Python/C API Reference Manual
Release 2.3.5

Guido van Rossum
Fred L. Drake, Jr., editor

February 8, 2005

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C anid-@rogrammers who want to write extension modules or embed
Python. Itis a companion téxtending and Embedding the Python Interprewehnich describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

Introduction 1
1.1 Include Files. o e 1
1.2 Objects, Typesand Reference Counts o i i i i i it e e e 2
1.3 EXCEPLIONS. o e e e e e 5
1.4 Embedding Python e 7
The Very High Level Layer 9
Reference Counting 11
Exception Handling 13
4.1 Standard EXCeptions L 16
4.2 Deprecation of String EXCeptionso e e 17
Utilities 19
5.1 Operating System Utilities 19
5.2 ProcessControl. e 20
5.3 Importing Modules e e e e 20
5.4 Datamarshalling support. e e 22
5.5 Parsing arguments and buildingvalues. o 23
Abstract Objects Layer 29
6.1 ObjectProtocol 29
6.2 Number Protocol e e e e e 32
6.3 Sequence Protocal e e 36
6.4 Mapping Protocol e e 37
6.5 Iterator Protocol. 38
6.6 Buffer Protocol 39
Concrete Objects Layer 41
7.1 Fundamental Objects. e 41
7.2 Numeric ObJECES. e e e e e 42
7.3 Sequence Objects. e e 47
7.4 Mapping Objects e 60
7.5 OtherObjJects e e e 62
Initialization, Finalization, and Threads 71
8.1 Thread State and the Global InterpreterLack Lo 74
8.2 Profilingand Tracing e e e e 78
8.3 Advanced Debugger Support e e 79

9 Memory Management 81

9.1 OVEIVIEW . . o o o e 81
9.2 Memorylnterface 82
9.3 Examples e 82
10 Object Implementation Support 85
10.1 Allocating Objectsonthe Heap o i 85
10.2 Common Object StrUCtUresS o o e e 86
10.3 Type Objects. e e e 88
10.4 Mapping Object StruCtures. e e e e e e e e e e 101
10.5 Number Object Structures 0 e e e e 101
10.6 Sequence Object Structures. e 101
10.7 Buffer Object Structures e e 101
10.8 Supporting the Iterator Protocol. e 102
10.9 Supporting Cyclic Garbage Collection e 102
A Reporting Bugs 105
B History and License 107
B.1 History ofthe software 107
B.2 Terms and conditions for accessing or otherwise using Python 108
Index 111

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahd frogrammers access to the Python interpreter at

a variety of levels. The API is equally usable fromt-€ but for brevity it is generally referred to as the Python/C

API. There are two fundamentally different reasons for using the Python/C API. The first reason is &Extetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to a@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headerss<stdio.h> |, <string.h> , <errno.h> |,
<limits.h> , and<stdlib.h> (if available).

Warning: Since Python may define some pre-processor definitions which affect the standard headers gn some
systems, younustinclude Python.h’ before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py’ or ' _Py’. Names beginning with_‘Py’ are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin vidth or ‘ _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

The header files are typically installed with Python. Omnik, these are located in the directories
‘prefix/include/pythonversion’ and ‘exec_prefix/include/pythonversior’, where prefix and exeqrefix are defined by
the corresponding parameters to Pythardsfigure script andversionis sys.version][:3] . On Windows, the

headers are installed iprefix/include’, where prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includest.plxce

the parent directories on the search path and ther#iselude <python2.3/Python.h> " this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to beextern "C" , so there is no need to do anything special to use the API frémn C

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Bit9pgect* . This typeis

a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of typyObject , only pointer variables of typByObject* can be declared. The

sole exception are the type objects; since these must never be deallocated, they are typicdfyTstpe©bject

objects.

All Python objects (even Python integers) havg@eand areference countAn object’s type determines what kind of
objectitis (e.g., an integer, a list, or a user-defined function; there are many more as explainét/thdiheReference
Manual). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList _Check(a) 'is true if (and only if) the object pointed to kyis a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use thePyadhNCREF() to increment

an object’s reference count by one, aRy_DECREF() to decrement it by one. They_DECREF() macro is
considerably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that's needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assunsiggof(long) >= sizeof(char*)). Thus, the

reference count increment is a simple operation.

Itis not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference

2 Chapter 1. Introduction

count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user RgnDECREF(),
so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name beginBy@itjett _’,
‘PyNumber_’, ‘ PySequence _' or ‘PyMapping _’). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility tdPyalDECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C APl is best explained in teowsefship of references
Ownership pertains to references, never to objects (objects are not owned: they are always shared). "Owning a
reference” means being responsible for calling BECREF on it when the reference is no longer needed. Ownership

can also be transferred, meaning that the code that receives ownership of the reference then becomes responsible for
eventually decref’ing it by callindP’y_DECREF() or Py _XDECREF() when it's no longer needed —or passing on

this responsibility (usually to its caller). When a function passes ownership of a reference on to its caller, the caller is
said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing

needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the tuple or

list into which the item is put!). These functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to create th€liu@e "three")

could look like this (forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setitem(t, 0, PyInt_FromLong(1L));
PyTuple_Setitem(t, 1, PyInt_FromLong(2L));
PyTuple_Setltem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple _Setltem() is the only way to set tuple items;PySequence _Setltem() and
PyObject _Setltem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiydist _New() andPyList _Setltem() . Such code
can also us®ySequence _Setltem() ; this illustrates the difference between the two (the eRyaDECREF()
calls):

PyObject *I, *x;

| = PyList_New(3);

X = PyInt_FromLong(1L);
PySequence_Setltem(l, 0, x); Py_DECREF(x);
X = Pylnt_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(x);
X = PyString_FromString("three");
PySequence_Setltem(l, 2, x); Py_DECREF(X);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely

1.2. Objects, Types and Reference Counts 3

use these ways of creating and populating a tuple or list. There’s a generic fuigtioBuildValue() , that can
create most common objects from C values, directed foyraat string For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

PyObject *t, *I;

t
I

Py_BuildValue("(iis)", 1, 2, "three");
Py_BuildValue("fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{ . .
int 1, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject _Getltem() andPySequence _Getltem() , always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you call
only — the plumagdthe type of the object passed as an argument to the functaegn’t enter into it'Thus, if you

extract an item from a list usingyList _Getltem() , you don’t own the reference — but if you obtain the same
item from the same list usingySequence _Getltem() (which happens to take exactly the same arguments), you
do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , and once usin@ySequence _Getltem()

4 Chapter 1. Introduction

long
sum_list(PyObject *list)
{ . .

int i, n;

long total = O;

PyObject *item;

n = PyList_Size(list);
if (n <0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can't fail */
if (IPyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}

return total;

long
sum_sequence(PyObject *sequence)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C typesrsuch as

long , double andchar* . A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,

1.3. Exceptions 5

where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULLor -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The fiy&ron_Occurred()

can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception Byder _SetString()

is the most common (though not the most general) function to set the exception sta®yFand Clear() clears

the exception state.

