]) . The expanded string is then printed before the detailed option help.

6.21. optparse — More powerful command line option parser 333

If you don't supply a usage stringyptparse uses a bland but sensible defaultusage: %prog
[options]" , Which is fine if your script doesn’t take any positional arguments.

e every option defines a help string, and doesn’t worry about line- wrappopdparse takes care of wrapping
lines and making the help output look good.

e options that take a value indicate this fact in their automatically-generated help message, e.g. for the “mode”
option:

-m MODE, --mode=MODE

Here, “MODE?" is called the meta-variable: it stands for the argument that the user is expected to supply to
-m/--mode By default, optparse converts the destination variable nhame to uppercase and uses that for
the meta-variable. Sometimes, that’s not what you want—for example;fitemame option explicitly sets
metavar="FILE" , resulting in this automatically-generated option description:

-f FILE, --filename=FILE

This is important for more than just saving space, though: the manually written help text uses the meta-variable
“FILE” to clue the user in that there’s a connection between the semi-formal syntax “-f FILE” and the informal
semantic description “write output to FILE”. This is a simple but effective way to make your help text a lot
clearer and more useful for end users.

e options that have a default value can incl@ddefault in the help string—eptparse will replace it with
str() of the option’s default value. If an option has no default value (or the default vaNanis), %default
expands taone .

Printing a version string

Similar to the brief usage stringptparse can also print a version string for your program. You have to supply the
string as theversion argument to OptionParser:

parser = OptionParser(usage="%prog [-f] [-q]", version="%prog 1.0")

Note that'%prog" is expanded just like it is imsage . Apart from thatyversion can contain anything you like.
When you supply itoptparse automatically adds &-version” option to your parser. If it encounters this
option on the command line, it expands yeersion string (by replacing%prog”), prints it to stdout, and exits.

For example, if your script is calledisr/bin/foo

$ /usr/bin/foo --version
foo 1.0

How optparse handles errors

There are two broad classes of errors tbptparse has to worry about: programmer errors and user errors.
Programmer errors are usually erroneous callparse.add _option() , e.g. invalid option strings, unknown
option attributes, missing option attributes, etc. These are dealt with in the usual way: raise an exception (either
optparse.OptionError or TypeError) and let the program crash.

334 Chapter 6. Generic Operating System Services

Handling user errors is much more important, since they are guaranteed to happen no matter how stable your code
is. optparse can automatically detect some user errors, such as bad option arguments (pasgirRg where-n

takes an integer argument), missing argumehts' (at the end of the command line, wheretakes an argument of

any type). Also, you can caflarser.error() to signal an application-defined error condition:

(options, args) = parser.parse_args()

]
if options.a and options.b:
parser.error("options -a and -b are mutually exclusive")

In either casepptparse handles the error the same way: it prints the program’s usage message and an error message
to standard error and exits with error status 2.

Consider the first example above, where the user pd4sés to an option that takes an integer:

$ /usr/bin/foo -n 4x
usage: foo [options]

foo: error: option -n: invalid integer value: '4x’

Or, where the user fails to pass a value at all:

$ /usr/bin/foo -n
usage: foo [options]

foo: error: -n option requires an argument

optparse -generated error messages take care always to mention the option involved in the error; be sure to do the
same when callingarser.error() from your application code.

If optparse s default error-handling behaviour does not suite your needs, you'll need to subclass OptionParser and
overrideexit() and/orerror()

Putting it all together

Here’s whatoptparse -based scripts usually look like:

6.21. optparse — More powerful command line option parser 335

from optparse import OptionParser
[-]
def main():
usage = "usage: %prog [options] arg"
parser = OptionParser(usage)
parser.add_option("-f", "-file", dest="filename",
help="read data from FILENAME")
parser.add_option("-v", "--verbose",
action="store_true", dest="verbose")
parser.add_option("-q", "--quiet",
action="store_false", dest="verbose")
[-]
(options, args) = parser.parse_args()
if len(args) = 1:
parser.error(“incorrect number of arguments")
if options.verbose:
print "reading %s..." % options.filename

(]

if _name__ == "_ main__"
main()

6.21.3 Reference Guide
Creating the parser

The first step in usingptparse is to create an OptionParser instance:

parser = OptionParser(...)

The OptionParser constructor has no required arguments, but a number of optional keyword arguments. You should
always pass them as keyword arguments, i.e. do not rely on the order in which the arguments are declared.

usage (default: "%prog [options]") The usage summary to print when your program is run in-
correctly or with a help option. Wheoptparse prints the usage string, it expanégrog to
os.path.basename(sys.argv[0]) (or toprog if you passed that keyword argument). To

suppress a usage message, pass the speciabghsrse. SUPPRESS _USAGE

option _list (default: []) A list of Option objects to populate the parser with. The options in
option _list are added after any optionsstandard _option _list (a class attribute that
may be set by OptionParser subclasses), but before any version or help options. Deprecated; use
add _option() after creating the parser instead.

option _class (default: optparse.Option) Class to use when adding options to the parser in
add _option()

version (default: None) A version string to print when the user supplies a version option. If you
supply a true value foversion , optparse automatically adds a version option with the single
option string"--version" . The substring%prog" is expanded the same as f@mage .

conflict ~ _handler (default: "error*) Specifies what to do when options with conflicting option
strings are added to the parser; see section 6.21.3, Conflicts between options.

description (default: None) A paragraph of text giving a brief overview of your program.
optparse reformats this paragraph to fit the current terminal width and prints it when the user

336 Chapter 6. Generic Operating System Services

requests help (aftarsage , but before the list of options).

formatter (default: a new IndentedHelpFormatter) An instance of optparse.HelpFormatter that
will be used for printing help text.optparse provides two concrete classes for this purpose:
IndentedHelpFormatter and TitledHelpFormatter.

add _help _option (default: True) If true, optparse will add a help option (with option strings
"-h" and"--help") to the parser.

prog The string to use when expandinfoprog” in usage and version instead of
os.path.basename(sys.argv[0])

Populating the parser

There are several ways to populate the parser with options. The preferred way is by using
OptionParser.add _option() , as shown in section 6.21.2, the tutoriahdd _option() can be called

in one of two ways:

e pass it an Option instance (as returnechimke_option())

e pass it any combination of positional and keyword arguments that are acceptatd&aaoption() (i.e., to
the Option constructor), and it will create the Option instance for you

The other alternative is to pass a list of pre-constructed Option instances to the OptionParser constructor, as in:

option_list = [
make_option("-f*, "--filename",
action="store", type="string", dest="filename"),
make_option("-g", "--quiet",

action="store_false", dest="verbose"),

]

parser = OptionParser(option_list=option_list)

(make_option() is a factory function for creating Option instances; currently it is an alias for the Option construc-
tor. A future version obptparse may split Option into several classes, andke_option() will pick the right
class to instantiate. Do not instantiate Option directly.)

Defining options

Each Option instance represents a set of synonymous command-line option strindsamdg-file. You can specify
any number of short or long option strings, but you must specify at least one overall option string.
The canonical way to create an Option instance is wittetiee_option() method ofOptionParser

parser.add_option(opt_str[, ...], attr=value, ...

To define an option with only a short option string:

parser.add_option("-f", attr=value, ...)

And to define an option with only a long option string:

6.21. optparse — More powerful command line option parser 337

parser.add_option("--foo", attr=value, ...)

The keyword arguments define attributes of the new Option object. The most important option attrémiitenis ,
and it largely determines which other attributes are relevant or required. If you pass irrelevant option attributes, or fail
to pass required onesptparse raises an OptionError exception explaining your mistake.

