Python/C API Reference Manual
Release 2.3.2

Guido van Rossum
Fred L. Drake, Jr., editor

October 3, 2003

PythonLabs
Email: docs@python.org

Copyright(© 2001, 2002, 2003 Python Software Foundation. All rights reserved.
Copyright(© 2000 BeOpen.com. All rights reserved.

Copyright(© 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright(© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

This manual documents the API used by C anid-@rogrammers who want to write extension modules or embed
Python. Itis a companion téxtending and Embedding the Python Interprewehnich describes the general principles
of extension writing but does not document the API functions in detail.

Warning: The current version of this document is incomplete. | hope that it is nevertheless useful. | will continue to
work on it, and release new versions from time to time, independent from Python source code releases.

CONTENTS

Introduction 1
1.1 Include Files. o e 1
1.2 Objects, Typesand Reference Counts o i i i i i i it e e e e 2
1.3 EXCEPLIONS. o e e e e e e 5
1.4 Embedding Python e 7
The Very High Level Layer 9
Reference Counting 11
Exception Handling 13
4.1 Standard EXCeptions 16
4.2 Deprecation of String EXCeptions 17
Utilities 19
5.1 Operating System Utilities o e 19
5.2 ProcessControl. e 20
5.3 Importing Modules e e e e 20
5.4 Datamarshalling support. e e e 22
5.5 Parsing arguments and buildingvalues. 23
Abstract Objects Layer 29
6.1 ObjectProtocol 29
6.2 Number Protocol e e e 32
6.3 Sequence Protocal L e e 36
6.4 Mapping Protocol e e 37
6.5 lterator Protocol. L e 38
6.6 Buffer Protocol 39
Concrete Objects Layer 41
7.1 Fundamental Objects. 41
7.2 Numeric ObJeCES. e e e e e 42
7.3 Sequence Objects. e e 46
7.4 Mapping Objects e e 59
7.5 OtherODbjJects e e 61
Initialization, Finalization, and Threads 69
8.1 Thread State and the Global InterpreterLack o Lo 72
8.2 Profilingand Tracing e e 76
8.3 Advanced Debugger SUpport e e e e 77

9 Memory Management 79

9.1 OVEIVIEW . . o o ot e e 79
9.2 Memorylnterface 80
9.3 Examples 80
10 Object Implementation Support 83
10.1 Allocating Objectsonthe Heap i 83
10.2 Common Object StruCtUres o o o e 84
10.3 Type Objects. e e e 86
10.4 Mapping Object SruCtUres. e e e e e e e e e e 99
10.5 NumberObject Structures e e e 99
10.6 Sequence Object StruCtures. o e 99
10.7 Buffer Object Structures e e 99
10.8 Supporting the Iterator Protocol. e 100
10.9 Supporting Cyclic Garbarge Collection. e 100
A Reporting Bugs 103
B History and License 105
B.1 Historyofthe software e 105
B.2 Terms and conditions for accessing or otherwise using Python 106
Index 109

CHAPTER
ONE

Introduction

The Application Programmer’s Interface to Python gives C ahd frogrammers access to the Python interpreter at

a variety of levels. The API is equally usable fromt-€ but for brevity it is generally referred to as the Python/C

API. There are two fundamentally different reasons for using the Python/C API. The first reason is &Extetitgion
modulesfor specific purposes; these are C modules that extend the Python interpreter. This is probably the most
common use. The second reason is to use Python as a component in a larger application; this technique is generally
referred to a@mbeddindPython in an application.

Writing an extension module is a relatively well-understood process, where a “cookbook” approach works well. There
are several tools that automate the process to some extent. While people have embedded Python in other applications
since its early existence, the process of embedding Python is less straightforward than writing an extension.

Many API functions are useful independent of whether you're embedding or extending Python; moreover, most ap-
plications that embed Python will need to provide a custom extension as well, so it's probably a good idea to become
familiar with writing an extension before attempting to embed Python in a real application.

1.1 Include Files

All function, type and macro definitions needed to use the Python/C API are included in your code by the following
line:

#include "Python.h"

This implies inclusion of the following standard headerss<stdio.h> , <string.h> , <errno.h> |
<limits.h> , and<stdlib.h> (if available). Since Python may define some pre-processor definitions which
affect the standard headers on some systems, you must inélyttleri.h’ before any standard headers are included.

All user visible names defined by Python.h (except those defined by the included standard headers) have one of the
prefixes Py’ or ' _Py’. Names beginning with_‘Py’ are for internal use by the Python implementation and should
not be used by extension writers. Structure member names do not have a reserved prefix.

Important: user code should never define names that begin vth or ‘ _Py’. This confuses the reader, and
jeopardizes the portability of the user code to future Python versions, which may define additional names beginning
with one of these prefixes.

The header files are typically installed with Python. Omnik, these are located in the directories
‘prefix/include/pythonversior’ and ‘exec_prefix/include/pythonversior’, where prefix and exeqrefix are defined by
the corresponding parameters to Pythaosfigure script andversionis sys.version][:3] . On Windows, the
headers are installed iprefix/include’, where prefix is the installation directory specified to the installer.

To include the headers, place both directories (if different) on your compiler’s search path for includest.plxce

the parent directories on the search path and therttiselide <python2.3/Python.h> "; this will break on
multi-platform builds since the platform independent headers under prefix include the platform specific headers from
exec_prefix.

C++ users should note that though the API is defined entirely using C, the header files do properly declare the entry
points to beextern "C" , so there is no need to do anything special to use the API frétn C

1.2 Objects, Types and Reference Counts

Most Python/C API functions have one or more arguments as well as a return value Bit9pgect* . This type is

a pointer to an opaque data type representing an arbitrary Python object. Since all Python object types are treated the
same way by the Python language in most situations (e.g., assignments, scope rules, and argument passing), it is only
fitting that they should be represented by a single C type. Almost all Python objects live on the heap: you never declare
an automatic or static variable of typgyObject , only pointer variables of typByObject* can be declared. The

sole exception are the type objects; since these must never be deallocated, they are typicdlyTstpe©bject

objects.

All Python objects (even Python integers) hawg@eand areference countAn object’s type determines what kind of
objectitis (e.g., an integer, a list, or a user-defined function; there are many more as explainéd/thdheReference
Manual). For each of the well-known types there is a macro to check whether an object is of that type; for instance,
‘PyList _Check(a) 'is true if (and only if) the object pointed to kyis a Python list.

1.2.1 Reference Counts

The reference count is important because today’s computers have a finite (and often severely limited) memory size; it
counts how many different places there are that have a reference to an object. Such a place could be another object, or
a global (or static) C variable, or a local variable in some C function. When an object’s reference count becomes zero,
the object is deallocated. If it contains references to other objects, their reference count is decremented. Those other
objects may be deallocated in turn, if this decrement makes their reference count become zero, and so on. (There’s an
obvious problem with objects that reference each other here; for now, the solution is “don’t do that.”)

Reference counts are always manipulated explicitly. The normal way is to use thePya¢NCREF() to increment

an object’s reference count by one, aRy_DECREF() to decrement it by one. They_DECREF() macro is
considerably more complex than the incref one, since it must check whether the reference count becomes zero and then
cause the object’s deallocator to be called. The deallocator is a function pointer contained in the object’s type structure.
The type-specific deallocator takes care of decrementing the reference counts for other objects contained in the object
if this is a compound object type, such as a list, as well as performing any additional finalization that's needed. There’s
no chance that the reference count can overflow; at least as many bits are used to hold the reference count as there
are distinct memory locations in virtual memory (assunmsiggof(long) >= sizeof(char*)). Thus, the

reference count increment is a simple operation.

Itis not necessary to increment an object’s reference count for every local variable that contains a pointer to an object.
In theory, the object’s reference count goes up by one when the variable is made to point to it and it goes down by
one when the variable goes out of scope. However, these two cancel each other out, so at the end the reference count
hasn’t changed. The only real reason to use the reference count is to prevent the object from being deallocated as long
as our variable is pointing to it. If we know that there is at least one other reference to the object that lives at least as
long as our variable, there is no need to increment the reference count temporarily. An important situation where this
arises is in objects that are passed as arguments to C functions in an extension module that are called from Python; the
call mechanism guarantees to hold a reference to every argument for the duration of the call.

However, a common pitfall is to extract an object from a list and hold on to it for a while without incrementing its
reference count. Some other operation might conceivably remove the object from the list, decrementing its reference
count and possible deallocating it. The real danger is that innocent-looking operations may invoke arbitrary Python
code which could do this; there is a code path which allows control to flow back to the user RgnDECREF(),

2 Chapter 1. Introduction

so almost any operation is potentially dangerous.

A safe approach is to always use the generic operations (functions whose name beginBy@itject _’,
‘PyNumber_’, * PySequence _’ or ‘PyMapping _’). These operations always increment the reference count of
the object they return. This leaves the caller with the responsibility taPRgalDECREF() when they are done with
the result; this soon becomes second nature.

Reference Count Details

The reference count behavior of functions in the Python/C API is best explained in teawsefship of references

Note that we talk of owning references, never of owning objects; objects are always shared! When a function owns
a reference, it has to dispose of it properly — either by passing ownership on (usually to its caller) or by calling
Py_DECREF() or Py_XDECREF(). When a function passes ownership of a reference on to its caller, the caller is
said to receive aewreference. When no ownership is transferred, the caller is s&idrtow the reference. Nothing

needs to be done for a borrowed reference.

Conversely, when a calling function passes it a reference to an object, there are two possibilities: the function
stealsa reference to the object, or it does not. Few functions steal references; the two notable exceptions are
PyList _Setltem() andPyTuple _Setltem() , which steal a reference to the item (but not to the tuple or

list into which the item is put!). These functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to create théliuf@e "three")

could look like this (forgetting about error handling for the moment; a better way to code this is shown below):

PyObject *t;

t = PyTuple_New(3);

PyTuple_Setltem(t, 0, PyInt_FromLong(1L));
PyTuple_Setltem(t, 1, PyInt_FromLong(2L));
PyTuple_Setitem(t, 2, PyString_FromString("three"));

Incidentally, PyTuple _Setltem() is the only way to set tuple items;PySequence _Setltem() and
PyObject _Setltem() refuse to do this since tuples are an immutable data type. You should only use
PyTuple _Setltem() for tuples that you are creating yourself.

Equivalent code for populating a list can be written udiydist _New() andPyList _Setltem() . Such code
can also us®ySequence _Setltem() ; this illustrates the difference between the two (the eRyaDECREF()
calls):

PyObject *, *x;

| = PyList_New(3);

X = PyInt_FromLong(1L);
PySequence_Setltem(l, 0, x); Py_DECREF(x);
X = PyInt_FromLong(2L);
PySequence_Setltem(l, 1, x); Py_DECREF(x);
X = PyString_FromString("three");
PySequence_Setltem(l, 2, x); Py_DECREF(x);

You might find it strange that the “recommended” approach takes more code. However, in practice, you will rarely
use these ways of creating and populating a tuple or list. There’s a generic fuigtioBuildValue() , that can

create most common objects from C values, directed foyraat string For example, the above two blocks of code
could be replaced by the following (which also takes care of the error checking):

1.2. Objects, Types and Reference Counts 3

PyObject *t, *I;

t
I

Py_BuildValue("(iis)", 1, 2, "three");
Py_BuildValue("fiis]", 1, 2, "three");

It is much more common to udeyObject _Setltem() and friends with items whose references you are only
borrowing, like arguments that were passed in to the function you are writing. In that case, their behaviour regarding
reference counts is much saner, since you don’t have to increment a reference count so you can give a reference away
(“have it be stolen”). For example, this function sets all items of a list (actually, any mutable sequence) to a given item:

int
set_all(PyObject *target, PyObject *item)
{ . .
int i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for i = 0; i < n; i++) {
if (PyObject_Setltem(target, i, item) < 0)
return -1;
}
return O;
}

The situation is slightly different for function return values. While passing a reference to most functions does not
change your ownership responsibilities for that reference, many functions that return a referece to an object give you
ownership of the reference. The reason is simple: in many cases, the returned object is created on the fly, and the
reference you get is the only reference to the object. Therefore, the generic functions that return object references, like
PyObject _Getltem() andPySequence _Getltem() , always return a new reference (the caller becomes the
owner of the reference).

It is important to realize that whether you own a reference returned by a function depends on which function you
call only —the plumagéthe type of the type of the object passed as an argument to the fundtieai’t enter into

it! Thus, if you extract an item from a list usiiRyList _Getltem() , you don’t own the reference — but if you
obtain the same item from the same list ushgsequence _Getltem() (which happens to take exactly the same
arguments), you do own a reference to the returned object.

Here is an example of how you could write a function that computes the sum of the items in a list of integers; once
usingPyList _Getltem() , and once usin@ySequence _Getltem()

4 Chapter 1. Introduction

long
sum_list(PyObject *list)
{ . .

int i, n;

long total = O;

PyObject *item;

n = PyList_Size(list);
if (n <0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_Getltem(list, i); /* Can't fail */
if (IPyInt_Check(item)) continue; /* Skip non-integers */
total += PyInt_AsLong(item);
}

return total;

long
sum_sequence(PyObject *sequence)
{ . .
int i, n;
long total = O;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_Getltem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyInt_Check(item))
total += PyInt_AsLong(item);
Py_DECREF(item); /* Discard reference ownership */
}

return total;

1.2.2 Types

There are few other data types that play a significant role in the Python/C API; most are simple C typesrsuch as

long , double andchar* . A few structure types are used to describe static tables used to list the functions exported
by a module or the data attributes of a new object type, and another is used to describe the value of a complex number.
These will be discussed together with the functions that use them.

1.3 Exceptions

The Python programmer only needs to deal with exceptions if specific error handling is required; unhandled exceptions
are automatically propagated to the caller, then to the caller’s caller, and so on, until they reach the top-level interpreter,

1.3. Exceptions 5

where they are reported to the user accompanied by a stack traceback.

For C programmers, however, error checking always has to be explicit. All functions in the Python/C API can raise
exceptions, unless an explicit claim is made otherwise in a function’s documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that it owns, and returns an error indicator
— usuallyNULLor -1 . A few functions return a Boolean true/false result, with false indicating an error. Very few
functions return no explicit error indicator or have an ambiguous return value, and require explicit testing for errors
with PyErr _Occurred()

Exception state is maintained in per-thread storage (this is equivalent to using global storage in an unthreaded appli-
cation). A thread can be in one of two states: an exception has occurred, or not. The fiy&ron_Occurred()

can be used to check for this: it returns a borrowed reference to the exception type object when an exception has
occurred, andNULL otherwise. There are a number of functions to set the exception Byder _SetString()

is the most common (though not the most general) function to set the exception sta®yEand Clear() clears

the exception state.

The full exception state consists of three objects (all of which cahNUkeL): the exception type, the correspond-

ing exception value, and the traceback. These have the same meanings as the Python sysbgacts _type

sys.exc _value , andsys.exc _traceback ; however, they are not the same: the Python objects represent the
last exception being handled by a Pythton ... except statement, while the C level exception state only exists
while an exception is being passed on between C functions until it reaches the Python bytecode interpreter's main
loop, which takes care of transferring itdgs.exc _type and friends.

Note that starting with Python 1.5, the preferred, thread-safe way to access the exception state from Python code is
to call the function sys.exc _info() , which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a function which catches an exception will
save and restore its thread’s exception state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function overwriting the exception being handled; it
also reduces the often unwanted lifetime extension for objects that are referenced by the stack frames in the traceback.

As a general principle, a function that calls another function to perform some task should check whether the called
function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references
that it owns, and return an error indicator, but it shaubdiset another exception — that would overwrite the exception

that was just raised, and lose important information about the exact cause of the error.

A simple example of detecting exceptions and passing them on is shownsorthesequence() example above.

It so happens that that example doesn'’t need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like Python, we show the equivalent Python
code:

def incr_item(dict, key):
try:
item = dictlkey]
except KeyError:
item = 0
dictlkey] = item + 1

Here is the corresponding C code, in all its glory:

6 Chapter 1. Introduction

int

incr_item(PyObject *dict, PyObject *key)

{
/* Objects all initialized to NULL for Py _XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */

item = PyObject_Getltem(dict, key);
if (tem == NULL) {
[* Handle KeyError only: */
if ('PyErr_ExceptionMatches(PyExc_KeyError))
goto error;

/* Clear the error and use zero: */
PyErr_Clear();
item = Pyint_FromLong(OL);
if (item == NULL)
goto error;
}
const_one = Pyint_FromLong(1L);
if (const_one == NULL)
goto error;

incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;

if (PyObject_Setltem(dict, key, incremented_item) < 0)
goto error;

rv = 0; /* Success */

/* Continue with cleanup code */

error:
/* Cleanup code, shared by success and failure path */

/* Use Py _XDECREF() to ignore NULL references */
Py_XDECREF(item);

Py XDECREF(const_one);
Py_XDECREF(incremented_item);

return rv; /* -1 for error, O for success */

This example represents an endorsed use of gmo statement in C! It illustrates the use of
PyErr _ExceptionMatches() and PyErr _Clear() to handle specific exceptions, and the use of
Py_XDECREF() to dispose of owned references that mayNigLL (note the X' in the name;Py_DECREF()
would crash when confronted withNlLL reference). It is important that the variables used to hold owned references
are initialized toNULL for this to work; likewise, the proposed return value is initializedto(failure) and only set

to success after the final call made is successful.

1.4 Embedding Python

The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry
about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter

1.4. Embedding Python 7

can only be used after the interpreter has been initialized.

The basic initialization function iBy _Initialize() . This initializes the table of loaded modules, and creates the
fundamental modules_builtin ~ __, __main __, sys, andexceptions . It also initializes the module search
path 6ys.path).

Py _Initialize() does not set the “script argument lissy6.argv). If this variable is needed by Python code
that will be executed later, it must be set explicitly with a calPgSys _SetArgv(argc, argv) subsequent to the
call to Py_lInitialize()

On most systems (in particular, on Nk and Windows, although the details are slightly different),

Py _lInitialize() calculates the module search path based upon its best guess for the location of the standard
Python interpreter executable, assuming that the Python library is found in a fixed location relative to the Python in-
terpreter executable. In particular, it looks for a directory nantieghython2.3’ relative to the parent directory where

the executable namegython’ is found on the shell command search path (the environment variable PATH).

For instance, if the Python executable is found Mmsr/local/bin/python’, it will assume that the libraries are in
‘lusrflocal/lib/python2.3’. (In fact, this particular path is also the “fallback” location, used when no executable file
named python’ is found along PATH.) The user can override this behavior by setting the environment variable
PYTHONHOME, or insert additional directories in front of the standard path by setting PYTHONPATH.

The embedding application can steer the search by calRygSetProgramName(file) before calling

Py _Initialize() . Note that PYTHONHOME still overrides this and PYTHONPATH is still inserted in
front of the standard path. An application that requires total control has to provide its own implementation of
Py_GetPath() , Py_GetPrefix() , Py_GetExecPrefix() , andPy_GetProgramFullPath() (all de-

fined in ‘Modules/getpath.c’).

Sometimes, it is desirable to “uninitialize” Python. For instance, the application may want to start over (make another
call toPy _lInitialize()) or the application is simply done with its use of Python and wants to free all memory al-
located by Python. This can be accomplished by caltggFinalize() . The functionPy _lsInitialized()

returns true if Python is currently in the initialized state. More information about these functions is given in a later
chapter.

8 Chapter 1. Introduction

CHAPTER
TWO

The Very High Level Layer

The functions in this chapter will let you execute Python source code given in a file or a buffer, but they will not let
you interact in a more detailed way with the interpreter.

Several of these functions accept a start symbol from the grammar as a parameter. The available start symbols are
Py_eval _input , Py_file _input , andPy_single _input . These are described following the functions
which accept them as parameters.

Note also that several of these functions teffEE* parameters. On particular issue which needs to be handled
carefully is that theILE structure for different C libraries can be different and incompatible. Under Windows (at
least), it is possible for dynamically linked extensions to actually use different libraries, so care should be taken that
FILE* parameters are only passed to these functions if it is certain that they were created by the same library that the
Python runtime is using.

int Py_Main (int argc, char **argv)
The main program for the standard interpreter. This is made available for programs which embed Python. The
argc and argv parameters should be prepared exactly as those which are passed to a C prowent)’'s
function. It is important to note that the argument list may be modified (but the contents of the strings pointed to
by the argument list are not). The return value will be the integer passed $gdhexit() function,1 if the
interpreter exits due to an exception,if the parameter list does not represent a valid Python command line.

int PyRun_AnyFile (FILE *fp, char *filenam¢
If fp refers to a file associated with an interactive device (console or terminal inputior pseudo-terminal),
return the value odPyRun_InteractiveLoop() , otherwise return the result 8fyRun_SimpleFile()
If flenameis NULL, this function use&???" as the filename.

int PyRun_SimpleString (char *commangl
Executes the Python source code froommandn the __main __ module. If __main __ does not already
exist, it is created. Returrson success ofl if an exception was raised. If there was an error, there is no way
to get the exception information.

int PyRun_SimpleFile (FILE *fp, char *filenamé
Similar to PyRun_SimpleString() , but the Python source code is read frégrinstead of an in-memory
string. filenameshould be the name of the file.

int PyRun_lInteractiveOne (FILE *fp, char *filenamé
Read and execute a single statement from a file associated with an interactive deYilsmarfieis NULL,
"???" is used instead. The user will be prompted usigg.psl andsys.ps2 . ReturnsO) when the input
was executed successfully, if there was an exception, or an error code from taecode.h’ include file
distributed as part of Python if there was a parse error. (Note ¢habtle.h’ is not included by Python.h’, so
must be included specifically if needed.)

int PyRun_lInteractiveLoop (FILE *fp, char *filenamé
Read and execute statements from a file associated with an interactive deviegoaisilreached. Ifilename
is NULL, "???" is used instead. The user will be prompted usipg.psl andsys.ps2 . Return) ateOF.

struct _node* PyParser _SimpleParseString (char *str, int starf
Parse Python source code fraim using the start tokestart. The result can be used to create a code object
which can be evaluated efficiently. This is useful if a code fragment must be evaluated many times.

struct _node* PyParser _SimpleParseFile (FILE *fp, char *filename, int stait
Similar toPyParser _SimpleParseString() , but the Python source code is read fréprnstead of an
in-memory stringfilenameshould be the name of the file.

PyObject* PyRun_String (char *str, int start, PyObject *globals, PyObject *locals
Return valueNew reference
Execute Python source code fraatn in the context specified by the dictionarigiebalsandlocals The param-
eterstart specifies the start token that should be used to parse the source code.

Returns the result of executing the code as a Python objeisit bt if an exception was raised.

PyObject* PyRun_File (FILE *fp, char *filename, int start, PyObject *globals, PyObject *locals
Return valueNNew reference
Similar to PyRun_String() , but the Python source code is read fréprinstead of an in-memory string.
filenameshould be the name of the file.

PyObject* Py_CompileString (char *str, char *filename, int stajt
Return valueNew reference
Parse and compile the Python source codstinreturning the resulting code object. The start token is given
by start; this can be used to constrain the code which can be compiled and shoitg leeal _input ,
Py_file _input , orPy_single _input . The filename specified dilenameis used to construct the code
object and may appear in tracebacksSyntaxError exception messages. This retuMBLL if the code
cannot be parsed or compiled.

int Py_eval _input
The start symbol from the Python grammar for isolated expressions; for us@yiompileString()

int Py_file _input
The start symbol from the Python grammar for sequences of statements as read from a file or other source; for
use withPy_CompileString() . This is the symbol to use when compiling arbitrarily long Python source
code.

int Py_single _input

The start symbol from the Python grammar for a single statement; for us@witGompileString() . This
is the symbol used for the interactive interpreter loop.

10 Chapter 2. The Very High Level Layer

CHAPTER
THREE

Reference Counting

The macros in this section are used for managing reference counts of Python objects.

void

void

void

void

The

Py

Py_INCREH PyObject *g
Increment the reference count for objectThe object must not bHULL; if you aren’t sure that it isn'NULL,
usePy_XINCREF() .

Py_XINCREK PyObject *9
Increment the reference count for objecfThe object may b&lULL, in which case the macro has no effect.

Py_DECREF PyObject *9
Decrement the reference count for objecThe object must not bULL; if you aren’t sure that it isn'NULL,
usePy_XDECREF(). If the reference count reaches zero, the object’s type’s deallocation function (which must
not beNULL) is invoked.

Warning: The deallocation function can cause arbitrary Python code to be invoked (e.g. when a class instance
with a __del __() method is deallocated). While exceptions in such code are not propagated, the executed
code has free access to all Python global variables. This means that any object that is reachable from a global
variable should be in a consistent state beRye DECREF() is invoked. For example, code to delete an object

from a list should copy a reference to the deleted object in a temporary variable, update the list data structure,
and then calPy_DECREF() for the temporary variable.