The full exception state consists of three objects (all of which cahNbkL): the exception type, the correspond-

ing exception value, and the traceback. These have the same meanings as the Python sysbgacts _type

sys.exc _value , andsys.exc _traceback ; however, they are not the same: the Python objects represent the
last exception being handled by a Pythton ... except statement, while the C level exception state only exists
while an exception is being passed on between C functions until it reaches the Python bytecode interpreter's main
loop, which takes care of transferring itdgs.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it shaubdiset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shownsorthesequence() example above.

It so happens that that example doesn’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
dictlkey] = item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py _XDECREF */
PyObject *item = NULL, *const one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (tem == NULL) {
[* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = Pylint_FromLong(OL);
if (item == NULL)
goto error;
}
const_one = Pyint_FromLong(1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py _XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

This example represents an endorsed use of gmo statement in C! It illustrates the use of
PyErr _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that mayNigLL (note the X' in the name;Py_DECREF()
would crash when confronted withNlLL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedto(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter

1.4. Embedding Python 7

can only be used after the interpreter has been initialized.

The basic initialization function iBy _Initialize() . This initializes the table of loaded modules, and creates the
fundamental modules_builtin ~ __, __main __, sys, andexceptions . It also initializes the module search
path 6ys.path).

Py _Initialize() does not set the “script argument lissy6.argv). If this variable is needed by Python code
that will be executed later, it must be set explicitly with a calPgSys _SetArgv(argc, argv) subsequent to the
call to Py_lInitialize()

On most systems (in particular, on Nk and Windows, although the details are slightly different),

Py _lInitialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory nantieghython2.3’ relative to the parent directory where

the executable namegython’ is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found Mmsr/local/bin/python’, it will assume that the libraries are in
‘lusrflocal/lib/python2.3’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by callygSetProgramName(file) before calling

Py _Initialize() . Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , andPy_GetProgramFullPath() (all de-

fined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call toPy _lInitialize()) or the application is simply done with its use of Python and wants to free all memory al-
located by Python. This can be accomplished by caltggFinalize() . The functionPy _lIsInitialized()

returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval _input , Py_file _input , andPy_single _input . These are described following the functions
which accept them as parameters.

Note also that several of these functions teffEE* parameters. On particular issue which needs to be handled
carefully is that theFILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C prowant)’'s
function. It is important to note that the argument list may be modified (but the contents of the strings pointed to
by the argument list are not). The return value will be the integer passed $gdhexit() function,1 if the
interpreter exits due to an exception,if the parameter list does not represent a valid Python command line.

int PyRun_AnyFile (FILE *fp, char *filenam¢
If fp refers to a file associated with an interactive device (console or terminal inputior pseudo-terminal),
return the value odPyRun_InteractiveLoop() , otherwise return the result 8fyRun_SimpleFile()
If filenameis NULL, this function use&???" as the filename.

int PyRun_SimpleString (char *commangl
Executes the Python source code froommandn the __main __ module. If __main __ does not already
exist, it is created. Returrson success ofl if an exception was raised. If there was an error, there is no way
to get the exception information.

int PyRun_SimpleFile (FILE *fp, char *filenamé
Similar to PyRun_SimpleString() , but the Python source code is read fréginstead of an in-memory
string. filenameshould be the name of the file.

int PyRun_lInteractiveOne (FILE *fp, char *filenamé
Read and execute a single statement from a file associated with an interactive deYilesmarfieis NULL,
"???" is used instead. The user will be prompted usigg.psl andsys.ps2 . ReturnsO) when the input
was executed successfully, if there was an exception, or an error code from taecode.h’ include file
distributed as part of Python if there was a parse error. (Note ¢habtle.h’ is not included by Python.h’, so
must be included specifically if needed.)

int PyRun_lInteractiveLoop (FILE *fp, char *filenamé
Read and execute statements from a file associated with an interactive deviegoaisilreached. Ifilename
is NULL, "???" is used instead. The user will be prompted usipg.psl andsys.ps2 . Return) ateoOF.

struct _node* PyParser _SimpleParseString (char *str, int starf
Parse Python source code fraim using the start tokestart. The result can be used to create a code object
which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int stait
Similar toPyParser _SimpleParseString() , but the Python source code is read fréprnstead of an
in-memory stringfilenameshould be the name of the file.

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals
Return valueNew reference
Execute Python source code fraatn in the context specified by the dictionarigiebalsandlocals The param-
eterstart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python objeisitJbt if an exception was raised.

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals
Return valueNNew reference
Similar to PyRun_String() , but the Python source code is read fréprinstead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py_CompileString (char *str, char *filename, int stajt
Return valueNew reference
Parse and compile the Python source codstinreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shottg lesal _input ,
Py_file _input , orPy_single _input . The filename specified dilenameis used to construct the code
object and may appear in tracebacksSyntaxError exception messages. This retuMBLL if the code
cannot be parsed or compiled.

int Py_eval _input
The start symbol from the Python grammar for isolated expressions; for us@wiompileString()

int Py_file _input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use withPy_CompileString() . This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single _input

The start symbol from the Python grammar for a single statement; for us@witGompileString() . This
is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

The

Py|

Py_INCREH PyObject *g
Increment the reference count for objectThe object must not bHULL; if you aren’t sure that it isn'NULL,
usePy_XINCREF() .

Py_XINCREKR PyObject *9
Increment the reference count for objecfThe object may b&lULL, in which case the macro has no effect.

Py_DECREF PyObject *9
Decrement the reference count for objecThe object must not bRULL; if you aren’t sure that it isn'NULL,
usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a __del __() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state beRye DECREF() is invoked. For example, code to delete an object

from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then calPy_DECREF() for the temporary variable.