An options’saction determines whabptparse does when it encounters this option on the command-line. The
standard option actions hard-coded iofiparse are:

store store this option’s argument (default)
store _const store a constant value

store _true store atrue value

store _false store afalse value

append append this option’s argument to a list
count increment a counter by one

callback call a specified function

help print a usage message including all options and the documentation for them

(If you don't supply an action, the default &ore . For this action, you may also supplype anddest option
attributes; see below.)

As you can see, most actions involve storing or updating a value somewtygparse always creates a special
object for this, conventionally calledptions (it happens to be an instance opftparse.Values). Option
arguments (and various other values) are stored as attributes of this object, accordirdgsi ti{destination) option
attribute.

For example, when you call

parser.parse_args()

one of the first thingsptparse does is create theptions object:

options = Values()

If one of the options in this parser is defined with

parser.add_option("-f", "--file", action="store", type="string", dest="filename")

and the command-line being parsed includes any of the following:

-ffoo

-f foo
--file=foo
-file foo

338 Chapter 6. Generic Operating System Services

thenoptparse , on seeing this option, will do the equivalent of

options.filename = "foo"

Thetype anddest option attributes are almost as importantagion , butaction is the only one that makes
sense foall options.

Standard option actions

The various option actions all have slightly different requirements and effects. Most actions have several relevant
option attributes which you may specify to guidptparse 's behaviour; a few have required attributes, which you
must specify for any option using that action.

e store [relevant:itype , dest , nargs , choices]

The option must be followed by an argument, which is converted to a value accordietoand stored in
dest . If nargs > 1, multiple arguments will be consumed from the command line; all will be converted
according taype and stored talest as a tuple. See the “Option types” section below.

If choices is supplied (a list or tuple of strings), the type defaultshoice .
If type is not supplied, it defaults tstring

If dest is not suppliedpptparse derives a destination from the first long option string (¢'-gfpo-bar"
impliesfoo _bar). If there are no long option stringeptparse derives a destination from the first short
option string (e.g.;-f* impliesf).

Example:

parser.add_option("-f")
parser.add_option("-p", type="float", nargs=3, dest="point")

As it parses the command line

-f foo.txt -p 1 -3.5 4 -fbar.txt

optparse will set

options.f = "foo.txt"
options.point = (1.0, -3.5, 4.0)
options.f = "bar.txt"

e store _const [required:const ;relevant.dest]
The valueconst is stored indest .
Example:

parser.add_option("-q", "--quiet",

action="store_const", const=0, dest="verbose")
parser.add_option("-v", "--verbose",

action="store_const", const=1, dest="verbose")
parser.add_option("--noisy",

action="store_const", const=2, dest="verbose")

6.21. optparse — More powerful command line option parser 339

If "--noisy" is seenpptparse will set

options.verbose = 2

store _true [relevant:dest]
A special case atore _const that stores a true value test .

store _false [relevant:dest]
Like store _true , but stores a false value.
Example:

parser.add_option("--clobber", action="store_true", dest="clobber")
parser.add_option("--no-clobber”, action="store_false", dest="clobber")

append [relevant:type , dest , nargs , choices]

The option must be followed by an argument, which is appended to the ks . If no default value for
dest is supplied, an empty list is automatically created wbetparse first encounters this option on the
command-line. Ihargs > 1, multiple arguments are consumed, and a tuple of lengths is appended to
dest .

The defaults fotype anddest are the same as for tlsgore action.
Example:

parser.add_option("-t", "--tracks", action="append", type="int")

If "-t3" is seen on the command-lineptparse does the equivalent of:

options.tracks = []
options.tracks.append(int("3"))

If, a little later on,"--tracks=4" is seen, it does:

options.tracks.append(int("4"))

count [relevant:dest]

Increment the integer stored @ést . If no default value is suppliedjest is set to zero before being incre-
mented the first time.
Example:

parser.add_option("-v", action="count", dest="verbosity")

The first time"-v" is seen on the command lingptparse does the equivalent of:

options.verbosity = 0
options.verbosity += 1

340

Chapter 6. Generic Operating System Services

Every subsequent occurrence'ef' results in

options.verbosity += 1

e callback [required:callback ;relevantitype , nargs ,callback _args ,callback _kwargs]
Call the function specified bgallback , which is called as

func(option, opt_str, value, parser, *args, **kwargs)

See section 6.21.4, Option Callbacks for more detail.

e help

Prints a complete help message for all the options in the current option parser. The help message is constructed
from theusage string passed to OptionParser’s constructor andhéte string passed to every option.

If no help string is supplied for an option, it will still be listed in the help message. To omit an option entirely,
use the special valugptparse.SUPPRESS _HELP.

optparse automatically adds help option to all OptionParsers, so you do not normally need to create one.
Example:

from optparse import OptionParser, SUPPRESS HELP

parser = OptionParser()
parser.add_option("-h", "--help”, action="help"),
parser.add_option("-v", action="store_true", dest="verbose",
help="Be moderately verbose")
parser.add_option("--file", dest="filename",
help="Input file to read data from"),
parser.add_option("--secret", help=SUPPRESS_HELP)

If optparse sees eithet-h" or"--help"” onthe command line, it will print something like the following
help message to stdout (assumayg.argv[0] is "foo.py"):

usage: foo.py [options]

options:
-h, --help Show this help message and exit
-v Be moderately verbose

--file=FILENAME Input file to read data from

After printing the help messageptparse terminates your process widlys.exit(0)

e version

Prints the version number supplied to the OptionParser to stdout and exits. The version number is actually
formatted and printed by therint _version() method of OptionParser. Generally only relevant if the
version argument is supplied to the OptionParser constructor. Ashdth options, you will rarely create
version options, sinc@ptparse automatically adds them when needed.

6.21. optparse — More powerful command line option parser 341

Option attributes

The following option attributes may be passed as keyword argumeptrser.add _option() . If you pass an
option attribute that is not relevant to a particular option, or fail to pass a required option attipijtarse raises
OptionError.

e action (default:"store")
Determinesoptparse ’s behaviour when this option is seen on the command line; the available options are
documented above.
e type (default:"string")
The argument type expected by this option (€'sfring"” or"int"); the available option types are docu-
mented below.
e dest (default: derived from option strings)
If the option’s action implies writing or modifying a value somewhere, this tgiiparse where to write it:
dest names an attribute of thaptions object thatptparse builds as it parses the command line.
e default (deprecated)
The value to use for this option’s destination if the option is not seen on the command line. Deprecated; use
parser.set _defaults() instead.
e nargs (default: 1)
How many arguments of tyggpe should be consumed when this option is seen- If, optparse will store
a tuple of values talest .
e const
For actions that store a constant value, the constant value to store.

e choices
For options of typeéchoice" , the list of strings the user may choose from.

e callback
For options with actioricallback” , the callable to call when this option is seen. See section 6.21.4, Option
Callbacks for detail on the arguments passechitable

e callback _args ,callback _kwargs
Additional positional and keyword arguments to passdaitback after the four standard callback arguments.

e help
Help text to print for this option when listing all available options after the user supphie$pa option (such
as"--help"). If no help text is supplied, the option will be listed without help text. To hide this option, use
the special valuSUPPRESSHELP.

e metavar (default: derived from option strings)
Stand-in for the option argument(s) to use when printing help text. See section 6.21.2, the tutorial for an example.

342 Chapter 6. Generic Operating System Services

Standard option types
optparse has six built-in option typesstring , int ,long , choice ,float andcomplex . If you need to add
new option types, see secti@f, Extendingoptparse

Arguments to string options are not checked or converted in any way: the text on the command line is stored in the
destination (or passed to the callback) as-is.

Integer arguments are passediritY) to convert them to Python integers. ifft() fails, so will optparse ,
although with a more useful error message. (Internalbtparse raises OptionValueError; OptionParser catches
this exception higher up and terminates your program with a useful error message.)