Py_XDECREFEPyObject *g
Decrement the reference count for objectThe object may b&ULL, in which case the macro has no effect;
otherwise the effect is the same asRyr_DECREF(), and the same warning applies.

following functions or macros are only for use within the interpreter corePy_Dealloc()
ForgetReference() , _Py_NewReference() , as well as the global variable®?y_RefTotal

11

12

CHAPTER
FOUR

Exception Handling

The functions described in this chapter will let you handle and raise Python exceptions. It is important to understand
some of the basics of Python exception handling. It works somewhat likentive &frno variable: there is a global
indicator (per thread) of the last error that occurred. Most functions don't clear this on success, but will set it to indicate
the cause of the error on failure. Most functions also return an error indicator, ublidlly if they are supposed to

return a pointer, ofl if they return an integer (exception: tlyArg _*() functions returrl for success an@ for

failure).

When a function must fail because some function it called failed, it generally doesn’t set the error indicator; the
function it called already set it. It is responsible for either handling the error and clearing the exception or returning
after cleaning up any resources it holds (such as object references or memory allocations); inshoafdinue
normally if it is not prepared to handle the error. If returning due to an error, it is important to indicate to the caller
that an error has been set. If the error is not handled or carefully propagated, additional calls into the Python/C API
may not behave as intended and may fail in mysterious ways.

The error indicator consists of three Python objects corresponding to the Python vasghlesc _type ,
sys.exc _value andsys.exc _traceback . API functions exist to interact with the error indicator in various
ways. There is a separate error indicator for each thread.

void PyErmr _Print ()
Print a standard tracebackdygs.stderr and clear the error indicator. Call this function only when the error
indicator is set. (Otherwise it will cause a fatal error!)

PyObject* PyErr _Occurred ()
Return value Borrowed reference
Test whether the error indicator is set. If set, return the excepyipa(the first argument to the last call to
one of thePyErr _Set*() functions or toPyErr _Restore()). If not set, returrNULL You do not own a
reference to the return value, so you do not neeeiytoDECREF() it. Note: Do not compare the return value
to a specific exception; useyErr _ExceptionMatches() instead, shown below. (The comparison could
easily fail since the exception may be an instance instead of a class, in the case of a class exception, or it may
the a subclass of the expected exception.)

int PyErr _ExceptionMatches (PyObject *exg
Equivalent to PyErr _GivenExceptionMatches(PyErr _Occurred(), exq '. This should only be
called when an exception is actually set; a memory access violation will occur if no exception has been raised.

int PyErr _GivenExceptionMatches (PyObject *given, PyObject *eXc
Return true if thegivenexception matches the exceptiondrc If excis a class object, this also returns true
whengivenis an instance of a subclassekcis a tuple, all exceptions in the tuple (and recursively in subtuples)
are searched for a match.divenis NULL, a memory access violation will occur.

void PyErr _NormalizeException (PyObject**exc, PyObject**val, PyObject**{b
Under certain circumstances, the values returneeyirr _Fetch() below can be “unnormalized”, meaning
that* excis a class object butval is not an instance of the same class. This function can be used to instantiate
the class in that case. If the values are already normalized, nothing happens. The delayed normalization is

13

implemented to improve performance.

void PyErr _Clear ()
Clear the error indicator. If the error indicator is not set, there is no effect.

void PyErmr _Fetch (PyObject **ptype, PyObject **pvalue, PyObject **ptraceback
Retrieve the error indicator into three variables whose addresses are passed. If the error indicator is not set, set
all three variables tblULL If it is set, it will be cleared and you own a reference to each object retrieved. The
value and traceback object may B&LL even when the type object is ndiote: This function is normally
only used by code that needs to handle exceptions or by code that needs to save and restore the error indicator
temporarily.

void PyErr _Restore (PyObject *type, PyObject *value, PyObject *traceback
Set the error indicator from the three objects. If the error indicator is already set, it is cleared first. If the objects
are NULL, the error indicator is cleared. Do not pasdldLL type and norNULL value or traceback. The
exception type should be a class. Do not pass an invalid exception type or value. (Violating these rules will
cause subtle problems later.) This call takes away a reference to each object: you must own a reference to each
object before the call and after the call you no longer own these references. (If you don’t understand this, don't
use this function. | warned youMNote: This function is normally only used by code that needs to save and
restore the error indicator temporarily; U8gErr _Fetch() to save the current exception state.

void PyErr _SetString (PyObject *type, char *messape
This is the most common way to set the error indicator. The first argument specifies the exception type; it is
normally one of the standard exceptions, €gExc _RuntimeError . You need not increment its reference
count. The second argument is an error message; it is converted to a string object.

void PyErr _SetObject (PyObject *type, PyObject *valje
This function is similar toPyErr _SetString() but lets you specify an arbitrary Python object for the
“value” of the exception.

PyObject* PyErr _Format (PyObject *exception, const char *format)...

Return value:AlwaysNULL
This function sets the error indicator and retuMiSLL. exceptionshould be a Python exception (class, not an
instance) formatshould be a string, containing format codes, similariatf() . Thewidth.precision

before a format code is parsed, but the width part is ignored.
Character | Meaning

‘c’ Character, as aint parameter

‘d’ Number in decimal, as ant parameter

‘x’ Number in hexadecimal, as arnt parameter
‘s’ A string, as a&char * parameter

‘P’ A hex pointer, as &oid * parameter

An unrecognized format character causes all the rest of the format string to be copied as-is to the result string,
and any extra arguments discarded.

void PyErr _SetNone (PyObiject *typ¢
This is a shorthand folPyErr _SetObject(typg Py _None)'.

int PyErr _BadArgument ()
This is a shorthand folPyErr _SetString(PyExc _TypekError, message’, where messagéndicates
that a built-in operation was invoked with an illegal argument. It is mostly for internal use.

PyObject* PyErr _NoMemory()
Return value AlwaysNULL
Thisis a shorthand foPyErr _SetNone(PyExc _MemoryError) ’;itreturnsNULLso an object allocation
function can write feturn PyErr _NoMemory(); ’'when it runs out of memory.

PyObject* PyErr _SetFromErmo (PyObject *typé
Return value:AlwaysNULL
This is a convenience function to raise an exception when a C library function has returned an error and set the C

14 Chapter 4. Exception Handling

variableerrno . It constructs a tuple object whose first item is the integgano value and whose second item

is the corresponding error message (gotten febrarror()), and then callsPyErr _SetObject(type
objec)’. On UNIX, when theerrno value is EINTR, indicating an interrupted system call, this calls
PyErr _CheckSignals() , and if that set the error indicator, leaves it set to that. The function always returns
NULL, so a wrapper function around a system call can wrgeurn PyErr _SetFromErrno(type; ’

when the system call returns an error.

PyObject* PyErr _SetFromErrnoWithFilename (PyObject *type, char *filename
Return value AlwaysNULL
Similar toPyErr _SetFromErrno() , with the additional behavior that filenameis notNULL, it is passed
to the constructor dfypeas a third parameter. In the case of exceptions sut@BEsgor andOSError |, this
is used to define thBlename attribute of the exception instance.

PyObject* PyErr _SetFromWindowsErr (intierr)
Return value:AlwaysNULL
This is a convenience function to raigéindowsError . If called withierr of 0, the error code returned by
a call to GetLastError() is used instead. It calls the Win32 functidiormatMessage() to retrieve
the Windows description of error code given lg&yr or GetLastError() , then it constructs a tuple ob-
ject whose first item is thirr value and whose second item is the corresponding error message (gotten from
FormatMessage()), and then callsPyErr _SetObject(PyExc WindowsError objec) *. This func-
tion always return®lULL Availability: Windows.

PyObject* PyErr _SetExcFromWindowsErr (PyObject *type, int iery
Similar toPyErr _SetFromWindowsErr() , with an additional parameter specifying the exception type to
be raised. Availability: Windows. New in version 2.3.

PyObject* PyErr _SetFromWindowsErrWithFilename (intierr, char *filenameg
Return value: AlwaysNULL
Similar toPyErr _SetFromWindowsErr() , with the additional behavior that flenameis notNULL, it is
passed to the constructorfindowsError as a third parameter. Availability: Windows.

PyObject* PyErr _SetExcFromWindowsErrWithFilename (PyObject *type, int ierr, char *filename
Similar toPyErr _SetFromWindowsErrWithFilename() , With an additional parameter specifying the
exception type to be raised. Availability: Windows. New in version 2.3.

void PyErr _BadinternalCall 0

This is a shorthand folPyErr _SetString(PyExc _TypekError, message’, where messagéndicates
that an internal operation (e.g. a Python/C API function) was invoked with an illegal argument. It is mostly for
internal use.

int PyErr _Warn(PyObject *category, char *message
Issue a warning message. Toategoryargument is a warning category (see belowNaJLL; the message
argument is a message string.

This function normally prints a warning messagest®.stderr however, it is also possible that the user has
specified that warnings are to be turned into errors, and in that case this will raise an exception. Itis also possible
that the function raises an exception because of a problem with the warning machinery (the implementation
imports thewarnings module to do the heavy lifting). The return valueisf no exception is raised, ot

if an exception is raised. (It is not possible to determine whether a warning message is actually printed, nor
what the reason is for the exception; this is intentional.) If an exception is raised, the caller should do its normal
exception handling (for examplPy _DECREF() owned references and return an error value).

Warning categories must be subclassed\arning ; the default warning category RuntimeWarning

The standard Python warning categories are available as global variables whose namgEare *
followed by the Python exception name. These have the By@bject* ; they are all class objects.
Their names are PyExc _Warning , PyExc _UserWarning , PyExc _DeprecationWarning
PyExc _SyntaxWarning PyExc _RuntimeWarning and PyExc _FutureWarning

PyExc _Warning is a subclass oPyExc _Exception ; the other warning categories are subclasses
of PyExc _Warning .

15

int

int

void

For information about warning control, see the documentation fowtreings module and theW option in
the command line documentation. There is no C API for warning control.

PyErr _WarnExplicit (PyObject *category, char *message, char *filename, int lineno, char *module, Py-

Object *registry
Issue a warning message with explicit control over all warning attributes. This is a straightforward wrapper
around the Python functiowarnings.warn _explicit() , see there for more information. Theodule

andregistryarguments may be set MULLto get the default effect described there.

PyErr _CheckSignals ()

This function interacts with Python’s signal handling. It checks whether a signal has been sent to the processes
and if so, invokes the corresponding signal handler. Isigeal module is supported, this can invoke a signal
handler written in Python. In all cases, the default effectSBINT is to raise theKeyboardinterrupt

exception. If an exception is raised the error indicator is set and the function rétuntiserwise the function
returns0. The error indicator may or may not be cleared if it was previously set.

PyErr _Setinterrupt 0
This function is obsolete. It simulates the effect of AGINT signal arriving — the next time
PyErr _CheckSignals() is called, Keyboardinterrupt will be raised. It may be called without
holding the interpreter lock.

PyObject* PyErr _NewException (char *name, PyObject *base, PyObject *dict

void

Return valueNNew reference

This utility function creates and returns a new exception object. riEmeeargument must be the name of the
new exception, a C string of the formodule.class . Thebaseanddict arguments are normaljULL This
creates a class object derived from the root for all exceptions, the built-in Baosgption (accessible in C as
PyExc _Exception). The__module __ attribute of the new class is set to the first part (up to the last dot)
of thenameargument, and the class name is set to the last part (after the last dotha3émrgument can be
used to specify an alternate base class. dibeargument can be used to specify a dictionary of class variables
and methods.

PyErr _WriteUnraisable (PyObject *ob)
This utility function prints a warning messagedys.stderr when an exception has been set but it is impos-
sible for the interpreter to actually raise the exception. It is used, for example, when an exception occurs in an
__del __() method.

The function is called with a single argumenij that identifies where the context in which the unraisable
exception occurred. The repr obj will be printed in the warning message.

4.1 Standard Exceptions

All standard Python exceptions are available as global variables whose namegtxe ' followed by the Python
exception name. These have the typgObject* ; they are all class objects. For completeness, here are all the
variables:

16

Chapter 4. Exception Handling

Notes:

(1) This is a base class for other standard exceptions.

C Name Python Name Notes
PyExc _Exception Exception Q)
PyExc _StandardError StandardError Q)
PyExc _ArithmeticError ArithmeticError Q)
PyExc _LookupError LookupError D
PyExc _AssertionError AssertionError

PyExc _AttributeError AttributeError

PyExc _EOFError EOFError

PyExc _EnvironmentError EnvironmentError Q)
PyExc _FloatingPointError FloatingPointError

PyExc _IOError IOError

PyExc _ImportError ImportError

PyExc _IndexError IndexError

PyExc _KeyError KeyError

PyExc _Keyboardinterrupt KeyboardInterrupt

PyExc _MemoryError MemoryError

PyExc _NameError NameError

PyExc _NotImplementedError NotimplementedError

PyExc _OSError OSError

PyExc _OverflowError OverflowError

PyExc _ReferenceError ReferenceError 2)
PyExc _RuntimeError RuntimeError

PyExc _SyntaxError SyntaxError

PyExc _SystemError SystemError

PyExc _SystemEXxit SystemEXxit

PyExc _TypeError TypeError

PyExc _ValueError ValueError

PyExc _WindowsError WindowsError 3)

PyExc _ZeroDivisionError

(2) This is the same aseakref.ReferenceError

ZeroDivisionError

(3) Only defined on Windows; protect code that uses this by testing that the preprocessoM&BadtNDOWE

defined.

4.2 Deprecation of String Exceptions

All exceptions built into Python or provided in the standard library are derived Egogption

String exceptions are still supported in the interpreter to allow existing code to run unmodified, but this will also

change in a future release.

4.2. Deprecation of String Exceptions

17

18

CHAPTER
FIVE

Utilities

The functions in this chapter perform various utility tasks, ranging from helping C code be more portable across
platforms, using Python modules from C, and parsing function arguments and constructing Python values from C
values.

5.1 Operating System Utilities

int

long

void

int

Py _FdisInteractive (FILE *fp, char *filenamé
Return true (nonzero) if the standard I/O fipavith namefilenames deemed interactive. This is the case for files
for which ‘isatty(fileno(fp)) ’is true. If the global flagPy _InteractiveFlag is true, this function

also returns true if théilenamepointer isNULL or if the name is equal to one of the stringstdin>’ or
arard

PyOS_GetLastModificationTime (char *filenameg
Return the time of last modification of the fiilename The result is encoded in the same way as the timestamp
returned by the standard C library functitime()

PyOS_AfterFork ()
Function to update some internal state after a process fork; this should be called in the new process if the Python
interpreter will continue to be used. If a new executable is loaded into the new process, this function does not
need to be called.

PyOS_CheckStack ()

Return true when the interpreter runs out of stack space. This is a reliable check, but is only available when
USE_STACKCHECIKs defined (currently on Windows using the Microsoft VisuattCcompiler and on the
Macintosh).USE_CHECKSTACHIll be defined automatically; you should never change the definition in your
own code.

PyOS_ sighandler _t PyOS getsig (inti)

Return the current signal handler for signal This is a thin wrapper around eithaigaction() or
signal() . Do not call those functions directly!PyOS sighandler _t is a typedef alias fowoid
(*)(int)

PyOS sighandler _t PyOS setsig (inti, PyOS sighandlert h)

Set the signal handler for signato beh; return the old signal handler. This is a thin wrapper around either
sigaction() orsignal() . Do not call those functions directlyPyOS sighandler _t is a typedef
alias forvoid (*)(int)

19

5.2 Process Control

void Py_FatalError (const char *message
Print a fatal error message and kill the process. No cleanup is performed. This function should only be invoked
when a condition is detected that would make it dangerous to continue using the Python interpreter; e.g., when
the object administration appears to be corrupted. @mxUthe standard C library functicabort() is called
which will attempt to produce aore’ file.

void Py_Exit (intstatug
Exit the current process. This calRy_Finalize() and then calls the standard C library function
exit(statug .

int Py_AtExit (void (*func) ())
Register a cleanup function to be called By_Finalize() . The cleanup function will be called with no
arguments and should return no value. At most 32 cleanup functions can be registered. When the registration
is successfulRy _AtExit() returns0; on failure, it returns1 . The cleanup function registered last is called
first. Each cleanup function will be called at most once. Since Python’s internal finallization will have completed
before the cleanup function, no Python APIs should be callefditgy

5.3 Importing Modules

PyObject* Pylmport _ImportModule (char *name
Return valueNew reference
This is a simplified interface t®ylmport _ImportModuleEx() below, leaving theglobals and locals
arguments set thlULL. When thenameargument contains a dot (when it specifies a submodule of a package),
thefromlistargument is set to the li§t’] so that the return value is the named module rather than the top-
level package containing it as would otherwise be the case. (Unfortunately, this has an additional side effect
whennamein fact specifies a subpackage instead of a submodule: the submodules specified in the package’s
__all __ variable are loaded.) Return a new reference to the imported modiNi&Jldrwith an exception set
on failure (the module may still be created in this case — exasysanodules to find out).

PyObject* Pylmport _ImportModuleEx (char *name, PyObject *globals, PyObject *locals, PyObject
*fromlist)
Return valueNew reference
Import a module. This is best described by referring to the built-in Python functiamport __() , as the
standard__import __() function calls this function directly.

The return value is a new reference to the imported module or top-level packagelLarwith an exception
set on failure (the module may still be created in this case). Like famport __() , the return value when
a submodule of a package was requested is normally the top-level package, unless a ndmettigtyvas
given.

PyObject* Pylmport _Import (PyObject *namg
Return valueNew reference
This is a higher-level interface that calls the current “import hook function”. It invokes thmport __()
function from the__builtins __ of the current globals. This means that the import is done using whatever
import hooks are installed in the current environment, e.gelsgc orihooks .

PyObject* Pylmport _ReloadModule (PyObject*n)
Return valueNew reference
Reload a module. This is best described by referring to the built-in Python funetimend() , as the standard
reload() function calls this function directly. Return a new reference to the reloaded modN&Jldrwith
an exception set on failure (the module still exists in this case).

PyObject* Pylmport _AddModule (char *nameg
Return value Borrowed reference

20 Chapter 5. Utilities

Return the module object corresponding to a module name. riEime argument may be of the form
package.module). First check the modules dictionary if there's one there, and if not, create a new one
and insert it in the modules dictionary. RetiNk/LL with an exception set on failuré&lote: This function does

not load or import the module; if the module wasn't already loaded, you will get an empty module object. Use
Pylmport _ImportModule() or one of its variants to import a module. Package structures implied by a
dotted name fonameare not created if not already present.

PyObject* Pylmport _ExecCodeModule (char *name, PyObject *cp
Return valueNNew reference
Given a module name (possibly of the fopackage.module) and a code object read from a Python bytecode
file or obtained from the built-in functiooompile() , load the module. Return a new reference to the module
object, orNULL with an exception set if an error occurred (the module may still be created in this case). This
function would reload the module if it was already imported.néfimepoints to a dotted name of the form
package.module , any package structures not already created will still not be created.

long Pylmport _GetMagicNumber ()
Return the magic number for Python bytecode files (a.kpgcand ‘.pyo’ files). The magic number should be
present in the first four bytes of the bytecode file, in little-endian byte order.

PyObject* Pylmport _GetModuleDict ()
Return valueBorrowed reference
Return the dictionary used for the module administration (adya.modules). Note that this is a per-
interpreter variable.

void _Pylmport _Init ()
Initialize the import mechanism. For internal use only.

void Pylmport _Cleanup ()
Empty the module table. For internal use only.

void _Pylmport _Fini ()
Finalize the import mechanism. For internal use only.

PyObject* _Pylmport _FindExtension (char *, char *)
For internal use only.

PyObject* _Pylmport _FixupExtension (char*, char*)
For internal use only.

int Pylmport _ImportFrozenModule (char *nameg
Load a frozen module namethme Returnl for successQ if the module is not found, andl with
an exception set if the initialization failed. To access the imported module on a successful load, use
Pylmport _ImportModule() . (Note the misnomer — this function would reload the module if it was
already imported.)

struct _frozen
This is the structure type definition for frozen module descriptors, as generated [redlze utility (see
‘Tools/freeze/’ in the Python source distribution). Its definition, found include/import.h’, is:

struct _frozen {
char *name;
unsigned char *code;
int size;

}

struct _frozen* Pylmport _FrozenModules
This pointer is initialized to point to an array stfuct ~ _frozen records, terminated by one whose members
are alINULL or zero. When a frozen module is imported, it is searched in this table. Third-party code could
play tricks with this to provide a dynamically created collection of frozen modules.

int Pylmport _Appendinittab (char *name, void (*initfunc)(void)

5.3. Importing Modules 21

Add a single module to the existing table of built-in modules. This is a convenience wrapper around
Pylmport _Extendlnittab() , returning-1 if the table could not be extended. The new module can
be imported by the nameame and uses the functicimitfunc as the initialization function called on the first
attempted import. This should be called befBse_Initialize()

struct _inittab
Structure describing a single entry in the list of built-in modules. Each of these structures gives the name and
initialization function for a module built into the interpreter. Programs which embed Python may use an array of
these structures in conjunction witylmport _ExtendInittab() to provide additional built-in modules.
The structure is defined innclude/import.h’ as:

struct _inittab {
char *name;
void (*initfunc)(void);

%

int Pylmport _ExtendInittab ('struct _inittab *newtah)
Add a collection of modules to the table of built-in modules. Hesvtabarray must end with a sentinel entry
which containadNULL for the name field; failure to provide the sentinel value can result in a memory fault.
Returns0 on success ofl if insufficient memory could be allocated to extend the internal table. In the event
of failure, no modules are added to the internal table. This should be called Pgfohaitialize()

5.4 Data marshalling support

These routines allow C code to work with serialized objects using the same data formanzsrshal module.
There are functions to write data into the serialization format, and additional functions that can be used to read the
data back. Files used to store marshalled data must be opened in binary mode.

Numeric values are stored with the least significant byte first.

void PyMarshal _WriteLongToFile (long value, FILE *fil§
Marshal along integer,value to file. This will only write the least-significant 32 bits @alue regardless of
the size of the nativeong type.

void PyMarshal _WriteObjectToFile (PyObject *value, FILE *fil¢
Marshal a Python objectalue tofile.

PyObject* PyMarshal _WriteObjectToString (PyObject *valug
Return valueNew reference
Return a string object containing the marshalled representatiosl wé

The following functions allow marshalled values to be read back in.

XXX What about error detection? It appears that reading past the end of the file will always result in a negative
numeric value (where that's relevant), but it's not clear that negative values won't be handled properly when there’s no
error. What's the right way to tell? Should only non-negative values be written using these routines?

long PyMarshal _ReadLongFromFile (FILE *file)
Return a dong from the data stream infILE* opened for reading. Only a 32-bit value can be read in using
this function, regardless of the native sizdaig .

int PyMarshal _ReadShortFromFile (FILE *file)
Return a Cshort from the data stream in BILE* opened for reading. Only a 16-bit value can be read in
using this function, regardless of the native sizsludrt

PyObject* PyMarshal _ReadObjectFromFile (FILE *file)
Return valueNew reference
Return a Python object from the data stream iRlIlBE* opened for reading. On error, sets the appropriate

22 Chapter 5. Utilities

exception EOFError or TypeError) and returndNULL

PyObject* PyMarshal _ReadlLastObjectFromFile (FILE *file)
Return valueNew reference
Return a Python object from the data stream in FALE* opened for reading. Unlike
PyMarshal _ReadObjectFromFile() , this function assumes that no further objects will be read
from the file, allowing it to aggressively load file data into memory so that the de-serialization can operate from
data in memory rather than reading a byte at a time from the file. Only use these variant if you are certain
that you won't be reading anything else from the file. On error, sets the appropriate exc&@iBREror or
TypeError) and returndNULL

PyObject* PyMarshal _ReadObjectFromString (char *string, int len
Return valueNew reference
Return a Python object from the data stream in a character buffer cont&nibgtes pointed to bgtring. On
error, sets the appropriate excepti®@OFError or TypeError) and returnsNULL

5.5 Parsing arguments and building values

These functions are useful when creating your own extensions functions and methods. Additional information and
examples are available Extending and Embedding the Python Interpreter

The first three of these functions describBgArg _ParseTuple() , PyArg _ParseTupleAndKeywords() ,
andPyArg _Parse() , all useformat stringswhich are used to tell the function about the expected arguments. The
format strings use the same syntax for each of these functions.