Py_XDECREFEPyObject *g
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asRyr_DECREF(), and the same warning applies.

following functions or macros are only for use within the interpreter corePy_Dealloc()
ForgetReference() , _Py_NewReference() , as well as the global variable®?y_RefTotal

11

12

CHAPTER
FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat likentive &frno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, ublidlly if they are supposed to

return a pointer, ofl if they return an integer (exception: tlyArg _*() functions returrl for success an@ for

failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); inshoafdinue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the Python vasghlesc _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PyErr _Print ()
Print a standard tracebackdygs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Return value Borrowed reference
Test whether the error indicator is set. If set, return the excepyipa(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returrNULL You do not own a
reference to the return value, so you do not neeeiytoDECREF() it. Note: Do not compare the return value
to a specific exception; useyErr _ExceptionMatches() instead, shown below. (The comparison could
easily fail since the exception may be an instance instead of a class, in the case of a class exception, or it may
the a subclass of the expected exception.)

int PyErr _ExceptionMatches (PyObject *exg
Equivalent to PyErr _GivenExceptionMatches(PyErr _Occurred(), exq . This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr _GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiondrc If excis a class object, this also returns true
whengivenis an instance of a subclassekcis a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.divenis NULL, a memory access violation will occur.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returndeyirr _Fetch() below can be “unnormalized”, meaning
that* excis a class object butval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is

13

implemented to improve performance.

void PyErr _Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErmr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables tblULL If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may B&LL even when the type object is ndiote: This function is normally
only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator
temporarily.

void PyErr _Restore (PyObject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pasdldLL type and norNULL value or traceback. The
exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don'’t
use this function. | warned youMNote: This function is normally only used by code that needs to save and
restore the error indicator temporarily; UBgErr _Fetch() to save the current exception state.

void PyErmr _SetString (PyObject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc _RuntimeError . You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr _SetObject (PyObject *type, PyObject *valje
This function is similar toPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr _Format (PyObject *exception, const char *format)...

Return value:AlwaysNULL
This function sets the error indicator and retuMiSLL. exceptionshould be a Python exception (class, not an
instance) formatshould be a string, containing format codes, similariatf() . Thewidth.precision

before a format code is parsed, but the width part is ignored.
Character | Meaning

‘c’ Character, as aint parameter

‘d’ Number in decimal, as ant parameter

‘X’ Number in hexadecimal, as arnt parameter
‘s’ A string, as achar * parameter

‘P’ A hex pointer, as &oid * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

void PyErr _SetNone (PyObiject *typ¢
This is a shorthand folPyErr _SetObject(typg Py _None)'.

int PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypekError, message’, where messagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()
Return value:AlwaysNULL
Thisis a shorthand foPyErr _SetNone(PyExc _MemoryError) ’;itreturnsNULLso an object allocation
function can write feturn PyErr _NoMemory(); ’'when it runs out of memory.

PyObject* PyErr _SetFromErmo (PyObject *typé
Return value:AlwaysNULL
This is a convenience function to raise an exception when a C library function has returned an error and set the C

14 Chapter 4. Exception Handling

variableerrno . It constructs a tuple object whose first item is the integgano value and whose second item

is the corresponding error message (gotten febrarror()), and then callsPyErr _SetObject(type
objec)’. On UNIX, when theerrno value is EINTR, indicating an interrupted system call, this calls
PyErr _CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can wrgeurn PyErr _SetFromErrno(type; '’

when the system call returns an error.

PyObject* PyErr _SetFromErrnoWithFilename (PyObject *type, char *filename
Return valueAlwaysNULL
Similar toPyErr _SetFromErrno() , with the additional behavior that filenameis notNULL, it is passed
to the constructor dfypeas a third parameter. In the case of exceptions sut@Esor andOSError |, this
is used to define thBlename attribute of the exception instance.

PyObject* PyErr _SetFromWindowsErr (intierr)
Return value:AlwaysNULL
This is a convenience function to raigéindowsError . If called withierr of 0, the error code returned by
a call to GetLastError() is used instead. It calls the Win32 functidiormatMessage() to retrieve
the Windows description of error code given lg&yr or GetLastError() , then it constructs a tuple ob-
ject whose first item is thirr value and whose second item is the corresponding error message (gotten from
FormatMessage()), and then callsPyErr _SetObject(PyExc WindowsError objec) *. This func-
tion always return®lULL Availability: Windows.

PyObject* PyErr _SetExcFromWindowsErr (PyObject *type, int iery
Similar toPyErr _SetFromWindowsErr() , with an additional parameter specifying the exception type to
be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr _SetFromWindowsErrWithFilename (intierr, char *filenameg
Return valueAlwaysNULL
Similar toPyErr _SetFromWindowsErr() , with the additional behavior that flenameis notNULL, it is
passed to the constructor\findowsError as a third parameter. Availability: Windows.

PyObject* PyErr _SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *filename
Similar toPyErr _SetFromWindowsErrWithFilename() , With an additional parameter specifying the
exception type to be raised. Availability: Windows. New in version 2.3.

void PyErr _BadinternalCall 0

This is a shorthand folPyErr _SetString(PyExc _TypekError, message’, where messagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr _Warn(PyObject *category, char *message
Issue a warning message. Toategoryargument is a warning category (see below)NdJLL; the message
argument is a message string.

This function normally prints a warning messagest®.stderr however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. Itis also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports thewarnings module to do the heavy lifting). The return valueisf no exception is raised, ot

if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for examplPy _DECREF() owned references and return an error value).

Warning categories must be subclassed\arning ; the default warning category RuntimeWarning

The standard Python warning categories are available as global variables whose namgEame *
followed by the Python exception name. These have the By@bject* ; they are all class objects.
Their names are PyExc _Warning , PyExc _UserWarning , PyExc _DeprecationWarning
PyExc _SyntaxWarning PyExc _RuntimeWarning and PyExc _FutureWarning

PyExc _Warning is a subclass oPyExc _Exception ; the other warning categories are subclasses
of PyExc _Warning .

15

For information about warning control, see the documentation fowtreings module and theW option in
the command line documentation. There is no C API for warning control.

int PyErr _WarnExplicit (PyObject *category, char *message, char *filename, int lineno, char *module, Py-

Object *registry
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python functiowarnings.warn _explicit() , see there for more information. Theodule

andregistryarguments may be set MULLto get the default effect described there.

int PyErr _CheckSignals ()
This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effectSBINT is to raise theKeyboardinterrupt
exception. If an exception is raised the error indicator is set and the function rétuntiserwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

void PyErr _Setinterrupt 0
This function simulates the effect of SIGINT signal arriving — the next tim@yErr _CheckSignals()
is called, KeyboardInterrupt will be raised. It may be called without holding the interpreter lock.

PyObject* PyErr _NewException (char*name, PyObject *base, PyObject *dict
Return valueNew reference
This utility function creates and returns a new exception object. nEmeargument must be the name of the
new exception, a C string of the formodule.class . Thebaseanddict arguments are normalNULL This
creates a class object derived from the root for all exceptions, the built-in Baosgption (accessible in C as
PyExc _Exception). The__module __ attribute of the new class is set to the first part (up to the last dot)
of thenameargument, and the class name is set to the last part (after the last dotha3ésmrgument can be
used to specify an alternate base class. dibeargument can be used to specify a dictionary of class variables
and methods.

void PyErr _WriteUnraisable (PyObject *ob)
This utility function prints a warning messagedys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del __() method.