Likewise, float arguments are passedftoat() for conversionJong arguments tdong() , andcomplex
arguments t@omplex() . Apart from that, they are handled identically to integer arguments.

choice options are a subtype efring options. Thechoices option attribute (a sequence of strings) defines the
set of allowed option argumentsptparse.check _choice() compares user-supplied option arguments against
this master list and raises OptionValueError if an invalid string is given.

Parsing arguments

The whole point of creating and populating an OptionParser is to calhitse _args() method:

(options, args) = parser.parse_args(args=None, options=None)

where the input parameters are

args the list of arguments to processy6.argv[1:] by default)

options object to store option arguments in (a new instance of optparse.Values by default)
and the return values are

options the same object as was passed in@ations , or the new optparse.Values instance createoidtyarse

args the leftover positional arguments after all options have been processed

The most common usage is to supply neither keyword argument. If you supplyes object, it will be repeatedly
modified with asetattr() call for every option argument written to an option destination, and finally returned by
parse _args()

If parse _args() encounters any errors in the argument list, it calls the OptionPameos) method with an
appropriate end-user error message. This ultimately terminates your process with an exit status of 2 (the traditional
UNIX exit status for command-line errors).

Querying and manipulating your option parser

Sometimes, it's useful to poke around your option parser and see what'’s there. OptionParser provides a couple of
methods to help you out:

has _option(opt ~ _str) Return true if the OptionParser has an option with option stojpig_str (e.g.,"-q"
or"--verbose").

get _option(opt _str) Returns the Option instance with the option strisjt _str , or None if no options
have that option string.

6.21. optparse — More powerful command line option parser 343

remove _option(opt _str) If the OptionParser has an option correspondingpbd _str , that option is re-
moved. If that option provided any other option strings, all of those option strings become invalid. 16tr
does not occur in any option belonging to this OptionParser, raises ValueError.

Conflicts between options

If you're not careful, it's easy to define options with conflicting option strings:

parser.add_option("-n", "--dry-run”, ...)

]

parser.add_option("-n", "--noisy", ...)

(This is particularly true if you've defined your own OptionParser subclass with some standard options.)

Every time you add an optiomptparse checks for conflicts with existing options. If it finds any, it invokes the
current conflict-handling mechanism. You can set the conflict-handling mechanism either in the constructor:

parser = OptionParser(..., conflict_handler=handler)

or with a separate call:

parser.set_conflict_handler(handler)

The available conflict handlers are:

error (default) assume option conflicts are a programming error and raise OptionConflictError
resolve resolve option conflicts intelligently (see below)

As an example, let's define an OptionParser that resolves conflicts intelligently and add conflicting options to it:

parser = OptionParser(conflict_handler="resolve")
parser.add_option("-n", "--dry-run®, ..., help="do no harm")
parser.add_option("-n", "--noisy", ..., help="be noisy")

At this point, optparse detects that a previously-added option is already usind'hie option string. Since
conflict ~ _handler is'"resolve" |, it resolves the situation by removirign" from the earlier option’s list of
option strings. Now--dry-run" is the only way for the user to activate that option. If the user asks for help, the
help message will reflect that:

options:
--dry-run do no harm

[.]

-n, --noisy be noisy

It's possible to whittle away the option strings for a previously-added option until there are none left, and the user has
no way of invoking that option from the command-line. In that caggparse removes that option completely, so
it doesn’t show up in help text or anywhere else. Carrying on with our existing OptionParser:

344 Chapter 6. Generic Operating System Services

parser.add_option("--dry-run”, ..., help="new dry-run option")

At this point, the originakn/--dry-run option is no longer accessible, sptparse removes it, leaving this help
text:

options:

[-]
-n, --noisy be noisy
--dry-run new dry-run option

Other methods
OptionParser supports several other public methods:

e set _usage(usage)
Set the usage string according to the rules described above farstge constructor keyword argument.
PassingNone sets the default usage string; (BePPRESSUSAGHO suppress a usage message.

e enable _interspersed _args() ,disable _interspersed _args()

Enable/disable positional arguments interspersed with options, similar to GNU getopt (enabled by default). For
example, if'-a" and"-b" are both simple options that take no argumenpgparse normally accepts this
syntax:

prog -a argl -b arg2

and treats it as equivalent to

prog -a -b argl arg2

To disable this feature, catlisable _interspersed _args() . This restores traditional WX syntax,
where option parsing stops with the first non-option argument.

e set _defaults(dest=value, ...)

Set default values for several option destinations at once. Wging defaults() is the preferred way to set
default values for options, since multiple options can share the same destination. For example, if several “mode”
options all set the same destination, any one of them can set the default, and the last one wins:

parser.add_option("--advanced", action="store_const",
dest="mode", const="advanced",
default="novice") # overridden below
parser.add_option("--novice", action="store_const",
dest="mode", const="novice",
default="advanced") # overrides above setting

To avoid this confusion, useet _defaults()

6.21. optparse — More powerful command line option parser 345

parse.set_defaults(mode="advanced")

parser.add_option("--advanced", action="store_const",
dest="mode", const="advanced")

parser.add_option("--novice", action="store_const",
dest="mode", const="novice")

6.21.4 Option Callbacks

When optparse ’s built-in actions and types aren’t quite enough for your needs, you have two choices: extend
optparse or define a callback option. Extendiogtparse is more general, but overkill for a lot of simple cases.
Quite often a simple callback is all you need.

There are two steps to defining a callback option:

¢ define the option itself using ttellback action

e write the callback; this is a function (or method) that takes at least four arguments, as described below

Defining a callback option
As always, the easiest way to define a callback option is by usinggttser.add _option() method. Apart from
action , the only option attribute you must specifydallback , the function to call:

parser.add_option("-c", action="callback", callback=my_callback)

callback is a function (or other callable object), so you must have already defityedallback() when you

create this callback option. In this simple caseptparse doesn’'t even know ifc takes any arguments, which
usually means that the option takes no arguments—the mere presercenothe command-line is all it needs to
know. In some circumstances, though, you might want your callback to consume an arbitrary number of command-
line arguments. This is where writing callbacks gets tricky; it's covered later in this section.

optparse always passes four particular arguments to your callback, and it will only pass additional arguments if you
specify them viacallback _args andcallback _kwargs . Thus, the minimal callback function signature is:

def my_callback(option, opt, value, parser):

The four arguments to a callback are described below.

There are several other option attributes that you can supply when you define a callback option:

type hasitsusual meaning: as with tsiere orappend actions, itinstructsptparse to consume one argument
and convert it tdype . Rather than storing the converted value(s) anywhere, thmmhparse passes it to
your callback function.

nargs also has its usual meaning: if it is supplied and., optparse will consumenargs arguments, each of
which must be convertible tiype . It then passes a tuple of converted values to your callback.

callback _args atuple of extra positional arguments to pass to the callback

callback _kwargs a dictionary of extra keyword arguments to pass to the callback

346 Chapter 6. Generic Operating System Services

How callbacks are called

All callbacks are called as follows:

func(option, opt_str, value, parser, *args, **kwargs)

where

option is the Option instance that's calling the callback

opt _str is the option string seen on the command-line that's triggering the callback. (If an abbreviated long option
was usedopt _str will be the full, canonical option string—e.g. if the user pttdoo" on the command-
line as an abbreviation for-foobar" , thenopt _str will be "--foobar*)

value is the argument to this option seen on the command-bpéparse will only expect an argument ifype
is set; the type ofralue will be the type implied by the option’s type. tfpe for this option isNone
(no argument expected), thealue will be None. If nargs > 1, value will be a tuple of values of the
appropriate type.

parser is the OptionParser instance driving the whole thing, mainly useful because you can access some other
interesting data through its instance attributes:

parser.largs the current list of leftover arguments, ie. arguments that have been consumed but are neither
options nor option arguments. Feel free to mogifyser.largs , €.9. by adding more arguments to it.
(This list will becomeargs , the second return value parse _args() .)

parser.rargs the current list of remaining arguments, ie. wipt _str andvalue (if applicable) re-
moved, and only the arguments following them still there. Feel free to modifger.rargs , €.g. by
consuming more arguments.

parser.values the object where option values are by default stored (an instance of optparse.OptionValues).
This lets callbacks use the same mechanism as the reptidrse for storing option values; you don’t
need to mess around with globals or closures. You can also access or modify the value(s) of any options
already encountered on the command-line.

args is atuple of arbitrary positional arguments supplied viadhkback _args option attribute.

kwargs is a dictionary of arbitrary keyword arguments suppliedcallback _kwargs .