A format string consists of zero or more “format units.” A format unit describes one Python object; it is usually a single
character or a parenthesized sequence of format units. With a few exceptions, a format unit that is not a parenthesized
sequence normally corresponds to a single address argument to these functions. In the following description, the
guoted form is the format unit; the entry in (round) parentheses is the Python object type that matches the format unit;
and the entry in [square] brackets is the type of the C variable(s) whose address should be passed.

‘s’ (string or Unicode object) [char *] Convert a Python string or Unicode object to a C pointer to a character string.
You must not provide storage for the string itself; a pointer to an existing string is stored into the character
pointer variable whose address you pass. The C string is NUL-terminated. The Python string must not contain
embedded NUL bytes; if it does,TaypeError exception is raised. Unicode objects are converted to C strings
using the default encoding. If this conversion fail¢)@icodeError s raised.

‘s#t’ (string, Unicode or any read buffer compatible object) [char *, int] This variant on §’ stores into two C
variables, the first one a pointer to a character string, the second one its length. In this case the Python string
may contain embedded null bytes. Unicode objects pass back a pointer to the default encoded string version of
the object if such a conversion is possible. All other read-buffer compatible objects pass back a reference to the
raw internal data representation.

‘z’ (string or None) [char *] Like ‘s’, but the Python object may also one, in which case the C pointer is set
to NULL

‘z#’ (string or None or any read buffer compatible object) [char *, int] Thisisto's#’as‘z’isto’‘s’.

‘u’ (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a NUL-terminated buffer
of 16-bit Unicode (UTF-16) data. As witls', there is no need to provide storage for the Unicode data buffer; a
pointer to the existing Unicode data is stored intoRlye UNICODBEpointer variable whose address you pass.

‘u#’ (Unicode object) [Py_UNICODE *, int] This variant on i’ stores into two C variables, the first one a pointer
to a Unicode data buffer, the second one its length. Non-Unicode objects are handled by interpreting their
read-buffer pointer as pointer toRy_UNICODEarray.

5.5. Parsing arguments and building values 23

‘es’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer] This
variant on 5§’ is used for encoding Unicode and objects convertible to Unicode into a character buffer. It only
works for encoded data without embedded NUL bytes.

This format requires two arguments. The first is only used as input, and musthag*a which points to the
name of an encoding as a NUL-terminated stringNat_L, in which case the default encoding is used. An
exception is raised if the named encoding is not known to Python. The second argument makab# a;

the value of the pointer it references will be set to a buffer with the contents of the argument text. The text will
be encoded in the encoding specified by the first argument.

PyArg _ParseTuple() will allocate a buffer of the needed size, copy the encoded data into this buffer and
adjust*buffer to reference the newly allocated storage. The caller is responsible for daliivigm Free()
to free the allocated buffer after use.

‘et ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same as ées’ except that 8-bit string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

‘es#’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer, int *buffer _length]
This variant on $#’ is used for encoding Unicode and objects convertible to Unicode into a character buffer.
Unlike the ‘es’ format, this variant allows input data which contains NUL characters.

It requires three arguments. The first is only used as input, and mustheea which points to the name of

an encoding as a NUL-terminated stringNWLL, in which case the default encoding is used. An exception is
raised if the named encoding is not known to Python. The second argument mugdtdy®*a ; the value of the

pointer it references will be set to a buffer with the contents of the argument text. The text will be encoded in
the encoding specified by the first argument. The third argument must be a pointer to an integer; the referenced
integer will be set to the number of bytes in the output buffer.

There are two modes of operation:

If *buffer points aNULL pointer, the function will allocate a buffer of the needed size, copy the encoded data
into this buffer and setbuffer to reference the newly allocated storage. The caller is responsible for calling
PyMem. Free() to free the allocated buffer after usage.

If *buffer points to a norNULL pointer (an already allocated buffeByArg _ParseTuple() will use this
location as the buffer and interpret the initial value*béffer_lengthas the buffer size. It will then copy the
encoded data into the buffer and NUL-terminate it. If the buffer is not large enoudalugError will be
set.

In both casestbuffer_lengthis set to the length of the encoded data without the trailing NUL byte.

‘et# ’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same asés# ' except that string objects are passed through without recoding them. Instead, the implementation
assumes that the string object uses the encoding passed in as parameter.

‘b’ (integer) [char] Convert a Python integer to a tiny int, stored in &l@r .

‘B’ (integer) [unsigned char] Convert a Python integer to a tiny int without overflow checking, stored in a C
unsigned char . New in version 2.3.

‘h’ (integer) [short int] Convert a Python integer to agbort int

‘H (integer) [unsigned short int] Convert a Python integer to a Gnsigned short int , without overflow
checking. New in version 2.3.

‘i’ (integer) [int] Convert a Python integer to a plainia@ .

‘I " (integer) [unsigned int] Convert a Python integer to ahisigned int , without overflow checking. New in
version 2.3.

‘l * (integer) [long int] Convert a Python integer to aléng int

24 Chapter 5. Utilities

‘k’ (integer) [unsigned long] Convert a Python integer to asigned long without overflow checking. New
in version 2.3.

‘L’ (integer) [PY _LONG _LONG] Convert a Python integer to aléng long . This format is only available on
platforms that suppotong long (or _int64 on Windows).

‘K’ (integer) [unsigned PY_LONG _LONG] Convert a Python integer to a hsigned long long without
overflow checking. This format is only available on platforms that supposigned long long (or
unsigned _int64 on Windows). New in version 2.3.

‘c’ (string of length 1) [char] Convert a Python character, represented as a string of length 1, ¢tharC
‘f’ (float) [float] Convert a Python floating point number to dl@at

‘d’ (float) [double] Convert a Python floating point number to al@uble .

‘D (complex) [Py_complex] Convert a Python complex number to @§_complex structure.

‘O (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The C program thus
receives the actual object that was passed. The object’s reference count is not increased. The pointer stored is
notNULL

‘O!l" (object) [typeobjectPyObject *] Store a Python object in a C object pointer. This is similarQo but takes
two C arguments: the first is the address of a Python type object, the second is the address of the C variable (of
type PyObject*) into which the object pointer is stored. If the Python object does not have the required type,
TypeError s raised.

‘O& (object) [converter anything] Convert a Python object to a C variable througtoaverterfunction. This takes
two arguments: the first is a function, the second is the address of a C variable (of arbitrary type), converted to
void * . Theconverterfunction in turn is called as follows:

status = converte(object addres};

whereobjectis the Python object to be converted aaddressis the void* argument that was passed to
the PyArg _Parse*() function. The returnedtatusshould bel for a successful conversion afdif the
conversion has failed. When the conversion fails,abeverterfunction should raise an exception.

‘S’ (string) [PyStringObject *] Like ‘O but requires that the Python object is a string object. Raisg®Error
if the object is not a string object. The C variable may also be declarBg@bject*

‘U (Unicode string) [PyUnicodeObject *] Like ‘O but requires that the Python object is a Unicode object. Raises
TypeError if the object is not a Unicode object. The C variable may also be declafegQisject*

‘t# ’ (read-only character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-only
buffer interface. Thehar* variable is set to point to the first byte of the buffer, andittte is set to the length
of the buffer. Only single-segment buffer objects are accefigaeError s raised for all others.

‘W (read-write character buffer) [char *] Similar to ‘s’, but accepts any object which implements the read-write
buffer interface. The caller must determine the length of the buffer by other means, ev#isestead. Only
single-segment buffer objects are acceplggieError s raised for all others.

‘w# (read-write character buffer) [char *, int] Like ‘s#’, but accepts any object which implements the read-write
buffer interface. Thehar * variable is set to point to the first byte of the buffer, anditite is set to the
length of the buffer. Only single-segment buffer objects are accepigatError s raised for all others.

‘(item9’ (tuple) [matching-item$ The object must be a Python sequence whose length is the number of format units
in items The C arguments must correspond to the individual format uniteiins Format units for sequences
may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the individual pa-
rameters, not an arbitrary sequence. Code which previously cdygedError to be raised here may now
proceed without an exception. This is not expected to be a problem for existing code.

5.5. Parsing arguments and building values 25

It is possible to pass Python long integers where integers are requested; however no proper range checking is done —
the most significant bits are silently truncated when the receiving field is too small to receive the value (actually, the
semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses. They are:

‘| * Indicates that the remaining arguments in the Python argument list are optional. The C variables corresponding
to optional arguments should be initialized to their default value — when an optional argument is not specified,
PyArg _ParseTuple() does not touch the contents of the corresponding C variable(s).

‘1’ The list of format units ends here; the string after the colon is used as the function name in error messages (the
“associated value” of the exception thiArg _ParseTuple() raises).

‘; 7 The list of format units ends here; the string after the semicolon is used as the error niestsagef the default
error message. Clearly,* and ‘; " mutually exclude each other.

Note that any Python object references which are provided to the callboeevedreferences; do not decrement
their reference count!

Additional arguments passed to these functions must be addresses of variables whose type is determined by the format
string; these are used to store values from the input tuple. There are a few cases, as described in the list of format units
above, where these parameters are used as input values; they should match what is specified for the corresponding
format unit in that case.

For the conversion to succeed, tg object must match the format and the format must be exhausted. On success,
thePyArg _Parse*() functions return true, otherwise they return false and raise an appropriate exception.

int PyArg _ParseTuple (PyObject*args, char *format,).
Parse the parameters of a function that takes only positional parameters into local variables. Returns true on
success; on failure, it returns false and raises the appropriate exception.

int PyArg _ParseTupleAndKeywords (PyObject *args, PyObject *kw, char *format, char *keywords]]) ...
Parse the parameters of a function that takes both positional and keyword parameters into local variables. Re-
turns true on success; on failure, it returns false and raises the appropriate exception.

int PyArg _Parse (PyObject *args, char *format,).
Function used to deconstruct the argument lists of “old-style” functions — these are functions which use the
METHOLDARG$arameter parsing method. This is not recommended for use in parameter parsing in new
code, and most code in the standard interpreter has been modified to no longer use this for that purpose. It does
remain a convenient way to decompose other tuples, however, and may continue to be used for that purpose.

int PyArg _UnpackTuple (PyObject *args, char *name, int min, int max,...
A simpler form of parameter retrieval which does not use a format string to specify the types of the arguments.
Functions which use this method to retrieve their parameters should be declMEd HS/ARARG$ function
or method tables. The tuple containing the actual parameters should be passgdg é&smust actually be
a tuple. The length of the tuple must be at leash and no more thamax min and maxmay be equal.
Additional arguments must be passed to the function, each of which should be a pointey@bgect*
variable; these will be filled in with the values froangs they will contain borrowed references. The variables
which correspond to optional parameters not giveratgs will not be filled in; these should be initialized by
the caller. This function returns true on success and falsyffis not a tuple or contains the wrong number of
elements; an exception will be set if there was a failure.

This is an example of the use of this function, taken from the sources farnvtieakref helper module for
weak references:

26 Chapter 5. Utilities

static PyObject *
weakref_ref(PyObject *self, PyObject *args)
{

PyObject *object;

PyObject *callback = NULL;

PyObject *result = NULL;

if (PyArg_UnpackTuple(args, "ref’, 1, 2, &object, &callback)) {
result = PyWeakref_NewRef(object, callback);
}

return result;

}

The call to PyArg _UnpackTuple() in this example is entirely equivalent to this call to
PyArg _ParseTuple()

PyArg_ParseTuple(args, "O|O:ref", &object, &callback)

New in version 2.2.

PyObject* Py_BuildvValue (char *format, ..)
Return valueNew reference
Create a new value based on a format string similar to those accepted ByAhg _Parse*() family of
functions and a sequence of values. Returns the valddUtil in the case of an error; an exception will be
raised ifNULLIis returned.

Py_BuildValue() does not always build a tuple. It builds a tuple only if its format string contains two or
more format units. If the format string is empty, it retutdgne; if it contains exactly one format unit, it returns
whatever object is described by that format unit. To force it to return a tuple of size 0 or one, parenthesize the
format string.

When memory buffers are passed as parameters to supply data to build objects, as &rathe ‘s#’
formats, the required data is copied. Buffers provided by the caller are never referenced by the objects
created byPy_BuildValue() . In other words, if your code invokemalloc() and passes the allo-
cated memory td’y_BuildValue() , your code is responsible for calliffgee() for that memory once
Py_BuildValue() returns.

In the following description, the quoted form is the format unit; the entry in (round) parentheses is the Python
object type that the format unit will return; and the entry in [square] brackets is the type of the C value(s) to be
passed.

The characters space, tab, colon and comma are ignored in format strings (but not within format units such as
‘s#’). This can be used to make long format strings a tad more readable.

‘s’ (string) [char *] Convert a null-terminated C string to a Python object. If the C string pointB{UEL,
None is used.

‘s#’ (string) [char *, int] Convert a C string and its length to a Python object. If the C string pointétisL,
the length is ignored andone is returned.

‘2’ (string or None) [char *] Same ass’.
‘z#’ (string or None) [char *, int] Same ass#'.

‘u’ (Unicode string) [Py_UNICODE *] Convert a null-terminated buffer of Unicode (UCS-2) data to a Python
Unicode object. If the Unicode buffer pointerN8JLL, None is returned.

‘u#t’ (Unicode string) [Py_UNICODE *, int] Convert a Unicode (UCS-2) data buffer and its length to a Python
Unicode object. If the Unicode buffer pointerN8JLL, the length is ignored andone is returned.

‘i’ (integer) [int] Convert a plain Gnt to a Python integer object.

5.5. Parsing arguments and building values 27

‘b’ (integer) [char] Same asi*’.

‘h’ (integer) [short int] Same asi*’.

‘| * (integer) [long int] Convert a dong int to a Python integer object.

‘c’ (string of length 1) [char] Convert a Ant representing a character to a Python string of length 1.
‘d’ (float) [double] Convert a Cdouble to a Python floating point number.

‘f’ (float) [float] Same asd’.

‘D (complex) [Py_complex *]Convert a CPy_complex structure to a Python complex number.

‘O (object) [PyObject *] Pass a Python object untouched (except for its reference count, which is incremented
by one). If the object passed in isNULL pointer, it is assumed that this was caused because the call
producing the argument found an error and set an exception. TherefarBuildValue() will return
NULL but won't raise an exception. If no exception has been raisedystemError is set.

‘S’ (object) [PyObject *] Same asO.
‘U (object) [PyObiject *] Same asO.

‘N’ (object) [PyObject *] Same asO, except it doesn’t increment the reference count on the object. Useful
when the object is created by a call to an object constructor in the argument list.

‘O& (object) [converter anything] Convertanythingto a Python object throughanverterfunction. The func-
tion is called withanything(which should be compatible witroid *) as its argument and should return
a “new” Python object, oNULL if an error occurred.

‘(item9 ’ (tuple) [matching-item$Convert a sequence of C values to a Python tuple with the same number of
items.

‘[itemg ’ (list) [matching-item$Convert a sequence of C values to a Python list with the same number of items.

‘{itemg ’ (dictionary) [matching-item$Convert a sequence of C values to a Python dictionary. Each pair of
consecutive C values adds one item to the dictionary, serving as key and value, respectively.

If there is an error in the format string, tiSystemError exception is set andULL returned.

28

Chapter 5. Utilities

CHAPTER
SIX

Abstract Objects Layer

The functions in this chapter interact with Python objects regardless of their type, or with wide classes of object types
(e.g. all numerical types, or all sequence types). When used on object types for which they do not apply, they will
raise a Python exception.

6.1 Object Protocol

int PyObject _Print (PyObject*o, FILE *fp, int flagk
Print an objecb, on filefp. Returns-1 on error. The flags argument is used to enable certain printing options.
The only option currently supported®y_PRINT_RAWiIf given, thestr() of the object is written instead of
therepr()

int PyObject _HasAttrString (PyObject *o, char *attr namé
Returnsl if o has the attributattr_name and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttrString (PyObject *o, char *attr nam¢
Return valueNew reference
Retrieve an attribute nameditr_namefrom objecto. Returns the attribute value on succes$\\Ot Lon failure.
This is the equivalent of the Python expressiondttr_name.

int PyObject _HasAttr (PyObject*o, PyObject *attrname¢
Returnsl if o has the attributeattr_name and 0 otherwise. This is equivalent to the Python expression
‘hasattr(o, attr_namg . This function always succeeds.

PyObject* PyObject _GetAttr (PyObject *o, PyObject *attrnameg
Return valueNew reference
Retrieve an attribute namexditr_namefrom objecto. Returns the attribute value on succes$\\Ot Lon failure.
This is the equivalent of the Python expressiondttr_nameé.

int PyObject _SetAttrString (PyObject *o, char *attr_.name, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _SetAttr (PyObject*o, PyObject *attrname, PyObject *v
Set the value of the attribute namatir_name for objecto, to the valuev. Returns-1 on failure. This is the
equivalent of the Python statement attr_name = V.

int PyObject _DelAttrString (PyObject *o, char *attr namé
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python
statement:del o. attr_name.

int PyObject _DelAttr (PyObject*o, PyObject *attrnamg
Delete attribute namedttr_name for objecto. Returns-1 on failure. This is the equivalent of the Python

29

statementdel o. attr_namé.

PyObject* PyObject _RichCompare (PyObject *01, PyObject *02, int op)d
Return valueNNew reference
Compare the values ofl ando2 using the operation specified bypid, which must be one dPy_LT, Py_LE,
Py_EQ Py_NE Py_GT, or Py_GE corresponding t&, <=, ==, I= | >, or >= respectively. This is the equiv-
alent of the Python expressionl op 02, whereop is the operator correspondingapid. Returns the value
of the comparison on success,MULL on failure.

int PyObject _RichCompareBool (PyObject*ol, PyObject*02, int op)d
Compare the values @fl ando2 using the operation specified bpid, which must be one d?y_LT, Py_LE,
Py_EQ Py_NE Py_GT, or Py_GE corresponding t&, <=, ==, =, >, or >= respectively. Returnsl on
error, 0 if the result is falsel otherwise. This is the equivalent of the Python expressidnop 02, where
op is the operator correspondingdpid.

int PyObject _Cmyg PyObject *01, PyObject *02, int *resylt
Compare the values ofl ando2 using a routine provided byl, if one exists, otherwise with a routine provided
by 02. The result of the comparison is returned@sult Returns-1 on failure. This is the equivalent of the
Python statementésult = cmp(0l, 02)".

int PyObject _Compare(PyObject *o1, PyObject *opR
Compare the values afl ando2 using a routine provided bygl, if one exists, otherwise with a routine pro-
vided byo2. Returns the result of the comparison on success. On error, the value returned is undefined; use
PyErr _Occurred() to detect an error. This is equivalent to the Python expressiop(01, 02) .

PyObject* PyObject _Repr (PyObject *g
Return valueNNew reference
Compute a string representation of objecReturns the string representation on sucdski,L on failure. This
is the equivalent of the Python expressiogpr(o) . Called by therepr() built-in function and by reverse
guotes.

PyObject* PyObject _Str (PyObject *9
Return valueNew reference
Compute a string representation of objecReturns the string representation on sucdski,L on failure. This
is the equivalent of the Python expressistr(0) . Called by thestr() built-in function and by therint
statement.

PyObject* PyObject _Unicode (PyObject*g
Return valueNew reference
Compute a Unicode string representation of objecReturns the Unicode string representation on success,
NULL on failure. This is the equivalent of the Python expressionicode(o) ’. Called by theunicode()
built-in function.

int PyObject _Isinstance (PyObiject *inst, PyObject *cls
Returnsl if instis an instance of the clas$s or a subclass afls, or O if not. On error, returnsl and sets an
exception. Ifclsis a type object rather than a class obj@stObject _IsInstance() returnsl if instis of
typecls. If clsis a tuple, the check will be done against every entrglénThe result will bel when at least one
of the checks returns, otherwise it will be0. If instis not a class instance aotsis neither a type object, nor
a class object, nor a tuplast must have a__class __ attribute — the class relationship of the value of that
attribute withcls will be used to determine the result of this function. New in version 2.1. Changed in version
2.2: Support for a tuple as the second argument added.

Subclass determination is done in a fairly straightforward way, but includes a wrinkle that implementors of extensions
to the class system may want to be aware ofA HndB are class object® is a subclass oA if it inherits from A

either directly or indirectly. If either is not a class object, a more general mechanism is used to determine the class
relationship of the two objects. When testindifs a subclass oA, if Ais B, PyObject _IsSubclass() returns

true. If A andB are different objectsB’'s __bases __ attribute is searched in a depth-first fashion for— the
presence of the_bases __ attribute is considered sufficient for this determination.

30 Chapter 6. Abstract Objects Layer

int PyObject _IsSubclass (PyObject *derived, PyObject *CJs
Returnsl if the classderivedis identical to or derived from the clasts, otherwise return®. In case of an
error, returnsl . If clsis a tuple, the check will be done against every entrgi$n The result will bel when at
least one of the checks returhsotherwise it will be0. If eitherderivedor clsis not an actual class object (or
tuple), this function uses the generic algorithm described above. New in version 2.1. Changed in version 2.3:
Older versions of Python did not support a tuple as the second argument.

int PyCallable _Check (PyObject *9
Determine if the object is callable. Returr if the object is callable an@ otherwise. This function always
succeeds.

PyObject* PyObject _Call (PyObject *callable object, PyObject *args, PyObject *Rw
Call a callable Python objedallable_object with arguments given by the tupsggs and named arguments
given by the dictionarkw. If no named arguments are needied,may beNULL argsmust not beNULL, use
an empty tuple if no arguments are needed. Returns the result of the call on sucbidkl on failure. This is
the equivalent of the Python expressi@pply(callable_object args kw) ' or ‘callable_objec(* args
** kw) ’. New in version 2.2.

PyObject* PyObject _CallObject (PyObiject *callable object, PyObject *args
Return valueNew reference
Call a callable Python objedallable_object with arguments given by the tupkergs. If no arguments are
needed, thermrgs may beNULL Returns the result of the call on successNafLL on failure. This is the
equivalent of the Python expressiapply(callable_object args) ’ or ‘ callable_objec(* args) .

PyObject* PyObject _CallFunction (PyObject *callable, char *format,).
Return valueNew reference
Call a callable Python objectllable, with a variable number of C arguments. The C arguments are described
using aPy_BuildValue() style format string. The format may IULL, indicating that no arguments are
provided. Returns the result of the call on success$\OLL on failure. This is the equivalent of the Python
expressionapply(callable args) ’or ‘callable(* args) .

PyObject* PyObject _CallMethod (PyObject *o, char *method, char *format,)...
Return valueNew reference
Call the method nameuh of objecto with a variable number of C arguments. The C arguments are described
by aPy_BuildValue() format string. The format may BeULL, indicating that no arguments are provided.
Returns the result of the call on successN&fLL on failure. This is the equivalent of the Python expression
‘0. method args) .

PyObject* PyObject _CallFunctionObjArgs (PyObject *callable, ...NULL
Return valueNew reference
Call a callable Python objectllable, with a variable number dPyObject* arguments. The arguments are
provided as a variable number of parameters followedNb).L Returns the result of the call on success, or
NULLon failure. New in version 2.2.

PyObject* PyObject _CallMethodObjArgs (PyObject *o, PyObject *name, .NULL)
Return valueNNew reference
Calls a method of the object where the name of the method is given as a Python string objeene It is
called with a variable number &fyObject* arguments. The arguments are provided as a variable number of
parameters followed bNULL Returns the result of the call on successNbi_L on failure. New in version
2.2.

int PyObject _Hash(PyObject*q
Compute and return the hash value of an objedDn failure, returnl . This is the equivalent of the Python
expressionhash(o) .

int PyObject _IsTrue (PyObject*g
Returnsl if the objecto is considered to be true, afdotherwise. This is equivalent to the Python expression
‘not not 0. On failure, return-1 .

6.1. Object Protocol 31

int PyObject _Not (PyObject *9
Returns0 if the objecto is considered to be true, addotherwise. This is equivalent to the Python expression
‘not 0o'. On failure, return-1 .

PyObject* PyObject _Type (PyObject *g
Return valueNNew reference
Wheno is nonNULL, returns a type object corresponding to the object type of olojedDn failure, raises
SystemError and returndNULL This is equivalent to the Python expressitgpe(o). This function in-
crements the reference count of the return value. There’s really no reason to use this function instead of the
common expression->ob _type , which returns a pointer of typeyTypeObject* , except when the incre-
mented reference count is needed.

int PyObject _TypeCheck (PyObject *o, PyTypeObject *type
Return true if the objeab is of typetypeor a subtype ofype Both parameters must be ndiJLL New in
version 2.2.

int PyObject _Length (PyObject*g

int PyObject _Size (PyObject *g
Return the length of object If the objecto provides both sequence and mapping protocols, the sequence length
is returned. On errorl is returned. This is the equivalent to the Python expressémt ‘ o) .