The function is called with a single argumentij that identifies the context in which the unraisable exception
occurred. The repr afbj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose namegkexe '’ followed by the Python
exception name. These have the typgObject* ; they are all class objects. For completeness, here are all the
variables:

16 Chapter 4. Exception Handling

Notes:

(1) This is a base class for other standard exceptions.

C Name Python Name Notes
PyExc _Exception Exception 1)
PyExc _StandardError StandardError Q)
PyExc _ArithmeticError ArithmeticError Q)
PyExc _LookupError LookupError D
PyExc _AssertionError AssertionError

PyExc _AttributeError AttributeError

PyExc _EOFError EOFError

PyExc _EnvironmentError EnvironmentError Q)
PyExc _FloatingPointError FloatingPointError

PyExc _IOError IOError

PyExc _ImportError ImportError

PyExc _IndexError IndexError

PyExc _KeyError KeyError

PyExc _Keyboardinterrupt KeyboardInterrupt

PyExc _MemoryError MemoryError

PyExc _NameError NameError

PyExc _NotimplementedError NotimplementedError

PyExc _OSError OSError

PyExc _OverflowError OverflowError

PyExc _ReferenceError ReferenceError 2)
PyExc _RuntimeError RuntimeError

PyExc _SyntaxError SyntaxError

PyExc _SystemError SystemError

PyExc _SystemEXxit SystemEXxit

PyExc _TypeError TypeError

PyExc _ValueError ValueError

PyExc _WindowsError WindowsError 3)

PyExc _ZeroDivisionError

(2) This is the same aseakref.ReferenceError

ZeroDivisionError

(3) Only defined on Windows; protect code that uses this by testing that the preprocessoM&BadtNDOWE

defined.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived Egogption

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also

change in a future release.

4.2. Deprecation of String Exceptions

17

18

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int

long

void

int

Py _FdisInteractive (FILE *fp, char *filenamé
Return true (nonzero) if the standard I/O fipavith namefilenames deemed interactive. This is the case for files
for which ‘isatty(fileno(fp)) ’is true. If the global flagPy _InteractiveFlag is true, this function

also returns true if théilenamepointer isNULL or if the name is equal to one of the stringstdin>’ or
2?7

PyOS_GetLastModificationTime (char *filenameg
Return the time of last modification of the fiilename The result is encoded in the same way as the timestamp
returned by the standard C library functitime()

PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

PyOS_CheckStack ()

Return true when the interpreter runs out of stack space. This is a reliable check, but is only available when
USE_STACKCHECIKs defined (currently on Windows using the Microsoft VisuattCcompiler and on the
Macintosh).USE_CHECKSTACHiIll be defined automatically; you should never change the definition in your
own code.

PyOS_sighandler _t PyOS getsig (inti)

Return the current signal handler for signal This is a thin wrapper around eitheigaction() or
signal() . Do not call those functions directly!PyOS sighandler _t is a typedef alias fowoid
(*)(int)

PyOS sighandler _t PyOS setsig (inti, PyOS sighandlert h)

Set the signal handler for signato beh; return the old signal handler. This is a thin wrapper around either
sigaction() orsignal() . Do not call those functions directlyPyOS sighandler _t is a typedef
alias forvoid (*)(int)

19

5.2 Process Control

void Py_FatalError (const char *message
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. @mxUthe standard C library functicabort() is called
which will attempt to produce aore’ file.

void Py_Exit (intstatug
Exit the current process. This calRy_Finalize() and then calls the standard C library function
exit(statug .

int Py_AtExit (void (*func) ())
Register a cleanup function to be called By_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulRy _AtExit() returns0; on failure, it returns1 . The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finalization will have completed
before the cleanup function, no Python APIs should be callefditgy

5.3 Importing Modules

PyObject* Pylmport _ImportModule (char *nameg
Return valueNew reference
This is a simplified interface t®ylmport _ImportModuleEx() below, leaving theglobals and locals
arguments set thlULL. When thenameargument contains a dot (when it specifies a submodule of a package),
thefromlistargument is set to the li§t’] so that the return value is the named module rather than the top-
level package containing it as would otherwise be the case. (Unfortunately, this has an additional side effect
whennamein fact specifies a subpackage instead of a submodule: the submodules specified in the package’s
__all __ variable are loaded.) Return a new reference to the imported modNi&Jldrwith an exception set
on failure (the module may still be created in this case — exasysanodules to find out).

PyObject* Pylmport _ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Return valueNNew reference
Import a module. This is best described by referring to the built-in Python functiamport __() , as the
standard__import __() function calls this function directly.

The return value is a new reference to the imported module or top-level packagelLarwith an exception
set on failure (the module may still be created in this case). Like famport __() , the return value when
a submodule of a package was requested is normally the top-level package, unless a ndmettigtyas
given.

PyObject* Pylmport _Import (PyObject *namg
Return valueNew reference
This is a higher-level interface that calls the current “import hook function”. It invokes thmport __()
function from the__builtins __ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.gelsgc orihooks .

PyObject* Pylmport _ReloadModule (PyObject*n)
Return valueNew reference
Reload a module. This is best described by referring to the built-in Python funetimend() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded modN&Jldrwith
an exception set on failure (the module still exists in this case).

PyObject* Pylmport _AddModule (char *nameg
Return value Borrowed reference

20 Chapter 5. Utilities

Return the module object corresponding to a module name. riElme argument may be of the form
package.module). First check the modules dictionary if there’s one there, and if not, create a new one
and insert it in the modules dictionary. RetiNk/LL with an exception set on failuré&lote: This function does

not load or import the module; if the module wasn't already loaded, you will get an empty module object. Use
Pylmport _ImportModule() or one of its variants to import a module. Package structures implied by a
dotted name fonameare not created if not already present.

PyObject* Pylmport _ExecCodeModule (char *name, PyObject *cp
Return valueNew reference
Given a module name (possibly of the fopackage.module) and a code object read from a Python bytecode
file or obtained from the built-in functiooompile() , load the module. Return a new reference to the module
object, orNULL with an exception set if an error occurred (the module may still be created in this case). This
function would reload the module if it was already imported.néfimepoints to a dotted name of the form
package.module , any package structures not already created will still not be created.

long Pylmport _GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgcand ‘.pyo’ files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport _GetModuleDict ()
Return valueBorrowed reference
Return the dictionary used for the module administration (adya.modules). Note that this is a per-
interpreter variable.

void _Pylmport _Init ()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup ()
Empty the module table. For internal use only.

void _Pylmport _Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport _FindExtension (char *, char *)
For internal use only.