Raising errors in a callback
The callback function should raise OptionValueError if there are any problems with the option or its argument(s).
optparse catches this and terminates the program, printing the error message you supply to stderr. Your message

should be clear, concise, accurate, and mention the option at fault. Otherwise, the user will have a hard time figuring
out what he did wrong.

Callback example 1: trivial callback

Here’s an example of a callback option that takes no arguments, and simply records that the option was seen:

def record_foo_seen(option, opt_str, value, parser):
parser.saw_foo = True

parser.add_option("--foo", action="callback”, callback=record_foo_seen)

Of course, you could do that with tlstore _true action.

6.21. optparse — More powerful command line option parser 347

Callback example 2: check option order

Here’s a slightly more interesting example: record the fact'tfadt is seen, but blow up if it comes aft&b” in
the command-line.

def check_order(option, opt_str, value, parser):
if parser.values.b:
raise OptionValueError("can't use -a after -b")
parser.values.a = 1

]

parser.add_option("-a", action="callback", callback=check_order)
parser.add_option("-b", action="store_true", dest="b")

Callback example 3: check option order (generalized)

If you want to re-use this callback for several similar options (set a flag, but blow"tig'if has already been seen),
it needs a bit of work: the error message and the flag that it sets must be generalized.

def check_order(option, opt_str, value, parser):
if parser.values.b:
raise OptionValueError("can't use %s after -b" % opt_str)
setattr(parser.values, option.dest, 1)

-]

parser.add_option("-a", action="callback”, callback=check_order, dest="a’)
parser.add_option("-b", action="store_true", dest="b")
parser.add_option("-c", action="callback", callback=check_order, dest='c’)

Callback example 4: check arbitrary condition

Of course, you could put any condition in there—you're not limited to checking the values of already-defined options.
For example, if you have options that should not be called when the moon is full, all you have to do is this:

def check_moon(option, opt_str, value, parser):
if is_moon_full():
raise OptionValueError("%s option invalid when moon is full"
% opt_str)
setattr(parser.values, option.dest, 1)

[..]
parser.add_option("--foo",
action="callback", callback=check_moon, dest="foo")

(The definition ofis _moon_full() is left as an exercise for the reader.)

Callback example 5: fixed arguments

Things get slightly more interesting when you define callback options that take a fixed number of arguments. Speci-
fying that a callback option takes arguments is similar to definisgpee or append option: if you definetype ,

then the option takes one argument that must be convertible to that type; if you furtherrigfise, then the option
takesnargs arguments.

348 Chapter 6. Generic Operating System Services

Here’s an example that just emulates the standmé action:

def store_value(option, opt_str, value, parser):
setattr(parser.values, option.dest, value)

[-]

parser.add_option("--foo",
action="callback", callback=store_value,
type="int", nargs=3, dest="foo")

Note thatoptparse takes care of consuming 3 arguments and converting them to integers for you; all you have to
do is store them. (Or whatever; obviously you don’t need a callback for this example.)

Callback example 6: variable arguments

Things get hairy when you want an option to take a variable number of arguments. For this case, you must write a
callback, amptparse doesn't provide any built-in capabilities for it. And you have to deal with certain intricacies of
conventional Wix command-line parsing thaptparse normally handles for you. In particular, callbacks should
implement the conventional rules for bare' and"-" arguments:

e either"--" or"-" can be option arguments

e bare"--" (if not the argument to some option): halt command-line processing and discdrd'the

e bare"-" (if not the argument to some option): halt command-line processing but keég' théappend it to
parser.largs)

If you want an option that takes a variable number of arguments, there are several subtle, tricky issues to worry about.
The exact implementation you choose will be based on which trade-offs you're willing to make for your application
(which is whyoptparse doesn'’t support this sort of thing directly).

Nevertheless, here’s a stab at a callback for an option with variable arguments:

6.21. optparse — More powerful command line option parser 349

def vararg_callback(option, opt_str, value, parser):
assert value is None

done = 0

value =]

rargs = parser.rargs
while rargs:

arg = rargs[0]

Stop if we hit an arg like "--foo", "-a", "-fx", "--file=f",
etc. Note that this also stops on "-3" or "-3.0", so if
your option takes numeric values, you will need to handle

this.
if ((arg[:2] == "--" and len(arg) > 2) or
(arg[:1] == "-" and len(arg) > 1 and arg[1l] '= "-")):
break
else:
value.append(arg)
del rargs[0]

setattr(parser.values, option.dest, value)

[-]
parser.add_option("-c", "--callback",
action="callback", callback=varargs)

The main weakness with this particular implementation is that negative numbers in the arguments foloWwing
will be interpreted as further options (probably causing an error), rather than as argunietits td-ixing this is left
as an exercise for the reader.

6.21.5 Extending optparse
Since the two major controlling factors in haptparse interprets command-line options are the action and type of
each option, the most likely direction of extension is to add new actions and new types.

Also, theexamples/ directory of the source distribution includes several demonstrations of extevutiparse in
different ways: e.g. a case-insensitive option parser, or two kinds of option parsers that implement “required options”.

Adding new types

To add new types, you need to define your own subclasgptfarse ’s Option class. This class has a couple of
attributes that defineptparse ’s types:TYPESandTYPE_CHECKER

TYPES:s a tuple of type names; in your subclass, simply define a new TORE Sthat builds on the standard one.

TYPE_CHECKERS a dictionary mapping type names to type-checking functions. A type-checking function has the
following signature:

def check_mytype(option, opt, value)

whereoption is anOption instance,opt is an option string (e.g.-f*), andvalue is the string from the
command line that must be checked and converted to your desiredctygek _mytype() should return an object

of the hypothetical typenytype . The value returned by a type-checking function will wind up in the OptionValues
instance returned b@ptionParser.parse _args() , or be passed to a callback as ttedue parameter.

350 Chapter 6. Generic Operating System Services

Your type-checking function should raise OptionValueError if it encounters any problems. OptionValueError takes a
single string argument, which is passed as-is to OptionPaeeoy) method, which in turn prepends the program
name and the strinterror:” and prints everything to stderr before terminating the process.

Here’s a silly example that demonstrates addirnpmaplex option type to parse Python-style complex numbers on
the command line. (This is even sillier than it used to be, becaptgmarse 1.3 added built-in support for complex
numbers, but never mind.)

First, the necessary imports:

from copy import copy
from optparse import Option, OptionValueError

You need to define your type-checker first, since it’s referred to later (i WRE_CHECKERIass attribute of your
Option subclass):

def check _complex(option, opt, value):
try:
return complex(value)
except ValueError:
raise OptionValueError(
"option %s: invalid complex value: %r" % (opt, value))

Finally, the Option subclass:

class MyOption (Option):
TYPES = Option.TYPES + ("complex",)
TYPE_CHECKER = copy(Option.TYPE_CHECKER)
TYPE_CHECKER["complex"] = check_complex

(If we didn't make acopy() of Option.TYPE _CHECKERwe would end up modifying th& YPE_CHECKER
attribute ofoptparse ’s Option class. This being Python, nothing stops you from doing that except good manners
and common sense.)