PyObject* PyObject _Getltem (PyObject *o, PyObject *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key .

int PyObject _Setltem (PyObject*o, PyObject *key, PyObjectyv
Map the objeckeyto the valuevr. Returns1 on failure. This is the equivalent of the Python statemejpkéy]
= V.

int PyObject _Delltem (PyObject*o, PyObject *kgy
Delete the mapping fdteyfrom o. Returns-1 on failure. This is the equivalent of the Python statemdat *
of key .

int PyObject _AsFileDescriptor (PyObject *g
Derives a file-descriptor from a Python object. If the object is an integer or long integer, its value is returned.
If not, the object’sfileno() method is called if it exists; the method must return an integer or long integer,
which is returned as the file descriptor value. Retufin®n failure.

PyObject* PyObject _Dir (PyObject*Q
Return valueNew reference
This is equivalent to the Python expressidlir(0)’, returning a (possibly empty) list of strings appropriate
for the object argument, MULLIf there was an error. If the argumenN&JLL, this is like the Pythondir() ,
returning the names of the current locals; in this case, if no execution frame is activélithéns returned but

PyErr _Occurred() will return false.

PyObject* PyObject _Getlter (PyObject*g
Return valueNew reference
This is equivalent to the Python expressigar(o) ". It returns a new iterator for the object argument, or the
object itself if the object is already an iterator. Rai3gpeError and returnsNULL if the object cannot be
iterated.

6.2 Number Protocol

int PyNumber_Check (PyObject *g
Returnsl if the objecto provides numeric protocols, and false otherwise. This function always succeeds.

32 Chapter 6. Abstract Objects Layer

PyObject* PyNumber_Add(PyObject *o1, PyObject *oR
Return value:New reference
Returns the result of addimgl ando2, or NULL on failure. This is the equivalent of the Python expressain
+ 02.

PyObject* PyNumber_Subtract (PyObject *ol, PyObject *opR
Return valueNew reference
Returns the result of subtracting from 01, or NULLon failure. This is the equivalent of the Python expression
‘ol - oZ.

PyObject* PyNumber_Multiply (PyObject *o1, PyObject *opR
Return valueNew reference
Returns the result of multiplyingl ando2, or NULL on failure. This is the equivalent of the Python expression
‘ol * oZ.

PyObject* PyNumber_Divide (PyObject*ol, PyObject *op
Return valueNew reference
Returns the result of dividingl by 02, or NULL on failure. This is the equivalent of the Python expressain *
/ 02.

PyObject* PyNumber_FloorDivide (PyObject *01, PyObject *op
Return valueNew reference
Return the floor ob1 divided byo2, or NULL on failure. This is equivalent to the “classic” division of integers.
New in version 2.2.

PyObject* PyNumber_TrueDivide (PyObject *o1, PyObject *oR
Return valueNNew reference
Return a reasonable approximation for the mathematical valed divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.
New in version 2.2.

PyObject* PyNumber_Remainder (PyObject *ol1, PyObject *opR
Return valueNew reference
Returns the remainder of dividiral by 02, or NULL on failure. This is the equivalent of the Python expression
‘ol % oZ.

PyObject* PyNumber_Divmod (PyObject *o1, PyObject *op
Return valueNew reference
See the built-in functiowlivmod() . ReturndNULL on failure. This is the equivalent of the Python expression
‘divmod(01, 02)’.

PyObject* PyNumber_Power (PyObject *01, PyObject *02, PyObject *»3
Return valueNew reference
See the built-in functiompow() . ReturnsNULL on failure. This is the equivalent of the Python expression
‘pow(o0l, 02 03)’, whereo3is optional. Ifo3is to be ignored, pafdy_None in its place (passinglULL
for o3would cause an illegal memory access).

PyObject* PyNumber_Negative (PyObject *g
Return valueNew reference
Returns the negation afon success, ddULL on failure. This is the equivalent of the Python expressia.*

PyObject* PyNumber_Positive (PyObject *g
Return valueNNew reference
Returnso on success, ddULL on failure. This is the equivalent of the Python expressiam.

PyObject* PyNumber_Absolute (PyObject *g
Return valueNNew reference
Returns the absolute value@for NULL on failure. This is the equivalent of the Python expressairs(o) .

6.2. Number Protocol 33

PyObject* PyNumber_Invert (PyObject*g
Return valueNNew reference
Returns the bitwise negation obn success, ddULLon failure. This is the equivalent of the Python expression

0.

PyObject* PyNumber_Lshift (PyObject *ol1, PyObject *oR
Return valueNew reference
Returns the result of left shiftingl by 02 on success, ddULL on failure. This is the equivalent of the Python
expressionol << o02.

PyObject* PyNumber_Rshift (PyObject *ol1, PyObject *op
Return valueNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. This is the equivalent of the Python
expressionol >> o2.

PyObject* PyNumber_And(PyObject *o1, PyObject *op
Return valueNew reference
Returns the “bitwise and” 062 ando2 on success andULL on failure. This is the equivalent of the Python
expressionol & oZ.

PyObject* PyNumber_Xor (PyObject *01, PyObject *oP
Return valueNNew reference
Returns the “bitwise exclusive or” afl by 02 on success, odNULL on failure. This is the equivalent of the
Python expressiorol ~ 02.

PyObject* PyNumber_Or(PyObject *o1, PyObject *op
Return valueNNew reference
Returns the “bitwise or” obl and o2 on success, oNULL on failure. This is the equivalent of the Python
expressionol | oZ2.

PyObject* PyNumber_InPlaceAdd (PyObject *ol, PyObject *oR
Return valueNew reference
Returns the result of addirgl ando2, or NULL on failure. The operation is dome-placewhenol supports it.
This is the equivalent of the Python statemertt ‘+= 02.

PyObject* PyNumber_InPlaceSubtract (PyObject *01, PyObject *oR
Return valueNew reference
Returns the result of subtractira® from o1, or NULL on failure. The operation is dorie-place whenol
supports it. This is the equivalent of the Python statemght-= 02.

PyObject* PyNumber_InPlaceMultiply (PyObject *o1, PyObject *opR
Return valueNNew reference
Returns the result of multiplyinglando2, or NULLon failure. The operation is dore-placewhenol supports
it. This is the equivalent of the Python statemerit *= 02.

PyObject* PyNumber_InPlaceDivide (PyObject *ol, PyObject *op
Return valueNew reference
Returns the result of dividingl by 02, or NULL on failure. The operation is dorie-placewhenol supports it.
This is the equivalent of the Python statemertt /= 02.

PyObject* PyNumber _InPlaceFloorDivide (PyObject *o01, PyObject *op
Return valueNew reference
Returns the mathematical of dividirai by 02, or NULL on failure. The operation is dorie-placewhenol
supports it. This is the equivalent of the Python statem&ht//= 02. New in version 2.2.

PyObject* PyNumber _InPlaceTrueDivide (PyObiject *o1, PyObject *op
Return valueNew reference
Return a reasonable approximation for the mathematical valod divided byo2, or NULL on failure. The
return value is “approximate” because binary floating point numbers are approximate; it is not possible to
represent all real numbers in base two. This function can return a floating point value when passed two integers.

34 Chapter 6. Abstract Objects Layer

The operation is donie-placewhenol supports it. New in version 2.2.

PyObject* PyNumber_InPlaceRemainder (PyObject *01, PyObject *oR
Return valueNNew reference
Returns the remainder of dividingl by 02, or NULL on failure. The operation is doria-place when ol
supports it. This is the equivalent of the Python statemght%= 02

PyObject* PyNumber_InPlacePower (PyObject *ol, PyObject *02, PyObject *»3
Return valueNew reference
See the built-in functiopow() . ReturnsNULL on failure. The operation is dorie-placewhenol supports
it. This is the equivalent of the Python statemestt “**= 02 when 03 isPy_None, or an in-place variant
of ‘pow(01, 02, 03)’ otherwise. Ifo3is to be ignored, paf8y_None in its place (passinglULL for 03
would cause an illegal memory access).

PyObject* PyNumber _InPlaceLshift (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of left shiftingl by 02 on success, diULL on failure. The operation is dore-placewhen
olsupports it. This is the equivalent of the Python statemght<<= 02.

PyObject* PyNumber _InPlaceRshift (PyObject *o1, PyObject *op
Return valueNew reference
Returns the result of right shiftingll by 02 on success, ddULLon failure. The operation is dome-placewhen
ol supports it. This is the equivalent of the Python statemght>>= 02.

PyObject* PyNumber_InPlaceAnd (PyObject *o1, PyObject *oR
Return valueNew reference
Returns the “bitwise and” od1 ando2 on success andULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python statemeht&= 02.

PyObject* PyNumber_InPlaceXor (PyObject *01, PyObject *oR
Return valueNNew reference
Returns the “bitwise exclusive or” afl by 02 on success, dlULL on failure. The operation is dorne-place
whenolsupports it. This is the equivalent of the Python statemeht™= 02.

PyObject* PyNumber_InPlaceOr (PyObject *0l, PyObject *oR
Return valueNew reference
Returns the “bitwise or” 0b1 ando2 on success, dlULL on failure. The operation is done-placewhenol
supports it. This is the equivalent of the Python statemght|= o02.

int PyNumber_Coerce (PyObject **p1, PyObject **p2
This function takes the addresses of two variables of By®bject* . If the objects pointed to bypl and
* p2 have the same type, increment their reference count and @f{success). If the objects can be converted
to a common numeric type, replatigl and*p2 by their converted value (with 'new’ reference counts), and
return0. If no conversion is possible, or if some other error occurs, retur(failure) and don't increment the
reference counts. The céyNumber_Coerce(&ol, &02) is equivalent to the Python statemeol,’ 02
= coerce(01, 02)'.

PyObject* PyNumber_Int (PyObject *9
Return valueNNew reference
Returns the@ converted to an integer object on succes®dt Lon failure. If the argument is outside the integer
range a long object will be returned instead. This is the equivalent of the Python exprésgiorn) .

PyObject* PyNumber_Long (PyObject *g
Return valueNNew reference
Returns theo converted to a long integer object on success\Ot.L on failure. This is the equivalent of the
Python expressioriong(o) .

PyObject* PyNumber_Float (PyObject*q
Return valueNew reference
Returns theo converted to a float object on successN&ILL on failure. This is the equivalent of the Python

6.2. Number Protocol 35

expressionfloat(o).

6.3 Sequence Protocol

int PySequence _Check (PyObject *g
Returnl if the object provides sequence protocol, &atherwise. This function always succeeds.

int PySequence _Size (PyObject *g
Returns the number of objects in sequenoan success, and. on failure. For objects that do not provide
sequence protocol, this is equivalent to the Python expredsing ‘o) .

int PySequence _Length (PyObject *g
Alternate name foPySequence _Size()

PyObject* PySequence _Concat (PyObject *01, PyObject *op
Return valueNew reference
Return the concatenation ofl ando2 on success, andULL on failure. This is the equivalent of the Python
expressionol + oZ.

PyObject* PySequence _Repeat (PyObject *o, int count
Return valueNNew reference
Return the result of repeating sequence objecbunttimes, orNULL on failure. This is the equivalent of the
Python expressioro' * count.

PyObject* PySequence _InPlaceConcat (PyObject *01, PyObject *op
Return valueNNew reference
Return the concatenation ofl ando2 on success, andULL on failure. The operation is done-placewhen
ol supports it. This is the equivalent of the Python expressidn+= 02.

PyObject* PySequence _InPlaceRepeat (PyObject *o, int count
Return valueNew reference
Return the result of repeating sequence objemunttimes, orNULLon failure. The operation is dorie-place
wheno supports it. This is the equivalent of the Python expressiofi= count.

PyObject* PySequence _Getltem (PyObject *o, int)
Return valueNew reference
Return thedth element ob, or NULLon failure. This is the equivalent of the Python expressapn]'’.

PyObject* PySequence _GetSlice (PyObject*o, intil, inti3
Return valueNew reference
Return the slice of sequence objedietweeril andi2, or NULLon failure. This is the equivalent of the Python
expressiond[il: i2] .

int PySequence _Setltem (PyObject *o, inti, PyObject *v
Assign objectv to theith element ofo. Returns-1 on failure. This is the equivalent of the Python statement
‘o[i] = V. This functiondoes nosteal a reference ta

int PySequence _Delltem (PyObject *o, int)
Delete thdth element of objecd. Returns-1 on failure. This is the equivalent of the Python statemdat *
ofi]".

int PySequence _SetSlice (PyObject *o, intil, inti2, PyObject *
Assign the sequence objecto the slice in sequence objexfrom il toi2. This is the equivalent of the Python

statemento[il: i2] = V.

int PySequence _DelSlice (PyObject*o,intil, intij
Delete the slice in sequence objedrom il toi2. Returns-1 on failure. This is the equivalent of the Python
statementdel of il:i2] .

36 Chapter 6. Abstract Objects Layer

PyObject* PySequence _Tuple (PyObject*g
Return valueNew reference
Returns theo as a tuple on success, aMULL on failure. This is equivalent to the Python expression
‘tuple(o).

int PySequence _Count (PyObject *o, PyObject *value
Return the number of occurrencesvaluein o, that is, return the number of keys for whiohkey] == value
On failure, returnl . This is equivalent to the Python expressiorcount(valug .

int PySequence _Contains (PyObject *o, PyObject *value
Determine ifo containsvalue If an item ino is equal tovalug returnl, otherwise retur®. On error, return
-1 . This is equivalent to the Python expressigalue in 0.

int PySequence _Index (PyObject *o, PyObject *value
Return the first index for which o[i] == value On error, returntl . This is equivalent to the Python
expressiono.index(valug .

PyObject* PySequence _List (PyObject*g
Return valueNNew reference
Return a list object with the same contents as the arbitrary seqoefibe returned list is guaranteed to be new.

PyObject* PySequence _Tuple (PyObject*g
Return valueNew reference
Return a tuple object with the same contents as the arbitrary seqoetiaeis a tuple, a new reference will be
returned, otherwise a tuple will be constructed with the appropriate contents.

PyObject* PySequence _Fast (PyObject *o, const char *in
Return valueNew reference
Returns the sequenaeas a tuple, unless it is already a tuple or list, in which cade returned. Use
PySequence _Fast _GET_ITEM() to access the members of the result. Retinbi L on failure. If the
object is not a sequence, raisegpeError with mas the message text.

PyObject* PySequence _Fast _GET_ITEM(PyObiject *o, int)
Return valueBorrowed reference
Return thdth element ob, assuming thab was returned byySequence _Fast() , ois notNULL, and that
i is within bounds.

PyObject* PySequence _ITEM(PyObject *o, int)
Return valueNew reference
Return theith element ofo or NULL on failure. Macro form ofPySequence _Getltem() but without
checking thaPySequence _Check(o) is true and without adjustment for negative indices. New in version
2.3.

int PySequence _Fast _GET_SIZE (PyObject *q
Returns the length af, assuming thad was returned byPySequence _Fast() and thaibis notNULL The
size can also be gotten by calliySequence _Size() ono, butPySequence _Fast _GET_SIZE() is
faster because it can assumis a list or tuple.

6.4 Mapping Protocol

int PyMapping _Check (PyObject *g
Returnl if the object provides mapping protocol, aBatherwise. This function always succeeds.

int PyMapping _Length (PyObject *9
Returns the number of keys in objexbn success, and on failure. For objects that do not provide mapping
protocol, this is equivalent to the Python expressien(o).

int PyMapping _DelltemString (PyObject *o, char *key

6.4. Mapping Protocol 37

Remove the mapping for objekeyfrom the object. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _Delltem (PyObject *o, PyObject *kgy
Remove the mapping for objekeyfrom the object. Return-1 on failure. This is equivalent to the Python
statementdel of key] .

int PyMapping _HasKeyString (PyObject *o, char *key
On success, returh if the mapping object has the kdégyandO otherwise. This is equivalent to the Python
expressiono.has _key(key) '. This function always succeeds.

int PyMapping _HasKey(PyObject *o, PyObject *key
Returnl if the mapping object has the ké&gyandO otherwise. This is equivalent to the Python expression
‘o.has _key(key) . This function always succeeds.

PyObject* PyMapping _Keys (PyObject *g
Return valueNNew reference
On success, return a list of the keys in objectOn failure, returnNULL This is equivalent to the Python
expressiono.keys() '

PyObject* PyMapping _Values (PyObject *g
Return valueNew reference
On success, return a list of the values in ob@ctOn failure, returrNULL This is equivalent to the Python
expressiono.values() '

PyObject* PyMapping _Items (PyObject *g
Return valueNew reference
On success, return a list of the items in objectvhere each item is a tuple containing a key-value pair. On
failure, returnNULL This is equivalent to the Python expressioritems() '

PyObject* PyMapping _GetltemString (PyObject *o, char *key
Return valueNew reference
Return element 0b corresponding to the objekeyor NULL on failure. This is the equivalent of the Python
expressiond[key] .

int PyMapping _SetltemString (PyObject *o, char *key, PyObject jv
Map the objectkeyto the valuev in objecto. Returns-1 on failure. This is the equivalent of the Python

statemento[key] = V.

6.5 Iterator Protocol

New in version 2.2.
There are only a couple of functions specifically for working with iterators.

int Pylter _Check(PyObject *q
Return true if the objeab supports the iterator protocol.

PyObject* Pylter _Next (PyObject *9
Return valueNew reference
Return the next value from the iteratian If the object is an iterator, this retrieves the next value from the
iteration, and returnslULL with no exception set if there are no remaining items. If the object is not an iterator,
TypeError israised, or if there is an error in retrieving the item, retidi_Land passes along the exception.

To write a loop which iterates over an iterator, the C code should look something like this:

38 Chapter 6. Abstract Objects Layer

PyObject *iterator = PyObject_Getlter(obj);
PyObiject *item;

if (iterator == NULL) {
/* propagate error */

}

while (item = Pylter_Next(iterator)) {
/* do something with item */

/* release reference when done */
Py_DECREF(item);
}

Py_DECREF(iterator);

if (PyErr_Occurred()) {
/* propagate error */

}
else {

/* continue doing useful work */
}

6.6 Buffer Protocol

int PyObject _AsCharBuffer (PyObject *obj, const char **buffer, int *buffeden)
Returns a pointer to a read-only memory location useable as character- based inpabj atgeiment must
support the single-segment character buffer interface. On success, f&taatsbufferto the memory location
andbuffer_lento the buffer length. Returnd and sets &ypeError on error. New in version 1.6.

int PyObject _AsReadBuffer (PyObject *obj, const char **buffer, int *buffeden)
Returns a pointer to a read-only memory location containing arbitrary data.offjrmgument must support
the single-segment readable buffer interface. On success, ré&usetsbuffer to the memory location and
buffer_lento the buffer length. Returnd and sets dypeError on error. New in version 1.6.

int PyObject _CheckReadBuffer (PyObiject*q
Returnsl if o supports the single-segment readable buffer interface. Otherwise rétuidew in version 2.2.

int PyObject _AsWriteBuffer (PyObject *obj, char **buffer, int *buffer len)
Returns a pointer to a writeable memory location. ©hgargument must support the single-segment, character
buffer interface. On success, retussetsbufferto the memory location anbuffer_len to the buffer length.
Returns-1 and sets &ypeError on error. New in version 1.6.

6.6. Buffer Protocol 39

40

CHAPTER
SEVEN

Concrete Objects Layer

The functions in this chapter are specific to certain Python object types. Passing them an object of the wrong type is
not a good idea; if you receive an object from a Python program and you are not sure that it has the right type, you
must perform a type check first; for example, to check that an object is a dictionafpylbset _Check() . The

chapter is structured like the “family tree” of Python object types.

Warning: While the functions described in this chapter carefully check the type of the objects which are passed in,
many of them do not check flNULL being passed instead of a valid object. AllowgLLto be passed in can cause
memory access violations and immediate termination of the interpreter.

7.1 Fundamental Objects

This section describes Python type objects and the singleton dijeet.

7.1.1 Type Objects

PyTypeObject
The C structure of the objects used to describe built-in types.

PyObject* PyType _Type
This is the type object for type objects; it is the same objetypess. TypeType in the Python layer.

int PyType _Check (PyObject *9
Returns true if the objeda is a type object, including instances of types derived from the standard type object.
Returns false in all other cases.

int PyType _CheckExact (PyObject*9
Returns true if the objeai is a type object, but not a subtype of the standard type object. Returns false in all
other cases. New in version 2.2.

int PyType _HasFeature (PyObject *o, int featurg
Returns true if the type objeotsets the featurkeature Type features are denoted by single bit flags.

int PyType _IS _G(PyObject *9
Return true if the type object includes support for the cycle detector; this tests the type flag
Py_TPFLAGS HAVE_GC New in version 2.0.

int PyType _IsSubtype (PyTypeObject *a, PyTypeObject)b
Returns true ifris a subtype ob. New in version 2.2.

PyObject* PyType _GenericAlloc (PyTypeObject *type, int nitems
Return valueNew reference
New in version 2.2.

41

PyObject* PyType _GenericNew (PyTypeObject *type, PyObject *args, PyObject *kyvds
Return value:New reference
New in version 2.2.

int PyType _Ready(PyTypeObject *type
Finalize a type object. This should be called on all type objects to finish their initialization. This function is
responsible for adding inherited slots from a type’s base class. R&twnsuccess, or returng and sets an
exception on error. New in version 2.2.

7.1.2 The None Object

Note that thePyTypeObject for None is not directly exposed in the Python/C API. Sindene is a singleton,
testing for object identity (using=="in C) is sufficient. There is nd®?yNone_Check() function for the same
reason.

PyObject* Py_None
The PythorNone object, denoting lack of value. This object has no methods. It needs to be treated just like any
other object with respect to reference counts.

7.2 Numeric Objects

7.2.1 Plain Integer Objects

PyIntObject
This subtype oPyObject represents a Python integer object.

PyTypeObject Pyint _Type
This instance ofPyTypeObject represents the Python plain integer type. This is the same object as
types.IntType

int PyIint _Check(PyObject* 9
Returns true ifo is of typePyInt _Type or a subtype oPyInt _Type. Changed in version 2.2: Allowed
subtypes to be accepted.

int Pylnt _CheckExact (PyObject* 9
Returns true ib is of typePyInt _Type, but not a subtype dPyint _Type. New in version 2.2.

PyObject* PyInt _FromString (char *str, char **pend, int basg
Return a newPyIntObject or PyLongObject based on the string value &tr, which is interpreted accord-
ing to the radix inbase If pendis nonNULL, * pendwill point to the first character istr which follows the
representation of the number. daseis 0, the radix will be determined based on the leading charactest:of
if str starts with'0Ox’ or’0X’ , radix 16 will be used; istr starts with’0’ , radix 8 will be used; otherwise
radix 10 will be used. Ibaseis notO, it must be betwee@ and36, inclusive. Leading spaces are ignored.
If there are no digitsyalueError will be raised. If the string represents a number too large to be contained
within the machine’dong int type and overflow warnings are being suppress&ylaongObject will be
returned. If overflow warnings are not being suppreshidl, L will be returned in this case.

PyObject* PyInt _FromLong (long ival)
Return valueNNew reference
Creates a new integer object with a valueval.

The current implementation keeps an array of integer objects for all integers betivessrd 100, when you
create an int in that range you actually just get back a reference to the existing object. So it should be possible
to change the value df. | suspect the behaviour of Python in this case is undefined. :-)

long PyInt _AsLong (PyObject *ig

42 Chapter 7. Concrete Objects Layer

Will first attempt to cast the object toRyIntObject |, if it is not already one, and then return its value.

long Pyint _AS_LONG PyObject *ig
Returns the value of the objeict No error checking is performed.

unsigned long PyInt _AsUnsignedLongMask (PyObiject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and then
return its value as unsigned long. This function does not check for overflow. New in version 2.3.

unsigned long PyInt _AsUnsignedLongLongMask (PyObject *ig
Will first attempt to cast the object toRyIntObject or PyLongObject , if it is not already one, and then
return its value as unsigned long long, without checking for overflow. New in version 2.3.

long PyInt _GetMax()
Returns the system’s idea of the largest integer it can hah@IBlG MAX as defined in the system header files).

7.2.2 Long Integer Objects

PyLongObject
This subtype oPyObject represents a Python long integer object.

PyTypeObject PyLong _Type
This instance ofPyTypeObject represents the Python long integer type. This is the same object as
types.LongType

int PyLong _Check (PyObject *p
Returns true if its argument isRyLongObject or a subtype oPyLongObject . Changed in version 2.2:
Allowed subtypes to be accepted.

int PyLong _CheckExact (PyObject*p
Returns true if its argument isRyLongObject , but not a subtype d?yLongObject . New in version 2.2.