PyObject* _Pylmport _FixupExtension (char*, char*)
For internal use only.

int Pylmport _ImportFrozenModule (char *nameg
Load a frozen module namethme Returnl for successQ if the module is not found, andl with
an exception set if the initialization failed. To access the imported module on a successful load, use
Pylmport _ImportModule() . (Note the misnomer — this function would reload the module if it was
already imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated [redlze utility (see
‘Tools/freeze/’ in the Python source distribution). Its definition, found include/import.h’, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

}

struct _frozen* Pylmport _FrozenModules
This pointer is initialized to point to an array stfuct ~ _frozen records, terminated by one whose members
are alINULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport _Appendinittab (char *name, void (*initfunc)(void)

5.3. Importing Modules 21

Add a single module to the existing table of built-in modules. This is a convenience wrapper around
Pylmport _ExtendlInittab() , returning-1 if the table could not be extended. The new module can
be imported by the nameame and uses the functicimitfunc as the initialization function called on the first
attempted import. This should be called befBre_Initialize()

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of
these structures in conjunction witylmport _ExtendInittab() to provide additional built-in modules.
The structure is defined imnclude/import.h’ as:

struct _inittab {
char *name;
void (*initfunc)(void);

%

int Pylmport _ExtendInittab ('struct _inittab *newtah)
Add a collection of modules to the table of built-in modules. Hegvtabarray must end with a sentinel entry
which containdNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success ofl if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pgfohaitialize()

5.4 Data marshalling support

These routines allow C code to work with serialized objects using the same data formanzsrshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

void PyMarshal _WriteLongToFile (long value, FILE *fil§
Marshal along integer,value to file. This will only write the least-significant 32 bits @alue regardless of
the size of the nativeong type.

void PyMarshal _WriteObjectToFile (PyObject *value, FILE *fil¢
Marshal a Python objectalue tofile.

PyObject* PyMarshal _WriteObjectToString (PyObject *valug
Return valueNew reference
Return a string object containing the marshalled representatiosl wé

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that's relevant), but it's not clear that negative values won't be handled properly when there’s no
error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal _ReadLongFromFile (FILE *file)
Return a dong from the data stream infILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native sizdaig .

int PyMarshal _ReadShortFromFile (FILE *file)
Return a Cshort from the data stream in BILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizsludrt

PyObject* PyMarshal _ReadObjectFromFile (FILE *file)
Return valueNew reference
Return a Python object from the data stream iRlIBE* opened for reading. On error, sets the appropriate

22 Chapter 5. Utilities

exception EOFError or TypeError) and returndNULL

PyObject* PyMarshal _ReadlLastObjectFromFile (FILE *file)
Return valueNew reference
Return a Python object from the data stream in FALE* opened for reading. Unlike
PyMarshal _ReadObjectFromFile() , this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won't be reading anything else from the file. On error, sets the appropriate exc&@iBREror or
TypeError) and returndNULL

PyObject* PyMarshal _ReadObjectFromString (char *string, int len
Return valueNew reference
Return a Python object from the data stream in a character buffer conténibgtes pointed to bgtring. On
error, sets the appropriate excepti®@OFError or TypeError) and returnsNULL

5.5 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available Extending and Embedding the Python Interpreter

The first three of these functions describBgArg _ParseTuple() , PyArg _ParseTupleAndKeywords() ,
andPyArg _Parse() , all useformat stringswhich are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
guoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit;
and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

‘s’ (string or Unicode object) [char *] Convert a Python string or Unicode object to a C pointer to a character string.
You must not provide storage for the string itself; a pointer to an existing string is stored into the character
pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not contain
embedded NUL bytes; if it does,TaypeError exception is raised. Unicode objects are converted to C strings
using the default encoding. If this conversion fail$)@icodeError s raised.

‘s#t’ (string, Unicode or any read buffer compatible object) [char *, int] This variant on §’ stores into two C
variables, the first one a pointer to a character string, the second one its length. In this case the Python string
may contain embedded null bytes. Unicode objects pass back a pointer to the default encoded string version of
the object if such a conversion is possible. All other read-buffer compatible objects pass back a reference to the
raw internal data representation.

‘z’ (string or None) [char *] Like ‘s’, but the Python object may also Ione, in which case the C pointer is set
to NULL

‘z#’ (string or None or any read buffer compatible object) [char *, int] Thisisto's#’as‘z’isto’‘s’.

‘u’ (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer
of 16-bit Unicode (UTF-16) data. As witls', there is no need to provide storage for the Unicode data buffer; a
pointer to the existing Unicode data is stored intoRlye UNICODEpointer variable whose address you pass.

‘u#’ (Unicode object) [Py_UNICODE *, int] This variant on i’ stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their
read-buffer pointer as pointer toRy_UNICODEarray.

5.5. Parsing arguments and building values 23

‘es’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] This
variant on 5§’ is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only
works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and musthag*a which points to the
name of an encoding as a NUL-terminated stringNat_L, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument makab# a;

the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

PyArg _ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust*buffer to reference the newly allocated storage. The caller is responsible for daliiigm Free()
to free the allocated buffer after use.

‘et ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same as és’ except that 8-bit string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

‘es#’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer _length]
This variant on $#’ is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike the ‘es’ format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and mustheea which points to the name of

an encoding as a NUL-terminated stringNWLL, in which case the default encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument mugdtdy®*a ; the value of the

pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in
the encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced
integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and setbuffer to reference the newly allocated storage. The caller is responsible for calling
PyMem. Free() to free the allocated buffer after usage.

If *buffer points to a norNULL pointer (an already allocated buffeByArg _ParseTuple() will use this
location as the buffer and interpret the initial value*béffer_lengthas the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enoudalugError will be
set.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing NUL byte.

‘et# ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same asés# ' except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

‘b’ (integer) [char] Convert a Python integer to a tiny int, stored in &l@r .

‘B’ (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

‘h’ (integer) [short int] Convert a Python integer to agbort int

‘H (integer) [unsigned short int] Convert a Python integer to a Gnsigned short int , without overflow
checking. New in version 2.3.

‘i (integer) [int] Convert a Python integer to a plainia .

‘I " (integer) [unsigned int] Convert a Python integer to aisigned int , without overflow checking. New in
version 2.3.

‘l * (integer) [long int] Convert a Python integer to aléng int

24 Chapter 5. Utilities

‘k’ (integer) [unsigned long] Convert a Python integer to asigned long without overflow checking. New
in version 2.3.

‘L’ (integer) [PY _LONG _LONG] Convert a Python integer to aléng long . This format is only available on
platforms that suppotong long (or _int64 on Windows).