That's it! Now you can write a script that uses the new option type just like any ofitparse -based script, except
you have to instruct your OptionParser to use MyOption instead of Option:

parser = OptionParser(option_class=MyOption)
parser.add_option("-c", type="complex")

Alternately, you can build your own option list and pass it to OptionParser; if you donaddeoption() in the
above way, you don't need to tell OptionParser which option class to use:

option_list = [MyOption("-c", action="store", type="complex", dest="c")]
parser = OptionParser(option_list=option_list)

6.21. optparse — More powerful command line option parser 351

Adding new actions

Adding new actions is a bit trickier, because you have to understandphadarse has a couple of classifications
for actions:

“store” actions actions that result inptparse storing a value to an attribute of the current OptionValues instance;
these options requiredest attribute to be supplied to the Option constructor

“typed” actions actions that take a value from the command line and expect it to be of a certain type; or rather, a
string that can be converted to a certain type. These options redwyipe aattribute to the Option constructor.

These are overlapping sets: some default “store” actionstare , store _const , append, andcount , while

the default “typed” actions argtore , append , andcallback

When you add an action, you need to decide if it's a “store” action, a “typed” action, neither, or both. Three class

attributes of Option (or your Option subclass) control this:

ACTIONS all actions must be listed in ACTIONS

STOREACTIONS “store” actions are additionally listed here

TYPED_ACTIONS “typed” actions are additionally listed here

In order to actually implement your new action, you must override Optitake _action() method and add a

case that recognizes your action.

For example, let's add aextend action. This is similar to the standaegppend action, but instead of taking a
single value from the command-line and appending it to an existinghttnd will take multiple values in a single
comma-delimited string, and extend an existing list with them. That is;riimes” is anextend option of type
string , the command line

--names=foo,bar --names blah --names ding,dong

would result in a list

["fOO", "bal’", "blah", "ding", ndongn]

Again we define a subclass of Option:

class MyOption (Option):

ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
Ivalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(
self, action, dest, opt, value, values, parser)

Features of note:

e extend both expects a value on the command-line and stores that value somewhere, so it goes in both
STOREACTIONSandTYPED ACTIONS

352 Chapter 6. Generic Operating System Services

e MyOption.take _action() implements just this one new action, and passes control back to
Option.take _action() for the standard@ptparse actions

e values is aninstance of the optpargearser.Values class, which provides the very usafisure _value()
method.ensure _value() is essentiallygetattr() with a safety valve; it is called as

values.ensure_value(attr, value)

If the attr attribute ofvalues doesn'’t exist or is None, then ensukalue() first sets it tvalue , and then
returns 'value. This is very handy for actions ligetend , append , andcount , all of which accumulate data

in a variable and expect that variable to be of a certain type (a list for the first two, an integer for the latter). Using
ensure _value() means that scripts using your action don’t have to worry about setting a default value for
the option destinations in question; they can just leave the default as Noremame: _value() will take

care of getting it right when it's needed.

Other reasons to extend optparse

Adding new types and new actions are the big, obvious reasons why you might want toaptigeage . | can think
of at least two other areas to play with.

First, the simple one: OptionParser tries to be helpful by cabiygexit() when appropriate, i.e. when there’s

an error on the command line or when the user requests help. In the former case, the traditional course of letting the
script crash with a traceback is unacceptable; it will make users think there’s a bug in your script when they make a
command-line error. In the latter case, there’s generally not much point in carrying on after printing a help message.

If this behaviour bothers you, it shouldn’t be too hard to “fix” it. You'll have to

1) subclass OptionParser and overréaleor()

2) subclass Option and overritike _action() —you’'ll need to provide your own handling of thelp
action that doesn’t calys.exit()

The second, much more complex, possibility is to override the command-line syntax implemermtegbénse

In this case, you'd leave the whole machinery of option actions and types alone, but rewrite the code that processes
sys.argv You'll need to subclass OptionParser in any case; depending on how radical a rewrite you want, you'll proba-
bly need to override one or all plarse _args() , _process _long _opt() ,and_process _short _opts()

Both of these are left as an exercise for the reader. | have not tried to implement either myself, since I'm quite happy
with optparse s default behaviour (naturally).

Happy hacking, and don't forget: Use the Source, Luke.

6.22 tempfile — Generate temporary files and directories

This module generates temporary files and directories. It works on all supported platforms.

In version 2.3 of Python, this module was overhauled for enhanced security. It now provides three new functions,
NamedTemporaryFile() , mkstemp() , andmkdtemp() , which should eliminate all remaining need to use the
insecuremktemp() function. Temporary file names created by this module no longer contain the process ID; instead
a string of six random characters is used.

Also, all the user-callable functions now take additional arguments which allow direct control over the location and
name of temporary files. It is no longer necessary to use the gtebgldir andtemplatevariables. To maintain
backward compatibility, the argument order is somewhat odd; it is recommended to use keyword arguments for clarity.

The module defines the following user-callable functions:

6.22. tempfile — Generate temporary files and directories 353

TemporaryFile ([mode:‘w+b' [bufsize=1 [suffi>{, prefi>{, dir]]]]])
Return afile (or file-like) object that can be used as a temporary storage area. The file is createdksignmgp .
It will be destroyed as soon as it is closed (including an implicit close when the object is garbage collected).
Under WNIX, the directory entry for the file is removed immediately after the file is created. Other platforms do
not support this; your code should not rely on a temporary file created using this function having or not having
a visible name in the file system.

The modeparameter defaults tav+b’ so that the file created can be read and written without being closed.

Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
bufsizedefaults to-1 , meaning that the operating system default is used.

Thedir, prefixandsuffixparameters are passedéistemp() .

NamedTemporaryFile ([mode:‘W+b’ [bufsize=1 [suffi>{, prefi>{, dir]]]]])
This function operates exactly asmporaryFile() does, except that the file is guaranteed to have a visible
name in the file system (onNJXx, the directory entry is not unlinked). That name can be retrieved from the
name member of the file object. Whether the name can be used to open the file a second time, while the named
temporary file is still open, varies across platforms (it can be so usednox;lit cannot on Windows NT or
later). New in version 2.3.

mkstemp ([suffi>{, prefi>{, dir[, text]]]])
Creates a temporary file in the most secure manner possible. There are no race conditions in the file’s creation,

assuming that the platform properly implements @eéEXCL flag for os.open() . The file is readable and
writable only by the creating user ID. If the platform uses permission bits to indicate whether a file is executable,
the file is executable by no one. The file descriptor is not inherited by child processes.

Unlike TemporaryFile() , the user ofnkstemp() is responsible for deleting the temporary file when done
with it.

If suffixis specified, the file name will end with that suffix, otherwise there will be no suffkstemp() does
not put a dot between the file name and the suffix; if you need one, put it at the beginsimigjof

If prefixis specified, the file name will begin with that prefix; otherwise, a default prefix is used.

If dir is specified, the file will be created in that directory; otherwise, a default directory is used.

If textis specified, it indicates whether to open the file in binary mode (the default) or text mode. On some
platforms, this makes no difference.

mkstemp() returns a tuple containing an OS-level handle to an open file (as would be returned by
os.open()) and the absolute pathname of that file, in that order. New in version 2.3.

mkdtemp ([suffi>{, prefi>{, dir]]])
Creates a temporary directory in the most secure manner possible. There are no race conditions in the directory’s

creation. The directory is readable, writable, and searchable only by the creating user ID.
The user omkdtemp() is responsible for deleting the temporary directory and its contents when done with it.
The prefix suffix anddir arguments are the same asfigkstemp() .
mkdtemp() returns the absolute pathname of the new directory. New in version 2.3.
mktemp([suffb{, prefi>{, dir]]])
Deprecated since release 2.8Isemkstemp() instead.