PyObject* PyLong _FromLong (long V)
Return valueNew reference
Returns a neWwPyLongObject object fromv, or NULL on failure.

PyObject* PyLong _FromUnsignedLong (unsigned long ¥
Return valueNew reference
Returns a neWwPyLongObject object from a Qunsigned long , or NULLon failure.

PyObject* PyLong _FromLongLong (long long vy
Return valueNew reference
Returns a neWwPyLongObject object from a dong long , orNULLon failure.

PyObject* PyLong _FromUnsignedLongLong (unsigned long long)v
Return valueNNew reference
Returns a neWwPyLongObject object from a Qunsigned long long , or NULL on failure.

PyObject* PyLong _FromDouble (double y
Return valueNNew reference
Returns a neWwPyLongObject object from the integer part of or NULL on failure.

PyObject* PyLong _FromString (char *str, char **pend, int basg
Return valueNNew reference
Return a newPyLongObject based on the string value str, which is interpreted according to the radix in
base If pendis nonNULL, * pendwill point to the first character istr which follows the representation of the
number. Ifbaseis 0, the radix will be determined based on the leading charactess:df str starts with’'Ox’
or’0X’ , radix 16 will be used; ifstr starts with’0’ , radix 8 will be used; otherwise radix 10 will be used.
If baseis not0, it must be betweef and36, inclusive. Leading spaces are ignored. If there are no digits,
ValueError will be raised.

7.2. Numeric Objects 43

PyObject* PyLong _FromUnicode (Py_UNICODE *u, intlength, int base
Return valueNew reference
Convert a sequence of Unicode digits to a Python long integer value. The first paramptents to the first
character of the Unicode stringngthgives the number of characters, dvaseis the radix for the conversion.
The radix must be in the range [2, 36]; if it is out of rang@JueError will be raised. New in version 1.6.

PyObject* PyLong _FromVoidPtr (void *p)
Return valueNew reference
Create a Python integer or long integer from the poiptérhe pointer value can be retrieved from the resulting
value usingPyLong _AsVoidPtr() . New in version 1.5.2.

long PyLong _AsLong (PyObiject *pylong
Returns a Clong representation of the contents pylong If pylongis greater thanLONGMAX an
OverflowError is raised.

unsigned long PyLong _AsUnsignedLong (PyObject *pylong
Returns a Qinsigned long representation of the contentsmflong If pylongis greater thatdLONGMAX
anOverflowError is raised.

long long PyLong _AsLongLong (PyObject *pylong
Return a Clong long from a Python long integer. Ifylongcannot be represented asoag long , an
OverflowError will be raised. New in version 2.2.

unsigned long long PyLong _AsUnsignedLonglLong (PyObject *pylong
Return a Cunsigned long long from a Python long integer. Ipylongcannot be represented as an
unsigned long long , an OverflowError will be raised if the value is positive, or &ypeError
will be raised if the value is negative. New in version 2.2.

unsigned long PyLong _AsUnsignedLongMask (PyObject *ig
Return a Qunsigned long from a Python long integer, without checking for overflow. New in version 2.3.

unsigned long PyLong _AsUnsignedLongLongMask (PyObject *ig
Return a Cunsigned long long from a Python long integer, without checking for overflow. New in
version 2.3.

double PyLong _AsDouble (PyObject *pylong
Returns a QGlouble representation of the contentsmflong If pylongcannot be approximately represented
as adouble , anOverflowError exception is raised and.0 will be returned.

void* PyLong _AsVoidPtr (PyObject *pylony
Convert a Python integer or long integeylongto a Cvoid pointer. If pylong cannot be converted, an

OverflowError will be raised. This is only assured to produce a usabld pointer for values created
with PyLong _FromVoidPtr() . New in version 1.5.2.

7.2.3 Floating Point Objects

PyFloatObject
This subtype oPyObject represents a Python floating point object.

PyTypeObject PyFloat _Type
This instance ofPyTypeObject represents the Python floating point type. This is the same object as
types.FloatType

int PyFloat _Check (PyObject *p
Returns true if its argument isRyFloatObject or a subtype oPyFloatObject . Changed in version
2.2: Allowed subtypes to be accepted.

int PyFloat _CheckExact (PyObject*p
Returns true if its argument isRyFloatObject , but not a subtype dPyFloatObject . New in version

44 Chapter 7. Concrete Objects Layer

2.2.

PyObject* PyFloat _FromString (PyObject *str, char **pen{l
Creates #yFloatObject object based on the string valuestr, or NULL on failure. Thependargument is
ignored. It remains only for backward compatibility.

PyObject* PyFloat _FromDouble (doubley
Return valueNNew reference
Creates #yFloatObject object fromv, or NULL on failure.

double PyFloat _AsDouble (PyObject *pyfloat
Returns a Qlouble representation of the contentsmffloat

double PyFloat _AS_DOUBLEPyObject *pyfloa}
Returns a Glouble representation of the contentsmffloat but without error checking.

7.2.4 Complex Number Objects

Python’s complex number objects are implemented as two distinct types when viewed from the C API: one is the
Python object exposed to Python programs, and the other is a C structure which represents the actual complex number
value. The API provides functions for working with both.

Complex Numbers as C Structures

Note that the functions which accept these structures as parameters and return them as resblysvdtuscather
than dereferencing them through pointers. This is consistent throughout the API.

Py_complex
The C structure which corresponds to the value portion of a Python complex number object. Most of the
functions for dealing with complex number objects use structures of this type as input or output values, as
appropriate. It is defined as:

typedef struct {
double real;
double imag;
} Py_complex;

Py_complex _Py_c_sum(Py_complex left, Pycomplex righ}
Return the sum of two complex numbers, using theyC complex representation.

Py_complex _Py_c_diff (Py_complex left, Pycomplex righ}
Return the difference between two complex numbers, using thg_ @omplex representation.

Py_complex _Py_c_neg(Py_complex complgx
Return the negation of the complex humbemplexusing the GPy_complex representation.

Py_complex _Py_c_prod (Py_complex left, Pycomplex right
Return the product of two complex numbers, using tHeyCcomplex representation.

Py_complex _Py_c_quot (Py_complex dividend, Pycomplex divisor
Return the quotient of two complex numbers, using tHeyCcomplex representation.

Py_complex _Py_c_pow(Py_complex num, Pycomplex exp
Return the exponentiation aimby exp using the GPy_complex representation.

7.2. Numeric Objects 45

Complex Numbers as Python Objects

PyComplexObject
This subtype oPyObject represents a Python complex number object.

PyTypeObject PyComplex _Type
This instance oPyTypeObject represents the Python complex number type.

int PyComplex _Check (PyObject *p
Returns true if its argument isRyComplexObject or a subtype oPyComplexObject . Changed in
version 2.2: Allowed subtypes to be accepted.

int PyComplex _CheckExact (PyObject*p
Returns true if its argument isRyComplexObject , but not a subtype dPyComplexObject . New in
version 2.2,

PyObject* PyComplex _FromCComplex (Py_complex ¥
Return valueNew reference
Create a new Python complex number object fromRyCcomplex value.

PyObject* PyComplex _FromDoubles (double real, double imgg
Return valueNNew reference
Returns a neWlPyComplexObject object fromreal andimag

double PyComplex _RealAsDouble (PyObject *op
Returns the real part afp as a Cdouble .

double PyComplex _ImagAsDouble (PyObject *op
Returns the imaginary part op as a Cdouble .

Py_complex PyComplex _AsCComplex (PyObject *op
Returns thPy_complex value of the complex numbep.

7.3 Sequence Objects

Generic operations on sequence objects were discussed in the previous chapter; this section deals with the specific
kinds of sequence objects that are intrinsic to the Python language.

7.3.1 String Objects

These functions raiseypeError when expecting a string parameter and are called with a non-string parameter.

PyStringObject
This subtype oPyObject represents a Python string object.

PyTypeObject PyString _Type
This instance of PyTypeObject represents the Python string type; it is the same object as
types.TypeType inthe Python layer. .

int PyString _Check (PyObject *g
Returns true if the objed is a string object or an instance of a subtype of the string type. Changed in version
2.2: Allowed subtypes to be accepted.

int PyString _CheckExact (PyObject*q
Returns true if the objed is a string object, but not an instance of a subtype of the string type. New in version
2.2.

PyObject* PyString _FromString (const char *y
Return valueNew reference

46 Chapter 7. Concrete Objects Layer

Returns a new string object with the value®n success, andULL on failure. The parameter must not be
NULL; it will not be checked.

PyObject* PyString _FromStringAndSize (const char *v, int leiy
Return valueNew reference
Returns a new string object with the valuand lengthen on success, andULL on failure. Ifvis NULL, the
contents of the string are uninitialized.

PyObject* PyString _FromFormat (const char *format, .).
Return valueNew reference
Takes a (printf() -styleformatstring and a variable number of arguments, calculates the size of the resulting
Python string and returns a string with the values formatted into it. The variable arguments must be C types and
must correspond exactly to the format characters inféienat string. The following format characters are

allowed:
Format Characters | Type | Comment
%% n/a The literal % character.
%cC int A single character, represented as an C int.
%d int Exactly equivalent tgrintf("%d")
%Id long | Exactly equivalent tgrintf("%Ild")
%i int Exactly equivalent t@rintf("%i")
%X int Exactly equivalent tgrintf("%x")
%s char* | A null-terminated C character array.
%p void* | The hex representation of a C pointer. Mostly equivalemqtriotf("%p") except that it is

PyObject* PyString _FromFormatV (const char *format, valist varg9
Return valueNew reference
Identical toPyString _FromFormat() except that it takes exactly two arguments.

int PyString _Size (PyObject *string
Returns the length of the string in string objeting.

int PyString _GET_SIZE (PyObject *string
Macro form ofPyString _Size() but without error checking.

char* PyString _AsString (PyObject *string
Returns a NUL-terminated representation of the contenttrofg. The pointer refers to the internal buffer
of string, not a copy. The data must not be modified in any way, unless the string was just created using
PyString _FromStringAndSize(NULL, siz@ . It must not be deallocated. $fringis a Unicode object,
this function computes the default encodingsbing and operates on that. string is not a string object at all,
PyString _AsString() returnsNULL and raise§ypeError

char* PyString _AS_STRING PyObject *string
Macro form of PyString _AsString() but without error checking. Only string objects are supported; no
Unicode objects should be passed.

int PyString _AsStringAndSize (PyObject *obj, char **buffer, int *length
Returns a NUL-terminated representation of the contents of the adij¢ttirough the output variabldsuffer
andlength

The function accepts both string and Unicode objects as input. For Unicode objects it returns the default encoded
version of the object. Ifengthis NULL, the resulting buffer may not contain NUL characters; if it does, the
function returns1 and aTypeError is raised.

The buffer refers to an internal string buffer olbj, not a copy. The data must not be modified in any way,
unless the string was just created usiystring _FromStringAndSize(NULL, siz@ . It must not be
deallocated. I&tringis a Unicode object, this function computes the default encodisgrinig and operates on
that. If string is not a string object at alRyString _AsString() returnsNULL and raise§ypeError

void PyString _Concat (PyObject **string, PyObject *newpalt

7.3. Sequence Objects a7

Creates a new string objectiatring containing the contents ofewpartappended tstring; the caller will own
the new reference. The reference to the old valustrifig will be stolen. If the new string cannot be created,
the old reference tstring will still be discarded and the value &$tring will be set toNULL; the appropriate
exception will be set.

void PyString _ConcatAndDel (PyObject **string, PyObject *newpa)t
Creates a new string object fistring containing the contents afewpartappended testring. This version
decrements the reference counnefvpart

int _PyString _Resize (PyObject **string, int newsize
A way to resize a string object even though it is “immutable”. Only use this to build up a brand new string
object; don't use this if the string may already be known in other parts of the code. It is an error to call this
function if the refcount on the input string object is not one. Pass the address of an existing string object as an
Ivalue (it may be written into), and the new size desired. On suctssgg holds the resized string object and
0 is returned; the address fstring may differ from its input value. If the reallocation fails, the original string
object at*string is deallocated!string is set toNULL, a memory exception is set, arl is returned.

PyObject* PyString _Format (PyObject *format, PyObject *args
Return valueNew reference
Returns a new string object frofarmatandargs Analogous tdormat % args Theargsargument must be a
tuple.

void PyString _InterninPlace (PyObject **string
Intern the argumeristring in place. The argument must be the address of a pointer variable pointing to a Python
string object. If there is an existing interned string that is the sanistasg, it sets*string to it (decrementing
the reference count of the old string object and incrementing the reference count of the interned string object),
otherwise it leave&string alone and interns it (incrementing its reference count). (Clarification: even though
there is a lot of talk about reference counts, think of this function as reference-count-neutral; you own the object
after the call if and only if you owned it before the call.)

PyObject* PyString _InternFromString (const char *y
Return valueNNew reference
A combination ofPyString _FromString() andPyString _InterninPlace() , returning either a
new string object that has been interned, or a new (“owned”) reference to an earlier interned string object with
the same value.

PyObject* PyString _Decode (const char *s, int size, const char *encoding, const char *eryors
Return valueNew reference
Creates an object by decodisigebytes of the encoded buffeiusing the codec registered femcoding encod-
ing anderrors have the same meaning as the parameters of the same namaticibee() built-in function.
The codec to be used is looked up using the Python codec registry. RELhsf an exception was raised by
the codec.

PyObject* PyString _AsDecodedObject (PyObject *str, const char *encoding, const char *errprs
Return valueNew reference
Decodes a string object by passing it to the codec registeremhémdingand returns the result as Python object.
encodingand errors have the same meaning as the parameters of the same name in thesstidoig()
method. The codec to be used is looked up using the Python codec registry. Rétling an exception was
raised by the codec.

PyObject* PyString _Encode (const char *s, int size, const char *encoding, const char *eryors
Return valueNew reference
Encodes theehar buffer of the given size by passing it to the codec registerecefmodingand returns a
Python object.encodinganderrors have the same meaning as the parameters of the same name in the string
encode() method. The codec to be used is looked up using the Python codec registry. Rétliring an
exception was raised by the codec.

PyObject* PyString _AsEncodedObject (PyObject *str, const char *encoding, const char *errprs
Return valueNew reference

48 Chapter 7. Concrete Objects Layer

Encodes a string object using the codec registeredrfoodingand returns the result as Python objextcoding
anderrors have the same meaning as the parameters of the same name in therstodg() method. The
codec to be used is looked up using the Python codec registry. R&tdsif an exception was raised by the
codec.

7.3.2 Unicode Objects

These are the basic Unicode object types used for the Unicode implementation in Python:

Py_UNICODE
This type represents a 16-bit unsigned storage type which is used by Python internally as basis for holding
Unicode ordinals. On platforms whenechar _t is available and also has 16-biBy_UNICODEis a typedef
alias forwchar _t to enhance native platform compatibility. On all other platfor®ys, UNICODESs a typedef
alias forunsigned short

PyUnicodeObject
This subtype oPyObject represents a Python Unicode object.

PyTypeObject PyUnicode _Type
This instance oPyTypeObject represents the Python Unicode type.

The following APIs are really C macros and can be used to do fast checks and to access internal read-only data of
Unicode objects:

int PyUnicode _Check(PyObject*g
Returns true if the objeai is a Unicode object or an instance of a Unicode subtype. Changed in version 2.2:
Allowed subtypes to be accepted.

int PyUnicode _CheckExact (PyObject*q
Returns true if the objecatis a Unicode object, but not an instance of a subtype. New in version 2.2.

int PyUnicode _GET_SIZE (PyObject *q
Returns the size of the objecthas to be &yUnicodeObject (not checked).

int PyUnicode _GET_DATA_SIZE (PyObject *9
Returns the size of the object’s internal buffer in bytehas to be &yUnicodeObject (not checked).

Py_UNICODE* PyUnicode _AS_UNICODE PyObject *9
Returns a pointer to the internBly _UNICODEbuffer of the object.o has to be @yUnicodeObject (hot
checked).

const char* PyUnicode _AS_DATA PyObject *g
Returns a pointer to the internal buffer of the objechas to be @yUnicodeObject (not checked).

Unicode provides many different character properties. The most often needed ones are available through these macros
which are mapped to C functions depending on the Python configuration.

int Py_UNICODE.ISSPACE(Py_UNICODE ch
Returns 1/0 depending on whetlatris a whitespace character.

int Py_UNICODE.ISLOWER Py_UNICODE ch
Returns 1/0 depending on whetludris a lowercase character.

int Py_UNICODE.ISUPPER Py_UNICODE ch
Returns 1/0 depending on whetlwdris an uppercase character.

int Py_UNICODELISTITLE (Py_UNICODE ch
Returns 1/0 depending on whetlotris a titlecase character.

int Py_UNICODE.ISLINEBREAK(Py_UNICODE ch
Returns 1/0 depending on whetlatris a linebreak character.

7.3. Sequence Objects 49

int Py_UNICODE.ISDECIMAL(Py_UNICODE ch
Returns 1/0 depending on whetlaris a decimal character.

int Py_UNICODE.ISDIGIT (Py_UNICODE ch
Returns 1/0 depending on whetlaris a digit character.

int Py_UNICODE.ISNUMERIQ Py_UNICODE ch
Returns 1/0 depending on whetleris a numeric character.

int Py_UNICODE.ISALPHA(Py_UNICODE ch
Returns 1/0 depending on whetlwdris an alphabetic character.

int Py_UNICODE.ISALNUM Py_UNICODE ch
Returns 1/0 depending on whetladris an alphanumeric character.

These APIs can be used for fast direct character conversions:

Py_UNICODE Py_UNICODE. TOLOWERPY_UNICODE ch
Returns the characteh converted to lower case.

Py_UNICODE Py_UNICODE. TOUPPERPY_UNICODE ch
Returns the characteh converted to upper case.

Py_UNICODE Py_UNICODE.TOTITLE(Py_UNICODE ch
Returns the characteh converted to title case.

int Py_UNICODE.TODECIMAIK Py_UNICODE ch
Returns the characteh converted to a decimal positive integer. Retwhsif this is not possible. Does not
raise exceptions.

int Py_UNICODE.TODIGIT (Py_UNICODE ch)
Returns the characteh converted to a single digit integer. Returis if this is not possible. Does not raise
exceptions.

double Py_UNICODE. TONUMERICPY_UNICODE ch
Returns the characteh converted to a (positive) double. ReturisO if this is not possible. Does not raise
exceptions.

To create Unicode objects and access their basic sequence properties, use these APIs:

PyObject* PyUnicode _FromUnicode (const Py UNICODE *u, int siz¢
Return valueNew reference
Create a Unicode Object from the RYyNICODE bufferu of the given sizeu may beNULL which causes the
contents to be undefined. It is the user’s responsibility to fill in the needed data. The buffer is copied into the
new object. If the buffer is ndYULL, the return value might be a shared object. Therefore, modification of the
resulting Unicode object is only allowed wharis NULL

Py_UNICODE* PyUnicode _AsUnicode (PyObject *unicodg
Return a read-only pointer to the Unicode object’s inteiyal UNICODEDbuffer, NULL if unicodeis not a
Unicode object.

int PyUnicode _GetSize (PyObject *unicodg
Return the length of the Unicode object.

PyObject* PyUnicode _FromEncodedObject (PyObject*obj, const char *encoding, const char *errprs
Return valueNew reference
Coerce an encoded objemttj to an Unicode object and return a reference with incremented refcount.

Coercion is done in the following way:

1.Unicode objects are passed back as-is with incremented refédotet. These cannot be decoded; passing
a nonNULL value for encoding will result in &ypeError

2.String and other char buffer compatible objects are decoded according to the given encoding and using the

50 Chapter 7. Concrete Objects Layer

error handling defined by errors. Both canMELL to have the interface use the default values (see the
next section for details).

3.All other objects cause an exception.

The API returndNULL if there was an error. The caller is responsible for decref’ing the returned objects.

PyObject* PyUnicode _FromObject (PyObject *ob)
Return valueNew reference
Shortcut forPyUnicode _FromEncodedObject(obj, NULL, "strict") which is used throughout
the interpreter whenever coercion to Unicode is needed.

If the platform supportsvchar _t and provides a header file wchar.h, Python can interface directly to this type
using the following functions. Support is optimized if Python’s oyn_UNICODEtype is identical to the system’s
wchar _t .

PyObject* PyUnicode _FromWideChar (const wchart *w, int size
Return valueNew reference
Create a Unicode object from tichar _t bufferw of the given size. ReturriSULL on failure.

int PyUnicode _AsWideChar (PyUnicodeObiject *unicode, wchar *w, int sizg
Copies the Unicode object contents into tixehar _t bufferw. At mostsizewchar _t characters are copied.
Returns the number efchar _t characters copied or -1 in case of an error.

Built-in Codecs

Python provides a set of builtin codecs which are written in C for speed. All of these codecs are directly usable via the
following functions.

Many of the following APIs take two arguments encoding and errors. These parameters encoding and errors have the
same semantics as the ones of the builtin unicode() Unicode object constructor.

Setting encoding t&NULL causes the default encoding to be used whicksisii. The file system calls should use
Py_FileSystemDefaultEncoding as the encoding for file names. This variable should be treated as read-only:
On some systems, it will be a pointer to a static string, on others, it will change at run-time, e.g. when the application
invokes setlocale.

Error handling is set by errors which may also be sdiltdiL meaning to use the default handling defined for the
codec. Default error handling for all builtin codecs is “stric¢alueError s raised).

The codecs all use a similar interface. Only deviation from the following generic ones are documented for simplicity.
These are the generic codec APIs:

PyObject* PyUnicode _Decode (const char *s, int size, const char *encoding, const char *efyors
Return valueNew reference
Create a Unicode object by decodisigebytes of the encoded strirgy encodingand errors have the same
meaning as the parameters of the same name ini@de() builtin function. The codec to be used is
looked up using the Python codec registry. RetiNhi L if an exception was raised by the codec.

PyObject* PyUnicode _Encode (const Py UNICODE *s, int size, const char *encoding, const char *erjors
Return valueNew reference
Encodes théy_UNICODEDbuffer of the given size and returns a Python string objectcodingand errors
have the same meaning as the parameters of the same name in the émicode() method. The codec to
be used is looked up using the Python codec registry. ReNithd if an exception was raised by the codec.

PyObject* PyUnicode _AsEncodedString (PyObject *unicode, const char *encoding, const char *erjors
Return valueNew reference
Encodes a Unicode object and returns the result as Python string obpexzidingand errors have the same
meaning as the parameters of the same name in the Unamztele() method. The codec to be used is

7.3. Sequence Objects 51

looked up using the Python codec registry. Retihi L if an exception was raised by the codec.
These are the UTF-8 codec APIs:

PyObject* PyUnicode _DecodeUTF8(const char *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodsigebytes of the UTF-8 encoded strisgReturnsNULL if an exception
was raised by the codec.

PyObject* PyUnicode _EncodeUTF8(const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes thé>y _UNICODEbuffer of the given size using UTF-8 and returns a Python string object. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode _AsUTF8String (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using UTF-8 and returns the result as Python string object. Error handling is “strict”.
ReturnsNULL if an exception was raised by the codec.

These are the UTF-16 codec APls:

PyObject* PyUnicode _DecodeUTF16(const char *s, int size, const char *errors, int *byteordler
Return valueNew reference
Decodedengthbytes from a UTF-16 encoded buffer string and returns the corresponding Unicode ebjerst.
(if non-NULL) defines the error handling. It defaults to “strict”.

If byteorderis nonNULL, the decoder starts decoding using the given byte order:

*pyteorder == -1: little endian
*byteorder == 0: native order
*byteorder == 1. big endian

and then switches according to all byte order marks (BOM) it finds in the input data. BOMs are not copied into
the resulting Unicode string. After completiothyteorderis set to the current byte order at the end of input
data.

If byteorderis NULL, the codec starts in native order mode.
ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode _EncodeUTF16 (const Py UNICODE *s, int size, const char *errors, int byteorder
Return valueNew reference
Returns a Python string object holding the UTF-16 encoded value of the Unicode daté ryteorderis not
0, output is written according to the following byte order:

byteorder == -1: little endian
byteorder == 0: native byte order (writes a BOM mark)
byteorder == 1: big endian

If byteorder isO, the output string will always start with the Unicode BOM mark (U+FEFF). In the other two
modes, no BOM mark is prepended.

Note thatPy _UNICODHEdata is being interpreted as UTF-16 reduced to UCS-2. This trick makes it possible to
add full UTF-16 capabilities at a later point without comprimising the APIs.
ReturnsNULL if an exception was raised by the codec.
PyObject* PyUnicode _AsUTF16String (PyObject *unicodi
Return valueNew reference

Returns a Python string using the UTF-16 encoding in native byte order. The string always starts with a BOM
mark. Error handling is “strict”. ReturiSULL if an exception was raised by the codec.