‘K’ (integer) [unsigned PY_LONG _LONG] Convert a Python integer to a hsigned long long without
overflow checking. This format is only available on platforms that supposigned long long (or
unsigned _int64 on Windows). New in version 2.3.

‘c’ (string of length 1) [char] Convert a Python character, represented as a string of length 1, ¢tharC
‘f’ (float) [float] Convert a Python floating point number to dl@at

‘d’ (float) [double] Convert a Python floating point number to al@uble .

‘D (complex) [Py_complex] Convert a Python complex number to &¢_complex structure.

‘O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
notNULL

‘Ol" (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is similarQ@o but takes
two C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError s raised.

‘O& (object) [converter anything] Convert a Python object to a C variable througtoaverterfunction. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void * . Theconverterfunction in turn is called as follows:

status = converte(object addresy;

whereobjectis the Python object to be converted aaddressis the void* argument that was passed to
the PyArg _Parse*() function. The returnedtatusshould bel for a successful conversion afdif the
conversion has failed. When the conversion fails,abeverterfunction should raise an exception.

‘S’ (string) [PyStringObject *] Like ‘O but requires that the Python object is a string object. Raisg®Error
if the object is not a string object. The C variable may also be declarBg@bject*

‘U (Unicode string) [PyUnicodeObject *] Like ‘O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declafegQisject*

‘t# ’ (read-only character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-only
buffer interface. Thehar* variable is set to point to the first byte of the buffer, andittte is set to the length
of the buffer. Only single-segment buffer objects are accefigaeError s raised for all others.

‘W (read-write character buffer) [char *] Similar to ‘s’, but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means, ev#isestead. Only
single-segment buffer objects are acceplggieError s raised for all others.

‘w# (read-write character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-write
buffer interface. Thehar * variable is set to point to the first byte of the buffer, anditite is set to the
length of the buffer. Only single-segment buffer objects are accepigatError is raised for all others.

‘(item9’ (tuple) [matching-item$ The object must be a Python sequence whose length is the number of format units
in items The C arguments must correspond to the individual format uniteiins Format units for sequences
may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual pa-
rameters, not an arbitrary sequence. Code which previously cdygedError to be raised here may now
proceed without an exception. This is not expected to be a problem for existing code.

5.5. Parsing arguments and building values 25

It is possible to pass Python long integers where integers are requested; however no proper range checking is done —
the most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the
semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

‘| * Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg _ParseTuple() does not touch the contents of the corresponding C variable(s).

‘1’ The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception tiatArg _ParseTuple() raises).

‘; 7 The list of format units ends here; the string after the semicolon is used as the error niestsagief the default
error message. Clearly,* and ‘; " mutually exclude each other.

Note that any Python object references which are provided to the callboexevedreferences; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, tg object must match the format and the format must be exhausted. On success,
thePyArg _Parse*() functions return true, otherwise they return false and raise an appropriate exception.

int PyArg _ParseTuple (PyObject*args, char *format,).
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg _ParseTupleAndKeywords (PyObject *args, PyObject *kw, char *format, char *keywords]]) ...
Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-
turns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg _Parse (PyObject *args, char *format,).
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METHOLDARG$arameter parsing method. This is not recommended for use in parameter parsing in new
code, and most code in the standard interpreter has been modified to no longer use this for that purpose. It does
remain a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

int PyArg _UnpackTuple (PyObject *args, char *name, int min, int max,...
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declMEd HS/ARARG$ function
or method tables. The tuple containing the actual parameters should be passgd é&smust actually be
a tuple. The length of the tuple must be at leash and no more thamax min and maxmay be equal.
Additional arguments must be passed to the function, each of which should be a pointey@bgect*
variable; these will be filled in with the values froangs they will contain borrowed references. The variables
which correspond to optional parameters not giveratgs will not be filled in; these should be initialized by
the caller. This function returns true on success and falsyffis not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources fanvtieakref helper module for
weak references:

26 Chapter 5. Utilities

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref’, 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);
}

return result;

}

The call to PyArg _UnpackTuple() in this example is entirely equivalent to this call to
PyArg _ParseTuple()

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

New in version 2.2.

PyObject* Py_BuildvValue (char *format, ..)
Return valueNew reference
Create a new value based on a format string similar to those accepted ByAhg _Parse*() family of
functions and a sequence of values. Returns the valldUtil in the case of an error; an exception will be
raised ifNULL s returned.

Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it retuigne; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as $&rahe ‘s#’
formats, the required data is copied. Buffers provided by the caller are never referenced by the objects
created byPy_BuildValue() . In other words, if your code invokemalloc() and passes the allo-
cated memory td?y_BuildValue() , your code is responsible for calliffgee() for that memory once
Py_BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
‘s#’). This can be used to make long format strings a tad more readable.

‘s’ (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointBfUEL,
None is used.

‘s#’ (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointétisL,
the length is ignored andone is returned.

‘2’ (string or None) [char *] Same ass’.
‘z#’ (string or None) [char *, int] Same ass#'.

‘u’ (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2) data to a Python
Unicode object. If the Unicode buffer pointerN8JLL, None is returned.

‘u#t’ (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointerNRJLL, the length is ignored andone is returned.

‘i’ (integer) [int] Convert a plain Gnt to a Python integer object.

5.5. Parsing arguments and building values 27

‘b’ (integer) [char] Same asi*’.

‘h’ (integer) [short int] Same asi*’.

‘| * (integer) [long int] Convert a dong int to a Python integer object.

‘c’ (string of length 1) [char] Convert a Ant representing a character to a Python string of length 1.
‘d’ (float) [double] Convert a Cdouble to a Python floating point number.

‘f’ (float) [float] Same asd’.

‘D' (complex) [Py_complex *]Convert a CPy_complex structure to a Python complex nhumber.

‘O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in isNULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. TherefarBpildValue() will return
NULL but won't raise an exception. If no exception has been raisedystemError is set.

‘S’ (object) [PyObject *] Same asO.
‘U (object) [PyObiject *] Same asO.

‘N’ (object) [PyObject *] Same asO, except it doesn’t increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

‘O& (object) [converter anything] Convertanythingto a Python object throughanverterfunction. The func-
tion is called withanything(which should be compatible wittoid *) as its argument and should return
a “new” Python object, oNULL if an error occurred.

‘(item9 ’ (tuple) [matching-item$Convert a sequence of C values to a Python tuple with the same number of
items.

‘[itemq ’ (list) [matching-item$Convert a sequence of C values to a Python list with the same number of items.

‘{itemg ’ (dictionary) [matching-item$Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tiSystemError exception is set andULL returned.