Return an absolute pathname of a file that did not exist at the time the call is madprefikesuffix anddir
arguments are the same as fickstemp() .

Warning: Use of this function may introduce a security hole in your program. By the time you get around to
doing anything with the file name it returns, someone else may have beaten you to the punch.

The module uses two global variables that tell it how to construct a temporary name. They are initialized at the first
call to any of the functions above. The caller may change them, but this is discouraged; use the appropriate function
arguments, instead.

354 Chapter 6. Generic Operating System Services

tempdir
When set to a value other tha&one, this variable defines the default value for tiie argument to all the
functions defined in this module.

If tempdir is unset orNone at any call to any of the above functions, Python searches a standard list of
directories and setempdirto the first one which the calling user can create files in. The list is:

1.The directory named by the TMPDIR environment variable.
2.The directory named by the TEMP environment variable.
3.The directory named by the TMP environment variable.

4 A platform-specific location:

¢On RiscOS, the directory named by the Wimp$ScrapDir environment variable.
¢On Windows, the directorie€!\TEMP’, C:\TMP’, ‘\TEMP’, and \TMP’, in that order.
oOn all other platforms, the directoriemp’, ‘ ivar/tmp’, and ‘/usr/tmp’, in that order.

5.As a last resort, the current working directory.

gettempdir ()
Return the directory currently selected to create temporary filestemipdir is notNone, this simply returns
its contents; otherwise, the search described above is performed, and the result returned.

template
Deprecated since release 2.Qsegettempprefix() instead.

When set to a value other th&fone, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of six random letters and digits is appended to the prefix to make the filename
unigue. On Windows, the default prefix 1§, on all other systems it istinp’.

Older versions of this module used to require tieamplate be set taNone after a call toos.fork() ; this
has not been necessary since version 1.5.2.

gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory component. Using
this function is preferred over reading ttemplatevariable directly. New in version 1.5.2.

6.23 errno — Standard errno system symbols

This module makes available standardho system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed flibx/include/errno.h’, which should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcodeferrno.EPERM] maps toEPERM’.

To translate a numeric error code to an error messageauseerror()

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific list
of defined symbols is available agno.errorcode.keys() . Symbols available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

6.23. errno — Standard errno system symbols 355

EINTR
Interrupted system call

EIO
I/O error

ENXIO

No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN

Try again
ENOMEM

Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

356

Chapter 6. Generic Operating System Services

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
lllegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

6.23. errno — Standard errno system symbols

357

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

358

Chapter 6. Generic Operating System Services

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
Jib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
lllegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

6.23. errno — Standard errno system symbols

359

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

360

Chapter 6. Generic Operating System Services

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.24 glob — UNIx style pathname pattern expansion

Theglob module finds all the pathnames matching a specified pattern according to the rules used foytisbell.

No tilde expansion is done, btif ?, and character ranges expressed {ittwill be correctly matched. This is done by
using theos.listdir() andfnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, wsepath.expanduser() andos.path.expandvars() J)

glob (pathnamég
Returns a possibly-empty list of path names that mpsthnamewhich must be a string containing a path spec-
ification. pathnamean be either absolute (lik&isr/src/Python-1.5/Makefile’) or relative (like “../../Tools/*/*.gif’),
and can contain shell-style wildcards. Broken symlinks are included in the results (as in the shell).

For example, consider a directory containing only the following fildsgif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

>>> import glob

>>> glob.glob(’./[0-9].*")
[./1.gif, "/2.txt]

>>> glob.glob(’*.gif")

[1.gif", ’card.gif’]
>>> glob.glob(’?.gif’)
[1.gif]

See Also:

Modulefnmatch (section 6.25):
Shell-style filename (not path) expansion

6.24. glob — UNIX style pathname pattern expansion 361

6.25 fnmatch — UNIxX filename pattern matching

This module provides support forNux shell-style wildcards, which aneotthe same as regular expressions (which
are documented in the module). The special characters used in shell-style wildcards are:

Pattern | Meaning

* matches everything

? matches any single character
[seq matches any character seq
[' sed | matches any character notseq

Note that the filename separatdf (on UNIX) is not special to this module. See modub for pathname
expansiondlob usesnmatch() to match pathname segments). Similarly, filenames starting with a period are not
special for this module, and are matched by*thend? patterns.

fnmatch (filename, pattern
Test whether thélenamestring matches thpatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison is
performed. If you require a case-sensitive comparison regardless of whether that's standard for your operating
system, usénmatchcase() instead.

fnmatchcase (filename, pattern
Test whethefilenamematchegattern returning true or false; the comparison is case-sensitive.

filter (names, pattemn
Return the subset of the list efamesthat matchpattern It is the same agn for n in names if
fnmatch(n, pattern)] , but implemented more efficiently. New in version 2.2.

See Also:

Moduleglob (section 6.24):
UNIX shell-style path expansion.

6.26 shutil — High-level file operations

Theshutil module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that resources will
be lost and file type and creator codes will not be correct.

copyfile ('src, ds)
Copy the contents of the file namsrtto a file namedist The destination location must be writable; otherwise,
anlOError exception will be raised. Ifistalready exists, it will be replaced. Special files such as character
or block devices and pipes cannot be copied with this funcBaranddstare path names given as strings.

copyfileobj (fsrc, fds[, Iength])
Copy the contents of the file-like objefstc to the file-like objecfdst The integetength if given, is the buffer
size. In particular, a negativengthvalue means to copy the data without looping over the source data in chunks;
by default the data is read in chunks to avoid uncontrolled memory consumption.

copymode (src, ds)
Copy the permission bits frorsrc to dst The file contents, owner, and group are unaffectd.anddst are
path names given as strings.

copystat (src, ds)
Copy the permission bits, last access time, and last modification timesioto dst The file contents, owner,

362 Chapter 6. Generic Operating System Services

and group are unaffectedtc anddstare path names given as strings.

copy (src, ds}
Copy the filesrcto the file or directorylst If dstis a directory, a file with the same basenamsrass created (or
overwritten) in the directory specified. Permission bits are cogsrhnddstare path names given as strings.

copy?2 (src, ds)
Similar to copy() , but last access time and last modification time are copied as well. This is similar to the
UNIX commanctp -p.

copytree (src, ds[, symlinks])
Recursively copy an entire directory tree rootedrat The destination directory, named 8gt, must not already
exist; it will be created. Individual files are copied usicgpy2() . If symlinksis true, symbolic links in the
source tree are represented as symbolic links in the new tree; if false or omitted, the contents of the linked files
are copied to the new tree. If exception(s) occur, an Error is raised with a list of reasons.

The source code for this should be considered an example rather than a tool. Changed in version 2.3: Error is
raised if any exceptions occur during copying, rather than printing a message.

rmtree (patt{, ignor&errors[, onerror]])
Delete an entire directory tree. iinore_errors is true, errors resulting from failed removals will be ignored;
if false or omitted, such errors are handled by calling a handler specifieddayor or, if that is omitted, they
raise an exception.

If onerroris provided, it must be a callable that accepts three paramétextion path, andexcinfa The first
parameterfunction is the function which raised the exception; it will be.listdir() , 0s.remove()
oros.rmdir() . The second parametgrath will be the path name passedftmction The third parameter,
excinfq will be the exception information return lsys.exc _info() . Exceptions raised bgnerror will not
be caught.

move(src, ds)
Recursively move a file or directory to another location.