These are the “Unicode Esacpe” codec APls:

52 Chapter 7. Concrete Objects Layer

PyObject* PyUnicode _DecodeUnicodeEscape (constchar*s, intsize, const char *errgrs
Return value:New reference
Creates a Unicode object by decodsigebytes of the Unicode-Escape encoded stengeturnsNULL if an
exception was raised by the codec.

PyObject* PyUnicode _EncodeUnicodeEscape (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes th&y_UNICODEbuffer of the given size using Unicode-Escape and returns a Python string object.
ReturnsNULL if an exception was raised by the codec.

PyObject* PyUnicode _AsUnicodeEscapeString (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using Unicode-Escape and returns the result as Python string object. Error handling
is “strict”. ReturnsNULL if an exception was raised by the codec.

These are the “Raw Unicode Esacpe” codec APlIs:

PyObject* PyUnicode _DecodeRawUnicodeEscape (constchar *s, intsize, const char *errgrs
Return valueNNew reference
Creates a Unicode object by decodsigebytes of the Raw-Unicode-Esacpe encoded stsingeturnsNULL
if an exception was raised by the codec.

PyObject* PyUnicode _EncodeRawUnicodeEscape (const Py UNICODE *s, intsize, const char *erroys
Return valueNew reference
Encodes th’y_UNICODEDbuffer of the given size using Raw-Unicode-Escape and returns a Python string
object. Return®ULL if an exception was raised by the codec.

PyObject* PyUnicode _AsRawUnicodeEscapeString (PyObject *unicodi
Return valueNew reference
Encodes a Unicode objects using Raw-Unicode-Escape and returns the result as Python string object. Error
handling is “strict”. Return&NULL if an exception was raised by the codec.

These are the Latin-1 codec APIs: Latin-1 corresponds to the first 256 Unicode ordinals and only these are accepted
by the codecs during encoding.

PyObject* PyUnicode _Decodelatinl (constchar *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodsigebytes of the Latin-1 encoded strisgReturndNULL if an exception
was raised by the codec.

PyObject* PyUnicode _Encodelatinl (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes th&y_UNICODEbuffer of the given size using Latin-1 and returns a Python string object. Returns
NULL if an exception was raised by the codec.

PyObject* PyUnicode _AsLatinl1String (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using Latin-1 and returns the result as Python string object. Error handling is “strict”.
ReturnsNULL if an exception was raised by the codec.

These are thascii codec APIs. Only 7-bihscii data is accepted. All other codes generate errors.

PyObject* PyUnicode _DecodeASCIl (const char *s, int size, const char *errgrs
Return value:New reference
Creates a Unicode object by decodsigebytes of theascil encoded string. ReturnsNULL if an exception
was raised by the codec.

PyObject* PyUnicode _EncodeASCIl (const Py UNICODE *s, int size, const char *erroys
Return valueNew reference
Encodes thé?y_UNICODEDbuffer of the given size usingscii and returns a Python string object. Returns
NULL if an exception was raised by the codec.

7.3. Sequence Objects 53

PyObject* PyUnicode _AsASCIIString (PyObject *unicodi
Return valueNew reference
Encodes a Unicode objects usingclii and returns the result as Python string object. Error handling is “strict”.
ReturnsNULL if an exception was raised by the codec.

These are the mapping codec APIs:

This codec is special in that it can be used to implement many different codecs (and this is in fact what was done to
obtain most of the standard codecs included ingheodings package). The codec uses mapping to encode and
decode characters.

Decoding mappings must map single string characters to single Unicode characters, integers (which are then inter-
preted as Unicode ordinals) or None (meaning "undefined mapping” and causing an error).

Encoding mappings must map single Unicode characters to single string characters, integers (which are then inter-
preted as Latin-1 ordinals) or None (meaning "undefined mapping” and causing an error).

The mapping objects provided must only support thgetitem__ mapping interface.

If a character lookup fails with a LookupError, the character is copied as-is meaning that its ordinal value will be
interpreted as Unicode or Latin-1 ordinal resp. Because of this, mappings only need to contain those mappings which
map characters to different code points.

PyObject* PyUnicode _DecodeCharmap (const char *s, int size, PyObject *mapping, const char *erjors
Return valueNNew reference
Creates a Unicode object by decodsigebytes of the encoded strirsgising the givemmappingobject. Returns
NULL f an exception was raised by the codec.

PyObject* PyUnicode _EncodeCharmap (const Py UNICODE *s, int size, PyObject *mapping, const char

*errors)
Return valueNew reference

Encodes th®y_UNICODRhuffer of the given size using the givemappingobject and returns a Python string
object. Return®ULL if an exception was raised by the codec.

PyObject* PyUnicode _AsCharmapString (PyObject *unicode, PyObject *mapping
Return valueNew reference
Encodes a Unicode objects using the givesippingobject and returns the result as Python string object. Error
handling is “strict”. Return&NULL if an exception was raised by the codec.

The following codec API is special in that maps Unicode to Unicode.

PyObject* PyUnicode _TranslateCharmap (const Py UNICODE *s, int size, PyObject *table, const char

*errors)
Return valueNew reference

Translates &y_UNICODEbuffer of the given length by applying a character mapgatdge to it and returns
the resulting Unicode object. ReturN&JLL when an exception was raised by the codec.

Themappingtable must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the methadetitem__() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeckupError) are left untouched and are copied as-is.

These are the MBCS codec APls. They are currently only available on Windows and use the Win32 MBCS converters
to implement the conversions. Note that MBCS (or DBCS) is a class of encodings, not just one. The target encoding
is defined by the user settings on the machine running the codec.

PyObject* PyUnicode _DecodeMBCS const char *s, int size, const char *errgrs
Return valueNew reference
Creates a Unicode object by decodsigebytes of the MBCS encoded strisgReturnsNULL if an exception
was raised by the codec.

PyObject* PyUnicode _EncodeMBCS const Py UNICODE *s, int size, const char *erroys

54 Chapter 7. Concrete Objects Layer

Return valueNew reference
Encodes théy _UNICODEbuffer of the given size using MBCS and returns a Python string object. Returns

NULL f an exception was raised by the codec.

PyObject* PyUnicode _AsMBCSString (PyObject *unicodg
Return valueNew reference
Encodes a Unicode objects using MBCS and returns the result as Python string object. Error handling is “strict”.
ReturnsNULL if an exception was raised by the codec.

Methods and Slot Functions

The following APIs are capable of handling Unicode objects and strings on input (we refer to them as strings in the
descriptions) and return Unicode objects or integers as apporpriate.

They all returrNULLor -1 if an exception occurs.

PyObject* PyUnicode _Concat (PyObiject *left, PyObject *right
Return valueNew reference
Concat two strings giving a new Unicode string.

PyObject* PyUnicode _Split (PyObject*s, PyObject *sep, int maxsplit
Return valueNew reference
Split a string giving a list of Unicode strings. If sepN®JLL, splitting will be done at all whitespace substrings.
Otherwise, splits occur at the given separator. At rmagxsplitsplits will be done. If negative, no limit is set.
Separators are not included in the resulting list.

PyObject* PyUnicode _Splitlines (PyObiject *s, int keepend
Return valueNNew reference
Split a Unicode string at line breaks, returning a list of Unicode strings. CRLF is considered to be one line
break. Ifkeepends 0, the Line break characters are not included in the resulting strings.

PyObject* PyUnicode _Translate (PyObject *str, PyObject *table, const char *errgrs
Return valueNew reference
Translate a string by applying a character mapping table to it and return the resulting Unicode object.
The mapping table must map Unicode ordinal integers to Unicode ordinal integers or None (causing deletion of
the character).

Mapping tables need only provide the getitem __() interface; dictionaries and sequences work well.
Unmapped character ordinals (ones which causeckupError) are left untouched and are copied as-is.

errors has the usual meaning for codecs. It mayNb#l L which indicates to use the default error handling.

PyObject* PyUnicode _Join (PyObject *separator, PyObject *sgq
Return value:New reference
Join a sequence of strings using the given separator and return the resulting Unicode string.

PyObject* PyUnicode _Tailmatch (PyObiject *str, PyObject *substr, int start, int end, int directjon
Return valueNNew reference
Return 1 if substrmatchesstr[startend at the given tail enddirection == -1 means to do a prefix match,
direction== 1 a suffix match), 0 otherwise.

int PyUnicode _Find (PyObject *str, PyObject *substr, int start, int end, int directjon
Return the first position oubstrin str[startend using the givendirection (direction == 1 means to do a
forward searchdirection== -1 a backward search). The return value is the index of the first match; a value of
-1 indicates that no match was found, adindicates that an error occurred and an exception has been set.

int PyUnicode _Count (PyObject *str, PyObject *substr, int start, int end
Return the number of non-overlapping occurrencesubktrin str| start end . Returns1 if an error occurred.

PyObject* PyUnicode _Replace (PyObiject *str, PyObject *substr, PyObject *replstr, int maxcunt

7.3. Sequence Objects 55

Return valueNew reference
Replace at mosmaxcountoccurrences o$ubstrin str with replstr and return the resulting Unicode object.
maxcount= -1 means replace all occurrences.

int PyUnicode _Compare(PyObiject *left, PyObject *right
Compare two strings and return -1, 0, 1 for less than, equal, and greater than, respectively.

PyObject* PyUnicode _Format (PyObject *format, PyObject *args
Return valueNew reference
Returns a new string object frofarmatandargs this is analogous ttormat % args Theargsargument must
be a tuple.

int PyUnicode _Contains (PyObject *container, PyObject *elemént
Checks whetheglemenis contained ircontainerand returns true or false accordingly.

elemenhas to coerce to a one element Unicode striigis returned if there was an error.

7.3.3 Buffer Objects

Python objects implemented in C can export a group of functions called the “buffer interface.” These functions can be
used by an object to expose its data in a raw, byte-oriented format. Clients of the object can use the buffer interface to
access the object data directly, without needing to copy it first.

Two examples of objects that support the buffer interface are strings and arrays. The string object exposes the character
contents in the buffer interface’s byte-oriented form. An array can also expose its contents, but it should be noted that
array elements may be multi-byte values.

An example user of the buffer interface is the file objeatste() method. Any object that can export a
series of bytes through the buffer interface can be written to a file. There are a number of format codes to
PyArg _ParseTuple() that operate against an object’s buffer interface, returning data from the target object.

More information on the buffer interface is provided in the section “Buffer Object Structures” (section 10.7), under
the description foPyBufferProcs

A “buffer object” is defined in thebufferobject.h’ header (included byPython.h’). These objects look very similar to

string objects at the Python programming level: they support slicing, indexing, concatenation, and some other standard
string operations. However, their data can come from one of two sources: from a block of memory, or from another
object which exports the buffer interface.

Buffer objects are useful as a way to expose the data from another object’s buffer interface to the Python programmer.
They can also be used as a zero-copy slicing mechanism. Using their ability to reference a block of memory, it is
possible to expose any data to the Python programmer quite easily. The memory could be a large, constant array in a
C extension, it could be a raw block of memory for manipulation before passing to an operating system library, or it
could be used to pass around structured data in its native, in-memory format.

PyBufferObject
This subtype oPyObject represents a buffer object.

PyTypeObject PyBuffer _Type
The instance ofPyTypeObject which represents the Python buffer type; it is the same object as
types.BufferType in the Python layer..

int Py_END OF_BUFFER
This constant may be passed as thgze parameter to PyBuffer _FromObject() or
PyBuffer _FromReadWriteObject() . It indicates that the newPyBufferObject should refer
to baseobject from the specifiedffsetto the end of its exported buffer. Using this enables the caller to avoid
querying thebaseobject for its length.

int PyBuffer _Check (PyObject*p
Return true if the argument has typgBuffer _Type.

56 Chapter 7. Concrete Objects Layer

PyObject* PyBuffer _FromObject (PyObiject *base, int offset, int size
Return valueNNew reference
Return a new read-only buffer object. This raidegeError if basedoesn't support the read-only buffer
protocol or doesn’t provide exactly one buffer segment, or it raigdgeError if offsetis less than zero. The
buffer will hold a reference to thbaseobject, and the buffer's contents will refer to thaseobject’s buffer
interface, starting as positiaffsetand extending fosizebytes. Ifsizeis Py _END OF_BUFFERthen the new
buffer's contents extend to the length of th@seobject’'s exported buffer data.

PyObject* PyBuffer _FromReadWriteObject (PyObject *base, int offset, int sige
Return valueNew reference
Return a new writable buffer object. Parameters and exceptions are similar to those for
PyBuffer _FromObject() . If the base object does not export the writeable buffer protocol, then
TypeError s raised.

PyObject* PyBuffer _FromMemory(void *ptr, int sizg
Return valueNew reference
Return a new read-only buffer object that reads from a specified location in memory, with a specified size. The
caller is responsible for ensuring that the memory buffer, passedgtr,ds not deallocated while the returned
buffer object exists. RaiséglueError if sizeis less than zero. Note thBy _END OF_BUFFERmay not
be passed for theizeparameterValueError will be raised in that case.

PyObject* PyBuffer _FromReadWriteMemory (void *ptr, int sizg
Return valueNew reference
Similar toPyBuffer _FromMemory() , but the returned buffer is writable.

PyObject* PyBuffer _New(int sizg
Return valueNew reference

Returns a new writable buffer object that maintains its own memory buffeizefoytes. ValueError is
returned ifsizeis not zero or positive.

7.3.4 Tuple Objects

PyTupleObject
This subtype oPyObject represents a Python tuple object.

PyTypeObject PyTuple _Type
This instance of PyTypeObject represents the Python tuple type; it is the same object as
types.TupleType in the Python layer..

int PyTuple _Check(PyObject *p
Return true ifp is a tuple object or an instance of a subtype of the tuple type. Changed in version 2.2: Allowed
subtypes to be accepted.

int PyTuple _CheckExact (PyObject*p
Return true ifp is a tuple object, but not an instance of a subtype of the tuple type. New in version 2.2.

PyObject* PyTuple _New(intlen)
Return valueNew reference
Return a new tuple object of siten, or NULL on failure.
int PyTuple _Size (PyObject*p
Takes a pointer to a tuple object, and returns the size of that tuple.

int PyTuple _GET_SIZE (PyObject *p
Return the size of the tupfe which must be nomWNULL and point to a tuple; no error checking is performed.

PyObject* PyTuple _Getltem (PyObject *p, int pok
Return value Borrowed reference
Returns the object at positigposin the tuple pointed to bp. If posis out of bounds, returndULL and sets an

7.3. Sequence Objects 57

IndexError exception.

PyObject* PyTuple _GET_ITEM(PyObiject *p, int poy
Return value Borrowed reference
Like PyTuple _Getltem() , but does no checking of its arguments.

PyObject* PyTuple _GetSlice (PyObject *p, int low, int high
Return valueNNew reference
Takes a slice of the tuple pointed to pyrom low to high and returns it as a new tuple.

int PyTuple _Setltem (PyObject *p, int pos, PyObject jo
Inserts a reference to objeziat positionposof the tuple pointed to byp. It returnsO on successNote: This
function “steals” a reference m

void PyTuple _SET_ITEM(PyObiject *p, int pos, PyObject jo
Like PyTuple _Setltem() , butdoes no error checking, and shoatdy be used to fill in brand new tuples.
Note: This function “steals” a reference

int _PyTuple _Resize (PyObject **p, int newsize
Can be used to resize a tupleewsizewill be the new length of the tuple. Because tuplesampposedo be
immutable, this should only be used if there is only one reference to the objeabtDee this if the tuple may
already be known to some other part of the code. The tuple will always grow or shrink at the end. Think of this
as destroying the old tuple and creating a new one, only more efficiently. R&wnsuccess. Client code
should never assume that the resulting valuemivill be the same as before calling this function. If the object
referenced by pis replaced, the origindlp is destroyed. On failure, returas and set$ pto NULL and raises
MemoryError or SystemError . Changed in version 2.2: Removed unused third paramaserjs_sticky.

7.3.5 List Objects

PyListObject
This subtype oPyObject represents a Python list object.

PyTypeObject PyList _Type
This instance ofPyTypeObject represents the Python list type. This is the same object as
types.ListType

int PyList _Check(PyObject*p
Returns true if its argument isRyListObject

PyObject* PyList _New(intlen)
Return valueNew reference
Returns a new list of lengtlen on success, ddULL on failure.

int PyList _Size (PyObiject *lis)
Returns the length of the list objectlist; this is equivalent tolen(list) ’ on a list object.

int PyList _GET_SIZE (PyObiject *lis)
Macro form ofPyList _Size() without error checking.

PyObject* PyList _Getltem (PyObiject *list, int indeX
Return value Borrowed reference
Returns the object at positigrosin the list pointed to by. If posis out of bounds, returndULL and sets an
IndexError exception.

PyObject* PyList _GET_ITEM(PyObject *list, int)
Return valueBorrowed reference
Macro form ofPyList _Getltem() without error checking.

int PyList _Setltem (PyObject *list, int index, PyObject *itejn
Sets the item at indexdexin list to item Returns) on success orl on failure.Note: This function “steals”

58 Chapter 7. Concrete Objects Layer

a reference titemand discards a reference to an item already in the list at the affected position.

void PyList _SET_ITEM(PyObject *list, int i, PyObject *»
Macro form of PyList _Setltem() without error checking. This is normally only used to fill in new
lists where there is no previous conteniNote: This function “steals” a reference titem, and, unlike
PyList _Setltem() , doesnotdiscard a reference to any item that it being replaced; any refererlist in
at positioni will be leaked.

int PyList _Insert (PyObject *list, intindex, PyObject *itemn
Inserts the itemtem into list list in front of indexindex ReturnsO if successful; returnsl and raises an
exception if unsuccessful. Analogousligt.insert(index item).

int PyList _Append(PyObject *list, PyObject *item
Appends the objedtem at the end of listist. Returns0 if successful; returnsl and sets an exception if
unsuccessful. Analogous list.append(item) .

PyObject* PyList _GetSlice (PyObject *list, int low, int high
Return valueNew reference
Returns a list of the objects iiist containing the objectbetween lowand high. ReturnsNULL and sets an
exception if unsuccessful. Analogousligt[low: high] .

int PyList _SetSlice (PyObject *list, int low, int high, PyObject *itemlist
Sets the slice dist betweerlow andhighto the contents atemlist Analogous tdist[low: high] = itemlist
Returns on success,l on failure.

int PyList _Sort (PyObject *lis)
Sorts the items dist in place. Return® on success,l on failure. This is equivalent tdist.sort()

int PyList _Reverse (PyObject *lis)
Reverses the items dfst in place. Return€) on success;l on failure. This is the equivalent of
‘list.reverse() '

PyObject* PyList _AsTuple (PyObiject *lis)
Return valueNNew reference
Returns a new tuple object containing the contentisgfequivalent totuple(list) .

7.4 Mapping Objects

7.4.1 Dictionary Objects

PyDictObject
This subtype oPyObject represents a Python dictionary object.

PyTypeObject PyDict _Type
This instance oPyTypeObject represents the Python dictionary type. This is exposed to Python programs
astypes.DictType andtypes.DictionaryType

int PyDict _Check (PyObject*p
Returns true if its argument isRyDictObject

PyObject* PyDict _New()
Return valueNew reference
Returns a new empty dictionary, NJLL on failure.

PyObject* PyDictProxy _New(PyObject *dic)
Return valueNew reference
Return a proxy object for a mapping which enforces read-only behavior. This is normally used to create a proxy
to prevent modification of the dictionary for non-dynamic class types. New in version 2.2.

7.4. Mapping Objects 59

void PyDict _Clear (PyObject*p

Empties an existing dictionary of all key-value pairs.

PyObject* PyDict _Copy(PyObject *p

int

int

int

int

Return valueNew reference
Returns a new dictionary that contains the same key-value pgixs Bgw in version 1.6.

PyDict _Setltem (PyObject *p, PyObject *key, PyObject *yal
Insertsvalueinto the dictionaryp with a key ofkey. keymust be hashable; if it isn'TypeError will be raised.
ReturnsD on success o1l on failure.

PyDict _SetltemString (PyObject *p, char *key, PyObject *val
Insertsvalueinto the dictionaryp usingkeyas a key.keyshould be ahar* . The key object is created using
PyString _FromString(key) . Returnsd on success ol on failure.

PyDict _Delltem (PyObject *p, PyObject *kdy
Removes the entry in dictionapwith key key keymust be hashable; if itisn'TypeError is raised. Returns
0 on success ol on failure.

PyDict _DelltemString (PyObject *p, char *key
Removes the entry in dictionagywhich has a key specified by the strikgy. ReturnsD on success orfl on
failure.

PyObject* PyDict _Getltem (PyObject *p, PyObject *kgy

Return value Borrowed reference
Returns the object from dictionapmwhich has a kekey. ReturndNULL if the keykeyis not present, buwvithout
setting an exception.

PyObject* PyDict _GetltemString (PyObject *p, char *key

Return value Borrowed reference
This is the same aByDict _Getltem() , butkeyis specified as ahar* , rather than &#yObject*

PyObject* PyDict _Items (PyObject *p

Return valueNNew reference
Returns éPyListObject containing all the items from the dictionary, as in the dictinoary mettesds()
(see thePython Library Referenge

PyObject* PyDict _Keys (PyObject *p

Return valueNNew reference
Returns aPyListObject containing all the keys from the dictionary, as in the dictionary meted()
(see thePython Library Referenge

PyObject* PyDict _Values (PyObject*p

int

int

Return valueNew reference
Returns aPyListObject containing all the values from the dictionapy as in the dictionary method
values() (see theéPython Library Referenge

PyDict _Size (PyObject*p
Returns the number of items in the dictionary. This is equivalerietd* p) ' on a dictionary.

PyDict _Next (PyObject *p, int *ppos, PyObject **pkey, PyObject **pvajue

Iterate over all key-value pairs in the dictiongry Theint referred to bypposmust be initialized td prior

to the first call to this function to start the iteration; the function returns true for each pair in the dictionary, and
false once all pairs have been reported. The parampkessand pvalueshould either point t&?yObject*
variables that will be filled in with each key and value, respectively, or maybelL. Any references returned
through them are borrowed.

For example:

60

Chapter 7. Concrete Objects Layer

PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
[* do something interesting with the values... */

}

The dictionaryp should not be mutated during iteration. It is safe (since Python 2.1) to modify the values of the
keys as you iterate over the dictionary, but only so long as the set of keys does not change. For example:

PyObject *key, *value;
int pos = 0;

while (PyDict_Next(self->dict, &pos, &key, &value)) {
int i = PyInt_ AS_LONG(value) + 1,
PyObject *o = PyInt_FromLong(i);
if (0 == NULL)
return -1;
if (PyDict_Setltem(self->dict, key, 0) < 0) {
Py _DECREF(0);
return -1;

}
Py_DECREF(0);

}

int PyDict _Merge (PyObject *a, PyObject *b, int overrige
Iterate over mapping objedt adding key-value pairs to dictionasy b may be a dictionary, or any object
supportingPyMapping _Keys() andPyObject _Getltem() . If overrideis true, existing pairs i will
be replaced if a matching key is foundbinotherwise pairs will only be added if there is not a matching key in
a. Return0 on success otl if an exception was raised. New in version 2.2.

int PyDict _Update (PyObject *a, PyObject *p
This is the same aByDict _Merge(a, b, 1) in C, ora.update(b) in Python. Retur® on success or
-1 if an exception was raised. New in version 2.2.

int PyDict _MergeFromSeq2 (PyObject *a, PyObject *seq2, int overrijle
Update or merge into dictionag; from the key-value pairs ineq2 seg2must be an iterable object producing
iterable objects of length 2, viewed as key-value pairs. In case of duplicate keys, the lastavasideis true,
else the first wins. Returfl on success ofl if an exception was raised. Equivalent Python (except for the
return value):

def PyDict_MergeFromSeq2(a, seq2, override):
for key, value in seq2:
if override or key not in a:
alkey] = value

New in version 2.2.

7.5 Other Objects

7.5.1 File Objects

Python’s built-in file objects are implemented entirely on EFHeE* support from the C standard library. This is an
implementation detail and may change in future releases of Python.

7.5. Other Objects 61

PyFileObject

This subtype oPyObject represents a Python file object.

PyTypeObject PyFile _Type

int

int

This instance ofPyTypeObject represents the Python file type. This is exposed to Python programs as
types.FileType

PyFile _Check (PyObject*p
Returns true if its argument isRyFileObject or a subtype oPyFileObject . Changed in version 2.2:
Allowed subtypes to be accepted.

PyFile _CheckExact (PyObject*p
Returns true if its argument isRyFileObject , but not a subtype dPyFileObject . New in version 2.2.