28

Chapter 5. Utilities

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

6.1 Object Protocol

int PyObject _Print (PyObject*o, FILE *fp, int flagk
Print an objecb, on filefp. Returns-1 on error. The flags argument is used to enable certain printing options.
The only option currently supported®y_PRINT_RAWiIf given, thestr() of the object is written instead of
therepr()

int PyObject _HasAttrString (PyObject *o, char *attr namé
Returnsl if o has the attributattr_name and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttrString (PyObject *o, char *attr nam¢
Return valueNew reference
Retrieve an attribute namexditr_namefrom objecto. Returns the attribute value on succes$\\Ot Lon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _HasAttr (PyObject*o, PyObject *attrname
Returnsl if o has the attributeattr_name and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttr (PyObject *o, PyObject *attrnameg
Return valueNew reference
Retrieve an attribute namexditr_namefrom objecto. Returns the attribute value on succes$\\Ot Lon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _SetAttrString (PyObject *o, char *attr_.name, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _SetAttr (PyObject*o, PyObject *attrname, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _DelAttrString (PyObject *o, char *attr namé
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statement:del o. attr_name.

int PyObject _DelAttr (PyObject*o, PyObject *attrnamg
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python

29

statementdel o. attr_namé.

PyObject* PyObject _RichCompare (PyObject *01, PyObject *02, int op)d
Return valueNNew reference
Compare the values ofl ando2 using the operation specified bypid, which must be one dPy_LT, Py_LE,
Py_EQ Py_NE Py_GT, or Py_GE corresponding t&, <=, ==, I= | >, or >= respectively. This is the equiv-
alent of the Python expressionl op 02, whereop is the operator correspondingapid. Returns the value
of the comparison on success,MULL on failure.

int PyObject _RichCompareBool (PyObject*ol, PyObject*02, int op)d
Compare the values ofl ando2 using the operation specified bpid, which must be one d?y_LT, Py_LE,
Py_EQ Py_NE Py_GT, or Py_GE corresponding t&, <=, ==, 1=, >, or >= respectively. Returnsl on
error, 0 if the result is falsel otherwise. This is the equivalent of the Python expressidnop 02, where
op is the operator correspondingdpid.

int PyObject _Cmyg PyObject *01, PyObject *02, int *resylt
Compare the values ofl ando2 using a routine provided byl, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returned@sult Returns-1 on failure. This is the equivalent of the
Python statementésult = cmp(o0l, 02)".

int PyObject _Compare(PyObject *o1, PyObject *oR
Compare the values afl ando2 using a routine provided bygl, if one exists, otherwise with a routine pro-
vided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr _Occurred() to detect an error. This is equivalent to the Python expressiop(01, 02) .

PyObject* PyObject _Repr (PyObject *g
Return valueNNew reference
Compute a string representation of objecReturns the string representation on sucdski,L on failure. This
is the equivalent of the Python expressiogpr(0) . Called by therepr() built-in function and by reverse
guotes.

PyObject* PyObject _Str (PyObject *9
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucdski,L on failure. This
is the equivalent of the Python expressistr(0) . Called by thestr() built-in function and by therint
statement.

PyObject* PyObject _Unicode (PyObject*g
Return valueNew reference
Compute a Unicode string representation of objecReturns the Unicode string representation on success,
NULL on failure. This is the equivalent of the Python expressionicode(0)’. Called by theunicode()
built-in function.

int PyObject _Isinstance (PyObiject *inst, PyObject *cls
Returnsl if instis an instance of the clas$s or a subclass afls, or O if not. On error, returnsl and sets an
exception. Ifclsis a type object rather than a class obj@stObject _IsInstance() returnsl if instis of
typecls. If clsis a tuple, the check will be done against every entrglénThe result will bel when at least one
of the checks returns, otherwise it will be0. If instis not a class instance ast$is neither a type object, nor
a class object, nor a tuplamst must have a__class __ attribute — the class relationship of the value of that
attribute withcls will be used to determine the result of this function. New in version 2.1. Changed in version
2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions
to the class system may want to be aware ofA HndB are class object® is a subclass oA if it inherits from A

either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testindifs a subclass oA, if Ais B, PyObject _IsSubclass() returns

true. If A andB are different objectsB’'s __bases __ attribute is searched in a depth-first fashion for— the
presence of the_bases __ attribute is considered sufficient for this determination.

30 Chapter 6. Abstract Objects Layer

int PyObject _IsSubclass (PyObject *derived, PyObject *CJs
Returnsl if the classderivedis identical to or derived from the clasts, otherwise return§. In case of an
error, returnsl . If clsis a tuple, the check will be done against every entrgi$n The result will bel when at
least one of the checks returhsotherwise it will be0. If eitherderivedor clsis not an actual class object (or
tuple), this function uses the generic algorithm described above. New in version 2.1. Changed in version 2.3:
Older versions of Python did not support a tuple as the second argument.

int PyCallable _Check (PyObject *q
Determine if the object is callable. Returrl if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject _Call (PyObject *callable object, PyObject *args, PyObject *Rw
Call a callable Python objedallable_object with arguments given by the tupsggs and named arguments
given by the dictionarkw. If no named arguments are needied,may beNULL argsmust not beNULL, use
an empty tuple if no arguments are needed. Returns the result of the call on sucbidkl on failure. This is
the equivalent of the Python expressi@pply(callable_object args kw)’ or ‘callable_objec(* args
** kw) ’. New in version 2.2.

PyObject* PyObject _CallObject (PyObiject *callable object, PyObject *args
Return valueNew reference
Call a callable Python objedallable_object with arguments given by the tupkergs. If no arguments are
needed, therargs may beNULL Returns the result of the call on successNafLL on failure. This is the
equivalent of the Python expressiapply(callable_object args) ’ or ‘ callable_objec(* args) .

PyObject* PyObject _CallFunction (PyObject *callable, char *format,).
Return valueNew reference
Call a callable Python objectllable, with a variable number of C arguments. The C arguments are described
using aPy_BuildValue() style format string. The format may IMULL, indicating that no arguments are
provided. Returns the result of the call on success$\QLL on failure. This is the equivalent of the Python
expressionapply(callable args) '’ or ‘callable(* args) .

PyObject* PyObject _CallMethod (PyObject *o, char *method, char *format,)...
Return valueNew reference
Call the method namethethodof objecto with a variable number of C arguments. The C arguments are
described by ®y_BuildValue() format string. The format may BeULL, indicating that no arguments are
provided. Returns the result of the call on success$\OLL on failure. This is the equivalent of the Python
expressiono. method args) .

PyObject* PyObject _CallFunctionObjArgs (PyObject *callable, ...NULL
Return valueNew reference
Call a callable Python objectllable, with a variable number dPyObject* arguments. The arguments are
provided as a variable number of parameters followedNb).L Returns the result of the call on success, or
NULLon failure. New in version 2.2.