If the destination is on our current filesystem, then simply use rename. Otherwise, copy src to the dst and then
remove Src.

New in version 2.3.

exceptionError
This exception collects exceptions that raised during a mult-file operation.cdfytree , the exception
argument is a list of 3-tuplesicnamedstnameexceptioi.

New in version 2.3.
6.26.1 Example

This example is the implementation of tbepytree() function, described above, with the docstring omitted. It
demonstrates many of the other functions provided by this module.

6.26. shutil — High-level file operations 363

def copytree(src, dst, symlinks=0):
names = os.listdir(src)
0s.mkdir(dst)
for name in names:
srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:
if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)
elif os.path.isdir(srcname):
copytree(srcname, dstname, symlinks)
else:
copy2(srcname, dstname)
except (IOError, os.error), why:
print "Can’'t copy %s to %s: %s" % (‘srcname’, ‘dsthame’, str(why))

6.27 locale — Internationalization services

Thelocale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to know
all the specifics of each country where the software is executed.

Thelocale module is implemented on top of théocale module, which in turn uses an ANSI C locale imple-
mentation if available.

Thelocale module defines the following exception and functions:

exceptionError
Exception raised whesetlocale() fails.

setlocale (categor)[, Iocale])
If localeis specified, it may be a string, a tuple of the fofitanguage code encoding, or None. Ifitis a
tuple, itis converted to a string using the locale aliasing engirlec#fleis given and noNone, setlocale()
modifies the locale setting for treategory The available categories are listed in the data description below.
The value is the name of a locale. An empty string specifies the user’s default settings. If the modification of
the locale fails, the exceptidarror s raised. If successful, the new locale setting is returned.

If localeis omitted orNone, the current setting fozategoryis returned.
setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL, ")

This sets the locale for all categories to the user’s default setting (typically specified in the LANG environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.
Changed in version 2.0: Added support for tuple values ofdbale parameter.

localeconv ()
Returns the database of the local conventions as a dictionary. This dictionary has the following strings as keys:

364 Chapter 6. Generic Operating System Services

Key Category Meaning
LC_NUMERIC | 'decimal _point’ Decimal point character.
'grouping’ Sequence of numbers specifying which relative posi-

‘thousands _sep’

tions the’'thousands _sep’ is expected. If the
sequence is terminated WithtHARMAX no further
grouping is performed. If the sequence terminates with
a0, the last group size is repeatedly used.

Character used between groups.

LC_MONETARY

‘int _curr _symbol’
‘currency _symbol’
'mon _decimal _point’
'mon _thousands _sep’

International currency symbol.

Local currency symbol.

Decimal point used for monetary values.
Group separator used for monetary values.

'mon _grouping’ Equivalent to'grouping’ , used for monetary val-

ues.

‘positive _sign’ Symbol used to annotate a positive monetary value.
'negative _sign’ Symbol used to annotate a negative monetary value.
frac _digits’ Number of fractional digits used in local formatting of

monetary values.
Number of fractional digits used in international for-
matting of monetary values.

The possible values fép _sign _posn’ and’n _sign _posn’ are given below.

'int _frac _digits’

Value | Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.
LC_MAX]| Nothing is specified in this locale.

nl _langinfo (option)
Return some locale-specific information as a string. This function is not available on all systems, and the set
of possible options might also vary across platforms. The possible argument values are numbers, for which
symbolic constants are available in the locale module.

getdefaultlocale ([envvars])
Tries to determine the default locale settings and returns them as a tuple of thelémmgouage code encod-
ing) .
According to POSIX, a program which has not calkatlocale(LC _ALL, ") runs using the portable
'C’ locale. Callingsetlocale(LC _ALL, ") lets it use the default locale as defined by the LANG vari-
able. Since we do not want to interfere with the current locale setting we thus emulate the behavior in the way
described above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables
given as envvars parameter. The first found to be defined will be usedvarsdefaults to the search path
used in GNU gettext; it must always contain the variable ndtANG. The GNU gettext search path contains
'LANGUAGE’, 'LC _ALL’ ,'LC _CTYPFE’, and’LANG’ , in that order.

Except for the codéC’ , the language code corresponds to RFC 1766guage codendencodingmay be
None if their values cannot be determined. New in version 2.0.

getlocale ([categor)fl)
Returns the current setting for the given locale category as sequence conl@ngngge codeencoding cate-
gory may be one of theC_* values exceptC_ALL. It defaults toLC_CTYPE

Except for the codeC’ , the language code corresponds to RFC 1786guage codandencodingmay be
None if their values cannot be determined. New in version 2.0.

6.27. locale — Internationalization services 365

getpreferredencoding ([dofsetlocale])
Return the encoding used for text data, according to user preferences. User preferences are expressed differently
on different systems, and might not be available programmatically on some systems, so this function only returns
a guess.

On some systems, it is necessary to invekdocale to obtain the user preferences, so this function is not
thread-safe. If invoking setlocale is not necessary or degii@dsetlocaleshould be set téalse .

New in version 2.3.

normalize (localenamég
Returns a normalized locale code for the given locale name. The returned locale code is formatted for use with

setlocale() . If normalization fails, the original name is returned unchanged.
If the given encoding is not known, the function defaults to the default encoding for the locale code just like
setlocale() . New in version 2.0.

resetlocale ([category])
Sets the locale forategoryto the default setting.

The default setting is determined by calliggtdefaultlocale() . categorydefaults toLC_ALL. New in
version 2.0.

strcoll ('stringl, string2
Compares two strings according to the curie@t COLLATESetting. As any other compare function, returns a
negative, or a positive value, 6r depending on whethstringl collates before or aftestring2or is equal to it.

strxfrm (' string)
Transforms a string to one that can be used for the built-in funatiop() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format (format, va[, grouping])
Formats a numberal according to the curreritC_NUMERIGCsetting. The format follows the conventions of
the %operator. For floating point values, the decimal point is modified if appropriatgolipingis true, also
takes the grouping into account.

str (floaf)
Formats a floating point number using the same format as the built-in fursttionfloaf) , but takes the decimal
point into account.

atof (string)
Converts a string to a floating point number, following th& NUMERIGsettings.

atoi (string)
Converts a string to an integer, following th€_NUMERICconventions.

LC_CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
modulestring dealing with case change their behaviour.

LC_COLLATE
Locale category for sorting strings. The functiatecoll() andstrxfrm() of thelocale module are
affected.

LC_TIME
Locale category for the formatting of time. The functiime.strftime() follows these conventions.

LC_MONETARY
Locale category for formatting of monetary values. The available options are available from the
localeconv() function.

LC_MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-

366 Chapter 6. Generic Operating System Services

sages. Messages displayed by the operating system, like those retuosestisrror() might be affected
by this category.

LC_NUMERIC
Locale category for formatting numbers. The functidosnat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC_ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHARMAX
This is a symbolic constant used for different values returnelddsleconv()

Thenl _langinfo function accepts one of the following keys. Most descriptions are taken from the corresponding
description in the GNU C library.

CODESET
Return a string with the name of the character encoding used in the selected locale.

D_T_FMT
Return a string that can be used as a format string for strftime(3) to represent time and date in a locale-specific
way.

D_FMT
Return a string that can be used as a format string for strftime(3) to represent a date in a locale-specific way.

T_FMT
Return a string that can be used as a format string for strftime(3) to represent a time in a locale-specific way.

T_FMT_AMPM
The return value can be used as a format string for ‘strftime’ to represent time in the am/pm format.

DAY_1 ... DAY _7
Return name of the n-th day of the weékarning: This follows the US convention d)AY_1 being Sunday,
not the international convention (ISO 8601) that Monday is the first day of the week.