PyObject* PyFile _FromString (char *filename, char *mode

Return valueNew reference
On success, returns a new file object that is opened on the file givéilebgme with a file mode given by
mode wheremodehas the same semantics as the standard C rdiofre®() . On failure, returnéNULL

PyObject* PyFile _FromFile (FILE *fp, char *name, char *mode, int (*close)(FILE})

Return valueNew reference
Creates a neWyFileObject from the already-open standard C file poinfer, The functionclosewill be
called when the file should be closed. RetuxiisLL on failure.

FILE* PyFile _AsFile (PyFileObject*p

Returns the file object associated wjitlas aFILE* .

PyObject* PyFile _GetLine (PyObject*p,intr)

Return valueNew reference

Equivalent top.readline([n]) , this function reads one line from the obj@ctp may be a file object or any
object with areadline() method. Ifnis 0, exactly one line is read, regardless of the length of the line. If

is greater thai®, no more tham bytes will be read from the file; a partial line can be returned. In both cases,
an empty string is returned if the end of the file is reached immediatahisifess thard, however, one line is
read regardless of length, HHOFError is raised if the end of the file is reached immediately.

PyObject* PyFile _Namd PyObject *p

Return value Borrowed reference
Returns the name of the file specifiedpgs a string object.

void PyFile _SetBufSize (PyFileObject*p,intn

int

int

int

int

Available on systems withetvbuf() ~ only. This should only be called immediately after file object creation.

PyFile _Encoding (PyFileObject *p, char *eng
Set the file's encoding for Unicode outputdac Return 1 on success and 0 on failure. New in version 2.3.

PyFile _SoftSpace (PyObject *p, int newflay

This function exists for internal use by the interpreter. Setsdlftspace attribute ofp to newflagand returns

the previous valuep does not have to be a file object for this function to work properly; any object is supported
(thought its only interesting if theoftspace attribute can be set). This function clears any errors, and will
returnO as the previous value if the attribute either does not exist or if there were errors in retrieving it. There is
no way to detect errors from this function, but doing so should not be needed.

PyFile _WriteObject (PyObiject *obj, PyFileObject *p, int flags

Writes objectobj to file objectp. The only supported flag fdtagsis Py _PRINT_RAWif given, thestr() of
the object is written instead of tlrepr() . ReturnsD on success ol on failure; the appropriate exception
will be set.

PyFile _WriteString (const char *s, PyFileObject *p
Writes strings to file objectp. ReturnsD on success ofl on failure; the appropriate exception will be set.

62

Chapter 7. Concrete Objects Layer

7.5.2 Instance Objects

There are very few functions specific to instance objects.

PyTypeObject Pylnstance _Type
Type object for class instances.

int Pylnstance _Check (PyObject *ob)
Returns true ibbj is an instance.

PyObject* Pylnstance _New(PyObject *class, PyObject *arg, PyObject *kw
Return valueNNew reference
Create a new instance of a specific class. The paramegendkw are used as the positional and keyword
parameters to the object’s constructor.

PyObject* Pylnstance _NewRaw PyObject *class, PyObiject *dirt
Return valueNew reference
Create a new instance of a specific class without calling it's construttmsis the class of new object. Tlakct
parameter will be used as the object’sdict __; if NULL, a new dictionary will be created for the instance.

7.5.3 Method Objects

There are some useful functions that are useful for working with method objects.

PyTypeObject PyMethod _Type
This instance oPyTypeObject represents the Python method type. This is exposed to Python programs as
types.MethodType

int PyMethod _Check (PyObject *g
Return true ifo is a method object (has tygg/Method _Type). The parameter must not biJLL

PyObject* PyMethod _New(PyObject *func. PyObject *self, PyObject *class
Return value:New reference
Return a new method object, wiftinc being any callable object; this is the function that will be called when
the method is called. If this method should be bound to an instaetfeshould be the instance anthssshould
be the class ofelf, otherwiseself should beNULL andclassshould be the class which provides the unbound
method..

PyObject* PyMethod _Class (PyObject *meth
Return valueBorrowed reference
Return the class object from which the methmdthwas created,; if this was created from an instance, it will be
the class of the instance.

PyObject* PyMethod _GET_CLASY PyObject *meth
Return value Borrowed reference
Macro version oPyMethod _Class() which avoids error checking.

PyObject* PyMethod _Function (PyObject *meth
Return valueBorrowed reference
Return the function object associated with the metimedh

PyObject* PyMethod _GET_FUNCTION PyObject *meth
Return valueBorrowed reference
Macro version oPyMethod _Function() which avoids error checking.

PyObject* PyMethod _Self (PyObject *meth

Return valueBorrowed reference
Return the instance associated with the metimedhif it is bound, otherwise returhNULL

7.5. Other Objects 63

PyObject* PyMethod _GET_SELF(PyObject *meth
Return valueBorrowed reference
Macro version oPyMethod _Self() which avoids error checking.

7.5.4 Module Objects

There are only a few functions special to module objects.

PyTypeObject PyModule _Type
This instance oPyTypeObject represents the Python module type. This is exposed to Python programs as
types.ModuleType

int PyModule _Check (PyObject *p
Returns true ip is a module object, or a subtype of a module object. Changed in version 2.2: Allowed subtypes
to be accepted.

int PyModule _CheckExact (PyObject*p
Returns true ip is a module object, but not a subtypeRyModule _Type. New in version 2.2.

PyObject* PyModule _New(char *nameg
Return value:New reference
Return a new module object with the name__ attribute set tmame Only the module’s__doc __ and
__name__ attributes are filled in; the caller is responsible for providing dile __ attribute.

PyObject* PyModule _GetDict (PyObject *module
Return valueBorrowed reference
Return the dictionary object that implememt®dulés namespace; this object is the same as_thdict __
attribute of the module object. This function never fails. It is recommended extensions use other
PyModule _*() andPyObject _*() functions rather than directly manipulate a module’slict __.

char* PyModule _GetName(PyObject *modulie
Returnmodulés __name__ value. If the module does not provide one, or if it is not a stridgstemError
is raised andNULL s returned.

char* PyModule _GetFilename (PyObject *modulg
Return the name of the file from whighodulewas loaded usinghodulés __file __ attribute. If this is not
defined, or if it is not a string, raiseystemError and returrNULL

int PyModule _AddObject (PyObject *module, char *name, PyObject *vajue
Add an object tamoduleasname This is a convenience function which can be used from the module’s ini-
tialization function. This steals a referencevimlue Returns-1 on error,0 on success. New in version
2.0.

int PyModule _AddIntConstant (PyObject *module, char *name, int value
Add an integer constant tmoduleasname This convenience function can be used from the module’s initial-
ization function. Returnsl on error,0 on success. New in version 2.0.

int PyModule _AddStringConstant (PyObject *module, char *name, char *value
Add a string constant tmoduleasname This convenience function can be used from the module’s initialization
function. The stringraluemust be null-terminated. Returps on error,0 on success. New in version 2.0.

7.5.5 lterator Objects

Python provides two general-purpose iterator objects. The first, a sequence iterator, works with an arbitrary sequence
supporting the__getitem __() method. The second works with a callable object and a sentinel value, calling the
callable for each item in the sequence, and ending the iteration when the sentinel value is returned.

PyTypeObject PySeqlter _Type

64 Chapter 7. Concrete Objects Layer

Type object for iterator objects returned BySeqlter _New() and the one-argument form of tliter()
built-in function for built-in sequence types. New in version 2.2.

int PySeqlter _Check(op)
Return true if the type abpis PySeqlter _Type. New in version 2.2.

PyObject* PySeqlter _New(PyObject *sey
Return valueNNew reference
Return an iterator that works with a general sequence olgeqt,The iteration ends when the sequence raises
IndexError for the subscripting operation. New in version 2.2.

PyTypeObject PyCalllter _Type
Type object for iterator objects returned ByCalllter ~ _New() and the two-argument form of thier()
built-in function. New in version 2.2.

int PyCalllter _Check(op)
Return true if the type obpis PyCalllter _Type. New in version 2.2.

PyObject* PyCalliter _New(PyObiject *callable, PyObject *sentinel
Return valueNew reference
Return a new iterator. The first parametaillable can be any Python callable object that can be called with no
parameters; each call to it should return the next item in the iteration. \8éd&able returns a value equal to
sentine] the iteration will be terminated. New in version 2.2.

7.5.6 Descriptor Objects

“Descriptors” are objects that describe some attribute of an object. They are found in the dictionary of type objects.

PyTypeObject PyProperty _Type
The type object for the built-in descriptor types. New in version 2.2.

PyObject* PyDescr _NewGetSet (PyTypeObiject *type, PyGetSetDef *ge}set
Return valueNew reference
New in version 2.2,

PyObject* PyDescr _NewMembel PyTypeObject *type, PyMemberDef *mpth
Return valueNew reference
New in version 2.2.

PyObject* PyDescr _NewMethod(PyTypeObiject *type, PyMethodDef *mgth
Return valueNew reference
New in version 2.2.

PyObject* PyDescr _NewWrapper (PyTypeObject *type, struct wrapperbase *wrapper, void *wrapped
Return valueNew reference
New in version 2.2.

int PyDescr _IsData (PyObject *descy
Returns true if the descriptor objeasscrdescribes a data attribute, or false if it describes a metdedcr
must be a descriptor object; there is no error checking. New in version 2.2.

PyObject* PyWrapper _New(PyObiject *, PyObject ¥
Return valueNew reference
New in version 2.2.

7.5.7 Slice Objects

PyTypeObject PySlice _Type
The type object for slice objects. This is the saméyass.SliceType

7.5. Other Objects 65

int PySlice _Check (PyObject *ol)
Returns true ibbis a slice objectpb must not beNULL

PyObject* PySlice _New(PyObiject *start, PyObject *stop, PyObject *sdep
Return valueNew reference
Return a new slice object with the given values. Bkart, stop andstepparameters are used as the values of
the slice object attributes of the same names. Any of the values midybk in which case th&lone will be
used for the corresponding attribute. Retuxit$LL if the new object could not be allocated.

int PySlice _Getindices (PySliceObject *slice, int length, int *start, int *stop, int *sfep
Retrieve the start, stop and step indices from the slice obiieet assuming a sequence of lengghgth Treats
indices greater thalengthas errors.

Returns 0 on success and -1 on error with no exception set (unless one of the indices Masenand failed
to be converted to an integer, in which case -1 is returned with an exception set).

You probably do not want to use this function. If you want to use slice objects in versions of Python prior to
2.3, you would probably do well to incorporate the sourc®g8lice _GetindicesEx , suitably renamed,
in the source of your extension.

int PySlice _GetindicesEx (PySliceObject *slice, int length, int *start, int *stop, int *step, int *slicelength
Usable replacement fdPySlice _Getindices . Retrieve the start, stop, and step indices from the slice
objectsliceassuming a sequence of lendghgth and store the length of the slicesticelength Out of bounds
indices are clipped in a manner consistent with the handling of normal slices.

Returns 0 on success and -1 on error with exception set.
New in version 2.3.

7.5.8 Weak Reference Objects

Python supportsveak referenceas first-class objects. There are two specific object types which directly implement
weak references. The first is a simple reference object, and the second acts as a proxy for the original object as much
as it can.

int PyWeakref _Check (ob)
Return true ifobis either a reference or proxy object. New in version 2.2.

int PyWeakref _CheckRef (ob)
Return true ifobis a reference object. New in version 2.2.

int PyWeakref _CheckProxy (ob)
Return true ifobis a proxy object. New in version 2.2.

PyObject* PyWeakref _NewRef(PyObject *ob, PyObiject *callbagk
Return valueNew reference
Return a weak reference object for the objaat This will always return a new reference, but is not guaranteed
to create a new object; an existing reference object may be returned. The second pacaitiztek, can be a
callable object that receives notification whamis garbage collected; it should accept a single paramter, which
will be the weak reference object itsetfallbackmay also béNone or NULL If obis not a weakly-referencable
object, or ifcallbackis not callableNone, or NULL, this will returnNULL and raiseTypeError . New in
version 2.2.

PyObject* PyWeakref _NewProxy (PyObject *ob, PyObject *callbagk
Return valueNNew reference
Return a weak reference proxy object for the objget This will always return a new reference, but is not
guaranteed to create a new object; an existing proxy object may be returned. The second parathatdy,
can be a callable object that receives notification wdteis garbage collected; it should accept a single paramter,
which will be the weak reference object itselfallback may also beNone or NULL If ob is not a weakly-
referencable object, or dallbackis not callableNone, or NULL, this will returnNULL and raiselypeError

66 Chapter 7. Concrete Objects Layer

New in version 2.2.

PyObject* PyWeakref _GetObject (PyObiject *ref)
Return value Borrowed reference
Returns the referenced object from a weak referemde |f the referent is no longer live, returidone. New
in version 2.2.

PyObject* PyWeakref _GET_OBJECT PyObject *ref)
Return valueBorrowed reference
Similar to PyWeakref _GetObject() , but implemented as a macro that does no error checking. New in
version 2.2,

7.5.9 CObjects

Refer toExtending and Embedding the Python Interpreserction 1.12, “Providing a C API for an Extension Module,”
for more information on using these objects.

PyCObject
This subtype oPyObject represents an opaque value, useful for C extension modules who need to pass an
opaque value (aswid* pointer) through Python code to other C code. It is often used to make a C function
pointer defined in one module available to other modules, so the regular import mechanism can be used to access
C APIs defined in dynamically loaded modules.

int PyCObject _Check (PyObject *p
Returns true if its argument isRyCObject .

PyObject* PyCObject _FromVoidPtr (void* cobj, void (*destr)(void *)
Return valueNew reference
Creates #yCObject from thevoid * cobj. Thedestrfunction will be called when the object is reclaimed,
unless it iSNULL

PyObject* PyCObject _FromVoidPtrAndDesc (void* cobj, void* desc, void (*destr)(void *, void ¥)
Return valueNew reference
Creates #yCObject from thevoid * cobj. Thedestrfunction will be called when the object is reclaimed.
Thedescargument can be used to pass extra callback data for the destructor function.

void* PyCObject _AsVoidPtr (PyObject* selj
Returns the objectoid * that thePyCObject self was created with.

void* PyCObject _GetDesc (PyObject* selj
Returns the descriptiomoid * that thePyCObject self was created with.

7.5.10 Cell Objects

“Cell” objects are used to implement variables referenced by multiple scopes. For each such variable, a cell object is
created to store the value; the local variables of each stack frame that references the value contains a reference to the
cells from outer scopes which also use that variable. When the value is accessed, the value contained in the cell is used
instead of the cell object itself. This de-referencing of the cell object requires support from the generated byte-code;
these are not automatically de-referenced when accessed. Cell objects are not likely to be useful elsewhere.

PyCellObject
The C structure used for cell objects.

PyTypeObject PyCell _Type
The type object corresponding to cell objects

int PyCell _Check(ob)
Return true ifobis a cell objectpb must not beNULL

7.5. Other Objects 67

PyObject* PyCell _New(PyObject *ol)
Return valueNew reference
Create and return a new cell object containing the valuérhe parameter may bé¢ULL

PyObject* PyCell _Get(PyObject *cel)
Return valueNew reference
Return the contents of the cekll.

PyObject* PyCell _GET PyObject *cel)
Return valueBorrowed reference
Return the contents of the cekll, but without checking thatell is nonNULLand a cell object.

int PyCell _Set (PyObject *cell, PyObject *value
Set the contents of the cell objextll to value This releases the reference to any current content of the cell.
valuemay beNULL cell must be norNULL; if it is not a cell object;1 will be returned. On succesB will be
returned.

void PyCell _SET(PyObject *cell, PyObject *value
Sets the value of the cell objecell to value No reference counts are adjusted, and no checks are made for
safety;cell must be norNULLand must be a cell object.

68 Chapter 7. Concrete Objects Layer

CHAPTER
EIGHT

void

int

void

Initialization, Finalization, and Threads

Py _lInitialize 0

Initialize the Python interpreter. In an application embedding Python, this should be called be-
fore using any other Python/C API functions; with the exception Rf_SetProgramName() |,
PyEval _InitThreads() , PyEval _ReleaselLock() , andPyEval _AcquireLock() . This initial-

izes the table of loaded modulesy§.modules), and creates the fundamental modulesuiltin -~ __,
__main __ andsys . It also initializes the module search paly¢.path). It does not sesys.argv ;

use PySys _SetArgv() for that. This is a no-op when called for a second time (without calling
Py_Finalize() first). There is no return value; it is a fatal error if the initialization fails.

Py_lslInitialized 0
Return true (nonzero) when the Python interpreter has been initialized, false (zero) if not. After
Py _Finalize() is called, this returns false unifly _Initialize() is called again.

Py_Finalize ()
Undo all initializations made byy _Initialize() and subsequent use of Python/C API functions, and
destroy all sub-interpreters (s®y_Newlnterpreter() below) that were created and not yet destroyed
since the last call t®y_Initialize() . Ideally, this frees all memory allocated by the Python interpreter.
This is a no-op when called for a second time (without callyg_Initialize() again first). There is no

return value; errors during finalization are ignored.

This function is provided for a number of reasons. An embedding application might want to restart Python
without having to restart the application itself. An application that has loaded the Python interpreter from a
dynamically loadable library (or DLL) might want to free all memory allocated by Python before unloading the
DLL. During a hunt for memory leaks in an application a developer might want to free all memory allocated by
Python before exiting from the application.

Bugs and caveatsThe destruction of modules and objects in modules is done in random order; this may cause
destructors (_del __() methods) to fail when they depend on other objects (even functions) or modules.
Dynamically loaded extension modules loaded by Python are not unloaded. Small amounts of memory allocated
by the Python interpreter may not be freed (if you find a leak, please report it). Memory tied up in circular
references between objects is not freed. Some memory allocated by extension modules may not be freed. Some
extensions may not work properly if their initialization routine is called more than once; this can happen if an
application calldPy _Initialize() andPy_Finalize() more than once.

PyThreadState* Py_NewInterpreter ()

Create a new sub-interpreter. This is an (almost) totally separate environment for the execution of Python code.
In particular, the new interpreter has separate, independent versions of all imported modules, including the
fundamental modules_builtin ~ __, __main __ andsys . The table of loaded modulesys.modules)

and the module search palyé.path) are also separate. The new environment hasysargv ~ variable.

It has new standard I/O stream file objesis.stdin |, sys.stdout andsys.stderr (however these

refer to the same underlyirfg)LE structures in the C library).

The return value points to the first thread state created in the new sub-interpreter. This thread state is made the
current thread state. Note that no actual thread is created; see the discussion of thread states below. If creation

69

of the new interpreter is unsuccesshlJLLis returned; no exception is set since the exception state is stored in
the current thread state and there may not be a current thread state. (Like all other Python/C API functions, the
global interpreter lock must be held before calling this function and is still held when it returns; however, unlike
most other Python/C API functions, there needn’t be a current thread state on entry.)

Extension modules are shared between (sub-)interpreters as follows: the first time a particular extension is
imported, it is initialized normally, and a (shallow) copy of its module’s dictionary is squirreled away. When the
same extension is imported by another (sub-)interpreter, a new module is initialized and filled with the contents
of this copy; the extensionigit function is not called. Note that this is different from what happens when an
extension is imported after the interpreter has been completely re-initialized by djlirffginalize() and

Py _lInitialize() ; in that case, the extensionfit modulefunctionis called again.

Bugs and caveats:Because sub-interpreters (and the main interpreter) are part of the same process, the insu-
lation between them isn't perfect — for example, using low-level file operationsdkelose() they can
(accidentally or maliciously) affect each other’s open files. Because of the way extensions are shared between
(sub-)interpreters, some extensions may not work properly; this is especially likely when the extension makes
use of (static) global variables, or when the extension manipulates its module’s dictionary after its initialization.

It is possible to insert objects created in one sub-interpreter into a namespace of another sub-interpreter; this
should be done with great care to avoid sharing user-defined functions, methods, instances or classes between
sub-interpreters, since import operations executed by such objects may affect the wrong (sub-)interpreter’s dic-
tionary of loaded modules. (XXX This is a hard-to-fix bug that will be addressed in a future release.)

void Py_EndIinterpreter (PyThreadState *tstaje
Destroy the (sub-)interpreter represented by the given thread state. The given thread state must be the current
thread state. See the discussion of thread states below. When the call returns, the current thre&¢ Kthte is
All thread states associated with this interpreted are destroyed. (The global interpreter lock must be held before
calling this function and is still held when it return®y_Finalize() will destroy all sub-interpreters that
haven’t been explicitly destroyed at that point.

void Py_SetProgramName (char *namg
This function should be called befoRy _Initialize() is called for the first time, if it is called at all. It
tells the interpreter the value of thegv[0] argument to thenain() function of the program. This is used by
Py_GetPath() and some other functions below to find the Python run-time libraries relative to the interpreter
executable. The default value'mython’ . The argument should point to a zero-terminated character string
in static storage whose contents will not change for the duration of the program’s execution. No code in the
Python interpreter will change the contents of this storage.

char* Py_GetProgramName ()
Return the program name set wiRly _SetProgramName() , or the default. The returned string points into
static storage; the caller should not modify its value.

char* Py_GetPrefix ()
Return theprefixfor installed platform-independent files. This is derived through a number of complicated rules
from the program name set witty _SetProgramName() and some environment variables; for example,
if the program name igusr/local/bin/python’ , the prefix is'/usr/local . The returned string
points into static storage; the caller should not modify its value. This corresponds to the prefix variable in the
top-level Makefile’ and the--prefix argument to theonfigure script at build time. The value is available to
Python code asys.prefix . Itis only useful on Wix. See also the next function.

char* Py_GetExecPrefix ()
Return theexec-prefixfor installed platformdependent files. This is derived through a number of compli-
cated rules from the program name set with_SetProgramName() and some environment variables;
for example, if the program name ‘isisr/local/bin/python’ , the exec-prefix is/usr/local
The returned string points into static storage; the caller should not modify its value. This corresponds to the
exec_prefix variable in the top-leveMakefile’ and the--exec-prefixargument to theonfigure script at build
time. The value is available to Python codesgis.exec _prefix . Itis only useful on Wix.

Background: The exec-prefix differs from the prefix when platform dependent files (such as executables and
shared libraries) are installed in a different directory tree. In a typical installation, platform dependent files may

70 Chapter 8. Initialization, Finalization, and Threads

be installed in the/tsr/local/plat’ subtree while platform independent may be installedusrflocal’.

Generally speaking, a platform is a combination of hardware and software families, e.g. Sparc machines run-
ning the Solaris 2.x operating system are considered the same platform, but Intel machines running Solaris 2.x
are another platform, and Intel machines running Linux are yet another platform. Different major revisions of
the same operating system generally also form different platforms. Nar-tperating systems are a different

story; the installation strategies on those systems are so different that the prefix and exec-prefix are meaning-
less, and set to the empty string. Note that compiled Python bytecode files are platform independent (but not
independent from the Python version by which they were compiled!).

System administrators will know how to configure thmunt or automount programs to shareusr/local’
between platforms while havingusr/local/plat’ be a different filesystem for each platform.

char* Py_GetProgramFullPath ()
Return the full program name of the Python executable; this is computed as a side-effect of deriving the default
module search path from the program name (sePpySetProgramName() above). The returned string
points into static storage; the caller should not modify its value. The value is available to Python code as
sys.executable

char* Py_GetPath ()
Return the default module search path; this is computed from the program name (set by
Py_SetProgramName() above) and some environment variables. The returned string consists of a
series of directory names separated by a platform dependent delimiter character. The delimiter character is
on UNIX, ‘; " on Windows, and\n ' (the Ascil newline character) on Macintosh. The returned string points
into static storage; the caller should not modify its value. The value is available to Python code as the list
sys.path , which may be modified to change the future search path for loaded modules.

const char* Py_GetVersion ()
Return the version of this Python interpreter. This is a string that looks something like

"1.5 (#67, Dec 31 1997, 22:34:28) [GCC 2.7.2.2]"

The first word (up to the first space character) is the current Python version; the first three characters are the
major and minor version separated by a period. The returned string points into static storage; the caller should
not modify its value. The value is available to Python codsyasversion

const char* Py_GetPlatform ()
Return the platform identifier for the current platform. ONIM, this is formed from the “official” name of the
operating system, converted to lower case, followed by the major revision number; e.g., for Solaris 2.x, which
is also known as SunOS 5.x, the valuesignos5’ . On Macintosh, itismac’ . On Windows, it iswin’
The returned string points into static storage; the caller should not modify its value. The value is available to
Python code asys.platform

const char* Py_GetCopyright ()
Return the official copyright string for the current Python version, for example

'Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam’

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code asys.copyright

const char* Py_GetCompiler ()
Return an indication of the compiler used to build the current Python version, in square brackets, for example:

"[GCC 2.7.2.2]"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the varialsigs.version

const char* Py_GetBuildinfo ()

71

Return information about the sequence number and build date and time of the current Python interpreter instance,
for example

"#67, Aug 1 1997, 22:34:28"

The returned string points into static storage; the caller should not modify its value. The value is available to
Python code as part of the varialsigs.version

int PySys _SetArgv (intargc, char **argv)
Setsys.argv based orargcandargv. These parameters are similar to those passed to the progreim§
function with the difference that the first entry should refer to the script file to be executed rather than the exe-
cutable hosting the Python interpreter. If there isn’t a script that will be run, the first ersrg\vican be an empty
string. If this function fails to initializesys.argv , a fatal condition is signalled usir®gy _FatalError()

8.1 Thread State and the Global Interpreter Lock

The Python interpreter is not fully thread safe. In order to support multi-threaded Python programs, there’s a global
lock that must be held by the current thread before it can safely access Python objects. Without the lock, even the
simplest operations could cause problems in a multi-threaded program: for example, when two threads simultaneously
increment the reference count of the same object, the reference count could end up being incremented only once instead
of twice.