PyObject* PyObject _CallMethodObjArgs (PyObject *o, PyObject *name, .NULL)
Return valueNNew reference
Calls a method of the object where the name of the method is given as a Python string objeete It is
called with a variable number &fyObject* arguments. The arguments are provided as a variable number of
parameters followed bNULL Returns the result of the call on successNbi_L on failure. New in version
2.2.

int PyObject _Hash(PyObject*q
Compute and return the hash value of an objedDn failure, returnl . This is the equivalent of the Python
expressionhash(o) .

int PyObject _IsTrue (PyObject*g
Returnsl if the objecto is considered to be true, afdotherwise. This is equivalent to the Python expression
‘not not 0. On failure, return-1 .

6.1. Object Protocol 31

int PyObject _Not (PyObject *9
Returns0 if the objecto is considered to be true, addotherwise. This is equivalent to the Python expression
‘not 0o'. On failure, return-1 .

PyObject* PyObject _Type (PyObject *g
Return valueNNew reference
Wheno is nonNULL, returns a type object corresponding to the object type of olgjedDn failure, raises
SystemError and returndNULL This is equivalent to the Python expressitgpe(o). This function in-
crements the reference count of the return value. There’s really no reason to use this function instead of the
common expression->ob _type , which returns a pointer of typeyTypeObject* , except when the incre-
mented reference count is needed.

int PyObject _TypeCheck (PyObject *o, PyTypeObject *type
Return true if the objeab is of typetypeor a subtype ofype Both parameters must be ndiJLL New in
version 2.2.

int PyObject _Length (PyObject*g

int PyObject _Size (PyObject *g
Return the length of object If the objecto provides either the sequence and mapping protocols, the sequence
length is returned. On erroil is returned. This is the equivalent to the Python expressang ‘ o) .

PyObject* PyObject _Getltem (PyObject *o, PyObiject *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

int PyObject _Setltem (PyObject*o, PyObject *key, PyObjectyv
Map the objeckeyto the valuer. Returns1l on failure. This is the equivalent of the Python statemejpkéy|
= V.

int PyObject _Delltem (PyObject*o, PyObject *kgy
Delete the mapping fdteyfrom o. Returns-1 on failure. This is the equivalent of the Python statemdat *
of key .

int PyObject _AsFileDescriptor (PyObject *g
Derives a file-descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

PyObject* PyObject _Dir (PyObject*Q
Return valueNew reference
This is equivalent to the Python expressidlir(0)’, returning a (possibly empty) list of strings appropriate
for the object argument, MULLIf there was an error. If the argumenN&JLL, this is like the Pythondir() ,
returning the names of the current locals; in this case, if no execution frame is activélithéns returned but

PyErr _Occurred() will return false.

PyObject* PyObject _Getlter (PyObject*g
Return valueNew reference
This is equivalent to the Python expressigar(o) ". It returns a new iterator for the object argument, or the
object itself if the object is already an iterator. Rai3gpeError and returnsNULL if the object cannot be
iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

32 Chapter 6. Abstract Objects Layer

PyObject* PyNumber_Add(PyObject *o1, PyObject *oR
Return value:New reference
Returns the result of addimgl ando2, or NULL on failure. This is the equivalent of the Python expressain
+ 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *opR
Return valueNew reference
Returns the result of subtracting from 01, or NULLon failure. This is the equivalent of the Python expression
‘ol - oZ.

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
‘ol * oZ.

PyObject* PyNumber_Divide (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the result of dividingl by 02, or NULL on failure. This is the equivalent of the Python expressain *
/ 02.

PyObject* PyNumber_FloorDivide (PyObject *01, PyObject *op
Return valueNNew reference
Return the floor ob1 divided byo2, or NULLon failure. This is equivalent to the “classic” division of integers.
New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *o1, PyObject *oR
Return valueNNew reference
Return a reasonable approximation for the mathematical valed divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *ol1, PyObject *opR
Return valueNew reference
Returns the remainder of dividiral by 02, or NULL on failure. This is the equivalent of the Python expression
‘ol % oZ.

PyObject* PyNumber_Divmod (PyObject *o01, PyObject *op
Return valueNew reference
See the built-in functiowlivmod() . ReturndNULL on failure. This is the equivalent of the Python expression
‘divmod(01, 02)’.

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
Return valueNew reference
See the built-in functiompow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(o0l, 02 03)’, whereo3is optional. Ifo3is to be ignored, pafdy_None in its place (passinglULL
for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *g
Return valueNew reference
Returns the negation afon success, ddULL on failure. This is the equivalent of the Python expressia.*

PyObject* PyNumber_Positive (PyObject *g
Return valueNNew reference
Returnso on success, ddULL on failure. This is the equivalent of the Python expressim.*

PyObject* PyNumber_Absolute (PyObject *g
Return valueNew reference
Returns the absolute value@for NULL on failure. This is the equivalent of the Python expressairs(o) .

6.2. Number Protocol 33

PyObject* PyNumber_Invert (PyObject*g
Return value:New reference
Returns the bitwise negation obn success, ddULLon failure. This is the equivalent of the Python expression

0.

PyObject* PyNumber_Lshift (PyObject *ol1, PyObject *oR
Return valueNew reference
Returns the result of left shiftingl by 02 on success, ddULL on failure. This is the equivalent of the Python
expressionol << o02.

PyObject* PyNumber_Rshift (PyObject *ol1, PyObject *op
Return valueNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. This is the equivalent of the Python
expressionol >> o2.

PyObject* PyNumber_And(PyObject *o1, PyObject *oP
Return valueNew reference
Returns the “bitwise and” od1 ando2 on success andULL on failure. This is the equivalent of the Python
expressionol & oZ.

PyObject* PyNumber_Xor (PyObject *o1, PyObject *oP
Return valueNNew reference
Returns the “bitwise exclusive or” afl by 02 on success, oNULL on failure. This is the equivalent of the
Python expressiorol ~ 02.

PyObject* PyNumber_Or(PyObject *o1, PyObject *op
Return valueNNew reference
Returns the “bitwise or” obl and o2 on success, oNULL on failure. This is the equivalent of the Python
expressionol | oZ2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *oR
Return valueNew reference
Returns the result of addirgl ando2, or NULL on failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python statemertt ‘+= 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of subtractira® from o1, or NULL on failure. The operation is dorie-place whenol
supports it. This is the equivalent of the Python statemght-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *o1, PyObject *opR
Return valueNNew reference
Returns the result of multiplyinglando2, or NULLon failure. The operation is dore-placewhenol supports
it. This is the equivalent of the Python statemerit *= 02.

PyObject* PyNumber_InPlaceDivide (PyO