ABDAY1 .. ABDAY _7
Return abbreviated name of the n-th day of the week.

MON1 ... MON _12
Return name of the n-th month.

ABMON1 ... ABMON _12
Return abbreviated name of the n-th month.

RADIXCHAR
Return radix character (decimal dot, decimal comma, etc.)

THOUSEP
Return separator character for thousands (groups of three digits).

YESEXPR
Return a regular expression that can be used with the regex function to recognize a positive response to a yes/no
question. Warning: The expression is in the syntax suitable for thgex() function from the C library,
which might differ from the syntax used i .

NOEXPR
Return a regular expression that can be used with the regex(3) function to recognize a negative response to a
yes/no question.

6.27. locale — Internationalization services 367

CRNCYSTR
Return the currency symbol, preceded by "-" if the symbol should appear before the value, "+" if the symbol

should appear after the value, or "." if the symbol should replace the radix character.

ERA
The return value represents the era used in the current locale.

Most locales do not define this value. An example of a locale which does define this value is the Japanese one.
In Japan, the traditional representation of dates includes the name of the era corresponding to the then-emperor’s
reign.

Normally it should not be necessary to use this value directly. Specifying thedifier in their format strings
causes thetrftime function to use this information. The format of the returned string is not specified, and
therefore you should not assume knowledge of it on different systems.

ERA_YEAR
The return value gives the year in the relevant era of the locale.

ERAD_T_FMT
This return value can be used as a format stringfdtime to represent dates and times in a locale-specific
era-based way.

ERA D_FMT
This return value can be used as a format stringsfdtime to represent time in a locale-specific era-based
way.

ALT_DIGITS
The return value is a representation of up to 100 values used to represent the values 0 to 99.

Example:

>>> jmport locale

>>> |oc = locale.getlocale(locale.LC_ALL) # get current locale

>>> |ocale.setlocale(locale.LC_ALL, 'de_DE’) # use German locale; name might vary with platform
>>> |ocale.strcoll('f\xe4n’, 'foo’) # compare a string containing an umlaut

>>> |ocale.setlocale(locale.LC_ALL, ") # use user's preferred locale

>>> |ocale.setlocale(locale.LC_ALL, 'C’) # use default (C) locale

>>> |ocale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.27.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is ti& locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by cadittagale(LC _ALL,

H)
It is generally a bad idea to cadktlocale() in some library routine, since as a side effect it affects the entire

program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by
the locale (such astring.lower() , or certain formats used witiime.strftime()), you will have to find a

way to do it without using the standard library routine. Even better is convincing yourself that using locale settings is
okay. Only as a last resort should you document that your module is not compatible witl nocale settings.

The case conversion functions in th&ring module are affected by the locale settings. When a

368 Chapter 6. Generic Operating System Services

call to the setlocale() function changes the.C_CTYPE settings, the variablestring.lowercase ,

string.uppercase andstring.letters are recalculated. Note that this code that uses these variable through
‘from ... import .., e.g.from string import letters , iIs not affected by subsequesetiocale()
calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() ,atoi() ,format() ,str()

6.27.2 For extension writers and programs that embed Python

Extension modules should never caditlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale isC).

When Python code uses tlezale module to change the locale, this also affects the embedding application. If the
embedding application doesn’t want this to happen, it should removeltitale extension module (which does

all the work) from the table of built-in modules in theohfig.c’ file, and make sure that thelocale module is not
accessible as a shared library.

6.27.3 Access to message catalogs

The locale module exposes the C library’s gettext interface on systems that provide this interface. It consists
of the functionsgettext() , dgettext() , dcgettext() , textdomain() , bindtextdomain() , and

bind _textdomain _codeset() . These are similar to the same functions ingeé€ext module, but use the C
library’s binary format for message catalogs, and the C library’s search algorithms for locating message catalogs.

Python applications should normally find no need to invoke these functions, and shoudtiese instead. A

known exception to this rule are applications that link use additional C libraries which internally igetilest()

or dcgettext() . For these applications, it may be necessary to bind the text domain, so that the libraries can
properly locate their message catalogs.

6.28 gettext — Multilingual internationalization services

Thegettext module provides internationalization (118N) and localization (L10N) services for your Python modules

and applications. It supports both the GNjdttext = message catalog APl and a higher level, class-based API

that may be more appropriate for Python files. The interface described below allows you to write your module and
application messages in one natural language, and provide a catalog of translated messages for running under different
natural languages.

Some hints on localizing your Python modules and applications are also given.

6.28.1 GNU gettext API

Thegettext module defines the following API, which is very similar to the Gigektext API. If you use this API

you will affect the translation of your entire application globally. Often this is what you want if your application is
monolingual, with the choice of language dependent on the locale of your user. If you are localizing a Python module,
or if your application needs to switch languages on the fly, you probably want to use the class-based API instead.

bindtextdomain (domair{, Iocaledir])
Bind thedomainto the locale directoryocaledir. More concretelygettext — will look for binary “.mo’ files
for the given domain using the path (omix): ‘localedirlanguagé.C_MESSAGES/domainmo’, where

6.28. gettext — Multilingual internationalization services 369

languagess searched for in the environment variables LANGUAGE, IACL, LC _MESSAGES, and LANG
respectively.

If localediris omitted orNone, then the current binding fatomainis returnec?

bind _textdomain _codeset (domair{, codese})
Bind thedomainto codesetchanging the encoding of strings returned bydl#ext() family of functions.
If codesets omitted, then the current binding is returned.

New in version 2.4.

textdomain ([domain])
Change or query the current global domain.défmainis None, then the current global domain is returned,
otherwise the global domain is setdomain which is returned.

gettext (messagge
Return the localized translation nfessagebased on the current global domain, language, and locale directory.
This function is usually aliased asin the local namespace (see examples below).

Igettext (message
Equivalent tagettext() , butthe translation is returned in the preferred system encoding, if no other encoding
was explicitly set wittbind _textdomain _codeset()

New in version 2.4.

dgettext (domain, message
Like gettext() , but look the message up in the specifikanain

Idgettext (domain, message
Equivalent tadgettext() , but the translation is returned in the preferred system encoding, if no other encod-
ing was explicitly set withhind _textdomain _codeset()

New in version 2.4.

ngettext (singular, plural, r
Like gettext() , but consider plural forms. If a translation is found, apply the plural formufa smd return
the resulting message (some languages have more than two plural forms). If no translation is found, return
singularif nis 1; returnplural otherwise.

The Plural formula is taken from the catalog header. Itis a C or Python expression that has a free variable n; the
expression evaluates to the index of the plural in the catalog. See the GNU gettext documentation for the precise
syntax to be used in .po files, and the formulas for a variety of languages.

New in version 2.3.

Ingettext ('singular, plural, n
Equivalent tongettext() , but the translation is returned in the preferred system encoding, if no other encod-
ing was explicitly set wittbind _textdomain _codeset()

New in version 2.4.

dngettext (domain, singular, plural, j
Like ngettext() , but look the message up in the specifikain

New in version 2.3.

ldngettext (domain, singular, plural, h
Equivalent todngettext() , but the translation is returned in the preferred system encoding, if no other
encoding was explicitly set withind _textdomain _codeset()

New in version 2.4.

2The default locale directory is system dependent; for example, on RedHat Linusuifristare/locale’, but on Solaris it is /ust/lib/locale’. The
gettext module does not try to support these system dependent defaults; instead its defgsifprisiik /share/locale’. For this reason, it is
always best to cabindtextdomain() with an explicit absolute path at the start of your application.

370 Chapter 6. Generic Operating System Services

Note that GNUgettext also defines acgettext() method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext

gettext.bindtextdomain(’'myapplication’, '/path/to/my/language/directory’)
ge