Therefore, the rule exists that only the thread that has acquired the global interpreter lock may operate on Python
objects or call Python/C API functions. In order to support multi-threaded Python programs, the interpreter reg-
ularly releases and reacquires the lock — by default, every 100 bytecode instructions (this can be changed with
sys.setcheckinterval()). The lock is also released and reacquired around potentially blocking I/O opera-
tions like reading or writing a file, so that other threads can run while the thread that requests the 1/O is waiting for the
I/O operation to complete.

The Python interpreter needs to keep some bookkeeping information separate per thread — for this it uses a data
structure calledPyThreadState . This is new in Python 1.5; in earlier versions, such state was stored in global
variables, and switching threads could cause problems. In particular, exception handling is now thread safe, when the
application usessys.exc _info() to access the exception last raised in the current thread.

There’s one global variable left, however: the pointer to the cufPgiihreadState structure. While most thread
packages have a way to store “per-thread global data,” Python's internal platform independent thread abstraction
doesn’t support this yet. Therefore, the current thread state must be manipulated explicitly.

This is easy enough in most cases. Most code manipulating the global interpreter lock has the following simple
structure:

Save the thread state in a local variable.
Release the interpreter lock.

...Do some blocking /O operation...

Reacquire the interpreter lock.

Restore the thread state from the local variable.

This is so common that a pair of macros exists to simplify it:

Py BEGIN_ALLOW_THREADS
...Do some blocking I/O operation...
Py _END_ALLOW_THREADS

72 Chapter 8. Initialization, Finalization, and Threads

The Py_BEGIN_ALLOWTHREADSmacro opens a new block and declares a hidden local variable; the
Py_END ALLOWTHREADSMacro closes the block. Another advantage of using these two macros is that when
Python is compiled without thread support, they are defined empty, thus saving the thread state and lock manipula-
tions.

When thread support is enabled, the block above expands to the following code:

PyThreadState *_save;

_save = PyEval_SaveThread();
...Do some blocking I/O operation...
PyEval_RestoreThread(_save);

Using even lower level primitives, we can get roughly the same effect as follows:

PyThreadState *_save;

_save = PyThreadState_Swap(NULL);
PyEval_ReleaselLock();

...Do some blocking 1/O operation...
PyEval_AcquireLock();
PyThreadState_Swap(_save);

There are some subtle differences; in particbazval _RestoreThread() saves and restores the value of the
global variableerrno , since the lock manipulation does not guarantee dhato is left alone. Also, when thread
support is disabled?yEval _SaveThread() andPyEval _RestoreThread() don’t manipulate the lock; in

this case PyEval _ReleaselLock() andPyEval _AcquireLock() are not available. This is done so that
dynamically loaded extensions compiled with thread support enabled can be loaded by an interpreter that was compiled
with disabled thread support.

The global interpreter lock is used to protect the pointer to the current thread state. When releasing the lock and saving
the thread state, the current thread state pointer must be retrieved before the lock is released (since another thread
could immediately acquire the lock and store its own thread state in the global variable). Conversely, when acquiring
the lock and restoring the thread state, the lock must be acquired before storing the thread state pointer.

Why am | going on with so much detail about this? Because when threads are created from C, they don’t have the
global interpreter lock, nor is there a thread state data structure for them. Such threads must bootstrap themselves into
existence, by first creating a thread state data structure, then acquiring the lock, and finally storing their thread state
pointer, before they can start using the Python/C API. When they are done, they should reset the thread state pointer,
release the lock, and finally free their thread state data structure.

When creating a thread data structure, you need to provide an interpreter state data structure. The interpreter state
data structure hold global data that is shared by all threads in an interpreter, for example the module administration
(sys.modules). Depending on your needs, you can either create a new interpreter state data structure, or share the
interpreter state data structure used by the Python main thread (to access the latter, you must obtain the thread state
and access itiiterp member; this must be done by a thread that is created by Python or by the main thread after
Python is initialized).

Assuming you have access to an interpreter object, the typical idiom for calling into Python from a C thread is

8.1. Thread State and the Global Interpreter Lock 73

PyThreadState *tstate;
PyObject *result;

[* interp is your reference to an interpreter object. */
tstate = PyThreadState_New(interp);
PyEval_AcquireThread(tstate);

[* Perform Python actions here. */
result = CallSomeFunction();
[* evaluate result */

/* Release the thread. No Python API allowed beyond this point. */
PyEval_ReleaseThread(tstate);

/* You can either delete the thread state, or save it
until you need it the next time. */
PyThreadState_Delete(tstate);

PylInterpreterState
This data structure represents the state shared by a number of cooperating threads. Threads belonging to the
same interpreter share their module administration and a few other internal items. There are no public members
in this structure.

Threads belonging to different interpreters initially share nothing, except process state like available memory,
open file descriptors and such. The global interpreter lock is also shared by all threads, regardless of to which
interpreter they belong.

PyThreadState
This data structure represents the state of a single thread. The only public data member is
PyInterpreterState *interp , which points to this thread’s interpreter state.

void PyEval _InitThreads ()
Initialize and acquire the global interpreter lock. It should be called in the main thread before cre-
ating a second thread or engaging in any other thread operations sueliEaal _Releaselock()
or PyEval _ReleaseThread(tstatg. It is not needed before callin@yEval _SaveThread() or
PyEval _RestoreThread()

This is a no-op when called for a second time. Itis safe to call this function before dajlinigitialize()

When only the main thread exists, no lock operations are needed. This is a common situation (most Python
programs do not use threads), and the lock operations slow the interpreter down a bit. Therefore, the lock is not
created initially. This situation is equivalent to having acquired the lock: when there is only a single thread, all
object accesses are safe. Therefore, when this function initializes the lock, it also acquires it. Before the Python
thread module creates a new thread, knowing that either it has the lock or the lock hasn’t been created yet, it
callsPyEval _InitThreads() . When this call returns, it is guaranteed that the lock has been created and
that it has acquired it.

It is not safe to call this function when it is unknown which thread (if any) currently has the global interpreter
lock.

This function is not available when thread support is disabled at compile time.

void PyEval _AcquireLock ()
Acquire the global interpreter lock. The lock must have been created earlier. If this thread already has the lock,
a deadlock ensues. This function is not available when thread support is disabled at compile time.

void PyEval _ReleaselLock ()
Release the global interpreter lock. The lock must have been created earlier. This function is not available when
thread support is disabled at compile time.

74 Chapter 8. Initialization, Finalization, and Threads

void PyEval _AcquireThread (PyThreadState *tstaje
Acquire the global interpreter lock and then set the current thread ststat®which should not b&3lULL The
lock must have been created earlier. If this thread already has the lock, deadlock ensues. This function is not
available when thread support is disabled at compile time.

void PyEval _ReleaseThread (PyThreadState *tstaje
Reset the current thread stateNbLL and release the global interpreter lock. The lock must have been created
earlier and must be held by the current thread. Ttateargument, which must not B8ULL, is only used
to check that it represents the current thread state — if it isn’t, a fatal error is reported. This function is not
available when thread support is disabled at compile time.

PyThreadState* PyEval _SaveThread ()
Release the interpreter lock (if it has been created and thread support is enabled) and reset the thread state to
NULL, returning the previous thread state (which is RaiLL). If the lock has been created, the current thread
must have acquired it. (This function is available even when thread support is disabled at compile time.)

void PyEval _RestoreThread (PyThreadState *tstaje
Acquire the interpreter lock (if it has been created and thread support is enabled) and set the threadtstate to
which must not beNULL If the lock has been created, the current thread must not have acquired it, otherwise
deadlock ensues. (This function is available even when thread support is disabled at compile time.)

The following macros are normally used without a trailing semicolon; look for example usage in the Python source
distribution.

Py_BEGIN_ALLOWTHREADS
This macro expands to[PyThreadState * _save; _save = PyEval _SaveThread(); °’. Note
that it contains an opening brace; it must be matched with a folloynwgeEND ALLOW THREADSmacro.
See above for further discussion of this macro. It is a no-op when thread support is disabled at compile time.

Py_END ALLOWTHREADS
This macro expands td®yEval _RestoreThread(_save); } . Note that it contains a closing brace; it
must be matched with an earliBy _BEGIN_ALLOW THREADSNacro. See above for further discussion of
this macro. It is a no-op when thread support is disabled at compile time.

Py_BLOCK.THREADS

This macro expands to PYyEval _RestoreThread(_save); it is equivalent to
Py_END ALLOWTHREADSwithout the closing brace. It is a no-op when thread support is disabled at
compile time.

Py_UNBLOCKTHREADS
This macro expands to _Save = PyEval _SaveThread(); it is equivalent to

Py_BEGIN_ALLOW THREADSwithout the opening brace and variable declaration. It is a no-op when
thread support is disabled at compile time.

All of the following functions are only available when thread support is enabled at compile time, and must be called
only when the interpreter lock has been created.

PylnterpreterState* PylInterpreterState _New()
Create a new interpreter state object. The interpreter lock need not be held, but may be held if it is necessary to
serialize calls to this function.

void PylnterpreterState _Clear (PylInterpreterState *interp
Reset all information in an interpreter state object. The interpreter lock must be held.

void PylinterpreterState _Delete (PyInterpreterState *interp
Destroy an interpreter state object. The interpreter lock need not be held. The interpreter state must have been
reset with a previous call tBByInterpreterState _Clear()

PyThreadState* PyThreadState _New(PylnterpreterState *interp
Create a new thread state object belonging to the given interpreter object. The interpreter lock need not be held,
but may be held if it is necessary to serialize calls to this function.

8.1. Thread State and the Global Interpreter Lock 75

void PyThreadState _Clear (PyThreadState *tstaje
Reset all information in a thread state object. The interpreter lock must be held.

void PyThreadState _Delete (PyThreadState *tstaje
Destroy a thread state object. The interpreter lock need not be held. The thread state must have been reset with
a previous call td’yThreadState _Clear()

PyThreadState* PyThreadState _Get()
Return the current thread state. The interpreter lock must be held. When the current thread\éfate ihis
issues a fatal error (so that the caller needn’t checiNfaLL).

PyThreadState* PyThreadState _Swap(PyThreadState *tstaje
Swap the current thread state with the thread state given by the argtstagtwhich may beNULL The
interpreter lock must be held.

PyObject* PyThreadState _GetDict ()
Return value Borrowed reference
Return a dictionary in which extensions can store thread-specific state information. Each extension should use
a unique key to use to store state in the dictionary. It is okay to call this function when no current thread state is
available. If this function returnsIULL, no exception has been raised and the caller should assume no current
thread state is available. Changed in version 2.3: Previously this could only be called when a current thread is
active, andNULL meant that an exception was raised.

int PyThreadState _SetAsyncExc (long id, PyObject *ext
Asynchronously raise an exception in a thread. ithargument is the thread id of the target threextis the
exception object to be raised. This function does not steal any refereners o prevent naive misuse, you
must write your own C extension to call this. Must be called with the GIL held. Returns the number of thread
states modified; if it returns a number greater than one, you're in trouble, and you should call it agarawith
set toNULLto revert the effect. This raises no exceptions. New in version 2.3.

8.2 Profiling and Tracing

The Python interpreter provides some low-level support for attaching profiling and execution tracing facilities. These
are used for profiling, debugging, and coverage analysis tools.

Starting with Python 2.2, the implementation of this facility was substantially revised, and an interface from C was
added. This C interface allows the profiling or tracing code to avoid the overhead of calling through Python-level
callable objects, making a direct C function call instead. The essential attributes of the facility have not changed; the
interface allows trace functions to be installed per-thread, and the basic events reported to the trace function are the
same as had been reported to the Python-level trace functions in previous versions.

int (*Py _tracefunc)(PyObject *obj, PyFrameObject *frame, int what, PyObject *arg)
The type of the trace function registered usiyval _SetProfile() andPyEval _SetTrace() . The
first parameter is the object passed to the registration functiovbpdrame is the frame object to which
the event pertainsyhatis one of the constanByTrace _CALL, PyTrace _EXCEPT PyTrace _LINE or
PyTrace _RETURNandarg depends on the value wfhat

Value of what | Meaning of arg

PyTrace _CALL Always NULL

PyTrace _EXCEPT| Exception information as returned bBys.exc _info()
PyTrace _LINE Always NULL

PyTrace _RETURN| Value being returned to the caller.

int PyTrace _CALL
The value of thewhat parameter to &y _tracefunc function when a new call to a function or method is
being reported, or a new entry into a generator. Note that the creation of the iterator for a generator function is
not reported as there is no control transfer to the Python bytecode in the corresponding frame.

76 Chapter 8. Initialization, Finalization, and Threads

int PyTrace _EXCEPT
The value of thevhatparameter to #y_tracefunc function when an exception has been raised. The call-
back function is called with this value fevhatwhen after any bytecode is processed after which the exception
becomes set within the frame being executed. The effect of this is that as exception propogation causes the
Python stack to unwind, the callback is called upon return to each frame as the exception propagates. Only trace
functions receives these events; they are not needed by the profiler.

int PyTrace _LINE
The value passed as timhat parameter to a trace function (but not a profiling function) when a line-number
event is being reported.

int PyTrace _RETURN
The value for theavhat parameter t&®y_tracefunc functions when a call is returning without propogating
an exception.

void PyEval _SetProfile (Py_tracefunc func, PyObject *opj
Set the profiler function tdunc The obj parameter is passed to the function as its first parameter, and may
be any Python object, ddULL If the profile function needs to maintain state, using a different valuelfpr
for each thread provides a convenient and thread-safe place to store it. The profile function is called for all
monitored events except the line-number events.

void PyEval _SetTrace (Py_tracefunc func, PyObject *opj
Set the tracing function thunc This is similar toPyEval _SetProfile() , except the tracing function does
receive line-number events.

8.3 Advanced Debugger Support

These functions are only intended to be used by advanced debugging tools.

PylInterpreterState* PylInterpreterState _Head()
Return the interpreter state object at the head of the list of all such objects. New in version 2.2.

PylnterpreterState* PylnterpreterState _Next (PylnterpreterState *interp
Return the next interpreter state object aiteerp from the list of all such objects. New in version 2.2.

PyThreadState * PylInterpreterState _ThreadHead (PylnterpreterState *interp
Return the a pointer to the firBlyThreadState object in the list of threads associated with the interpreter
interp. New in version 2.2.

PyThreadState* PyThreadState _Next (PyThreadState *tstaje
Return the next thread state object aftetate from the list of all such objects belonging to the same
PylInterpreterState object. New in version 2.2.

8.3. Advanced Debugger Support 77

78

CHAPTER
NINE

Memory Management

9.1 Overview

Memory management in Python involves a private heap containing all Python objects and data structures. The man-
agement of this private heap is ensured internally byRiphon memory managefThe Python memory manager

has different components which deal with various dynamic storage management aspects, like sharing, segmentation,
preallocation or caching.

At the lowest level, a raw memory allocator ensures that there is enough room in the private heap for storing all
Python-related data by interacting with the memory manager of the operating system. On top of the raw memory
allocator, several object-specific allocators operate on the same heap and implement distinct memory management
policies adapted to the peculiarities of every object type. For example, integer objects are managed differently within
the heap than strings, tuples or dictionaries because integers imply different storage requirements and speed/space
tradeoffs. The Python memory manager thus delegates some of the work to the object-specific allocators, but ensures
that the latter operate within the bounds of the private heap.

It is important to understand that the management of the Python heap is performed by the interpreter itself and that the
user has no control over it, even if she regularly manipulates object pointers to memory blocks inside that heap. The
allocation of heap space for Python objects and other internal buffers is performed on demand by the Python memory
manager through the Python/C API functions listed in this document.

To avoid memory corruption, extension writers should never try to operate on Python objects with the functions
exported by the C librarymalloc() , calloc() , realloc() andfree() . This will result in mixed calls

between the C allocator and the Python memory manager with fatal consequences, because they implement different
algorithms and operate on different heaps. However, one may safely allocate and release memory blocks with the C
library allocator for individual purposes, as shown in the following example:

PyObject *res;
char *buf = (char *) malloc(BUFSIZ); /* for I/O */

if (buf == NULL)

return PyErr_NoMemory();
...Do some /O operation involving buf...
res = PyString_FromString(buf);
free(buf); /* malloc’ed */
return res;

In this example, the memory request for the 1/O buffer is handled by the C library allocator. The Python memory
manager is involved only in the allocation of the string object returned as a result.

In most situations, however, it is recommended to allocate memory from the Python heap specifically because the latter
is under control of the Python memory manager. For example, this is required when the interpreter is extended with

79

new object types written in C. Another reason for using the Python heap is the deisifertothe Python memory
manager about the memory needs of the extension module. Even when the requested memory is used exclusively for
internal, highly-specific purposes, delegating all memory requests to the Python memory manager causes the inter-
preter to have a more accurate image of its memory footprint as a whole. Consequently, under certain circumstances,
the Python memory manager may or may not trigger appropriate actions, like garbage collection, memory compaction
or other preventive procedures. Note that by using the C library allocator as shown in the previous example, the
allocated memory for the 1/0 buffer escapes completely the Python memory manager.

9.2 Memory Interface

The following function sets, modeled after the ANSI C standard, but specifying behavior when requesting zero bytes,
are available for allocating and releasing memory from the Python heap:

void* PyMemMalloc (size_tn)
Allocatesn bytes and returns a pointer of typeid* to the allocated memory, MULL if the request fails.
Requesting zero bytes returns a distinct NWLL pointer if possible, as iPyMem Malloc(1) had been
called instead. The memory will not have been initialized in any way.

void* PyMemRealloc (void *p, size.t n)
Resizes the memory block pointed to pyo n bytes. The contents will be unchanged to the minimum of the
old and the new sizes. ffis NULL, the call is equivalent teyMem Malloc(n) ; else ifnis equal to zero, the
memory block is resized but is not freed, and the returned pointer is\iidri- Unlessp is NULL, it must have
been returned by a previous callRyMem_Malloc() or PyMem Realloc()

void PyMem.Free (void *p)
Frees the memory block pointed to by, which must have been returned by a previous call to
PyMemMalloc() or PyMemRealloc() . Otherwise, or ifPyMem Free(p) has been called before,
undefined behavior occurs. gfis NULL, no operation is performed.

The following type-oriented macros are provided for convenience. Notd ¥RErefers to any C type.

TYPE PyMemNew TYPE, sizet n)
Same a®¥yMem Malloc() , butallocategn * sizeof(TYPB) bytes of memory. Returns a pointer cast
to TYPE . The memory will not have been initialized in any way.

TYPE PyMem.Resize (void *p, TYPE, sizet n)
Same a¥yMem Realloc() , butthe memory block is resized fm * sizeof(TYPBE) bytes. Returns a
pointer cast ta' YPE" .

void PyMem.Del (void *p)
Same aPyMem Free()

In addition, the following macro sets are provided for calling the Python memory allocator directly, without involving
the C API functions listed above. However, note that their use does not preserve binary compatibility accross Python
versions and is therefore deprecated in extension modules.

PyMem MALLOC(), PyMem REALLOC(), PyMem FREE() .
PyMem.NEW(), PyMem RESIZE() , PyMem DEL() .

9.3 Examples

Here is the example from section 9.1, rewritten so that the 1/O buffer is allocated from the Python heap by using the
first function set:

80 Chapter 9. Memory Management

PyObject *res;
char *buf = (char *) PyMem_Malloc(BUFSIZ); /* for 1/O */

if (buf == NULL)
return PyErr_NoMemory();
/* ...Do some 1/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Free(buf); /* allocated with PyMem_Malloc */
return res;

The same code using the type-oriented function set:

PyObject *res;
char *buf = PyMem_New(char, BUFSIZ); /* for 1/O */

if (buf == NULL)
return PyErr_NoMemory();
/* ...Do some 1/O operation involving buf... */
res = PyString_FromString(buf);
PyMem_Del(buf); /* allocated with PyMem_New */
return res;

Note that in the two examples above, the buffer is always manipulated via functions belonging to the same set. Indeed,
it is required to use the same memory API family for a given memory block, so that the risk of mixing different
allocators is reduced to a minimum. The following code sequence contains two errors, one of which is lafa¢ted as
because it mixes two different allocators operating on different heaps.

char *bufl = PyMem_New(char, BUFSIZ);

char *buf2 = (char *) malloc(BUFSIZ);

char *buf3 = (char *) PyMem_Malloc(BUFSIZ);
PyMem_Del(buf3); /* Wrong -- should be PyMem_Free() */
free(buf2); [* Right -- allocated via malloc() */
free(bufl); [* Fatal -- should be PyMem_Del() */

In addition to the functions aimed at handling raw memory blocks from the Python heap, objects in Python are
allocated and released wifyObject _New() , PyObject _NewVar() andPyObject _Del() , or with their
corresponding macrddyObject _NEW(), PyObject _NEWVAR() andPyObject _DEL() .

These will be explained in the next chapter on defining and implementing new object types in C.

9.3. Examples 81

82

CHAPTER
TEN

Object Implementation Support

This chapter describes the functions, types, and macros used when defining new object types.

10.1 Allocating Objects on the Heap

PyObject* _PyObject _New(PyTypeObject *type
Return valueNew reference

PyObject* _PyObject _NewVar(PyTypeObject *type, int size
Return valueNew reference

void _PyObject _Del (PyObject *op

PyObject* PyObject _Init (PyObject *op, PyTypeObject *type
Return valueBorrowed reference
Initialize a newly-allocated objeatp with its type and initial reference. Returns the initialized objecttytfe
indicates that the object participates in the cyclic garbage detector, it is added to the detector’s set of observed
objects. Other fields of the object are not affected.

PyVarObject* PyObject _InitVar (PyVarObject *op, PyTypeObject *type, int sjize
Return value Borrowed reference
This does everythin@yObject _lInit() does, and also initializes the length information for a variable-size
object.

TYPE PyObject _New TYPE, PyTypeObiject *type
Allocate a new Python object using the C structure typd’Eand the Python type objetype Fields not
defined by the Python object header are not initialized; the object’s reference count will be one. The size of the
memory allocation is determined from titge _basicsize field of the type object.

TYPE PyObject _NewVar(TYPE, PyTypeObiject *type, int sjze
Allocate a new Python object using the C structure typd@’Eand the Python type objetype Fields not
defined by the Python object header are not initialized. The allocated memory allows oY Btestructure
plus sizefields of the size given by thp _itemsize field of type This is useful for implementing objects
like tuples, which are able to determine their size at construction time. Embedding the array of fields into the
same allocation decreases the number of allocations, improving the memory management efficiency.

void PyObject _Del (PyObject *op
Releases memory allocated to an object ustg@bject _New() or PyObject _NewVar() . This is nor-

mally called from thep _dealloc handler specified in the object’s type. The fields of the object should not
be accessed after this call as the memory is no longer a valid Python object.

TYPE PyObject _NEWTYPE, PyTypeObiject *type

83

Macro version ofPyObject _New() , to gain performance at the expense of safety. This does not tyyaek
for aNULLvalue.

TYPE PyObject _NEWVAR TYPE, PyTypeObject *type, int s)ze
Macro version ofPyObject _NewVar() , to gain performance at the expense of safety. This does not check
typefor aNULLvalue.

void PyObject _DEL(PyObject *op
Macro version oPyObject _Del()

PyObject* Py_InitModule (char *name, PyMethodDef *methods
Return valueBorrowed reference
Create a new module object based on a name and table of functions, returning the new module object.

Changed in version 2.3: Older versions of Python did not supyidiiL as the value for thenethodsargument.

PyObject* Py_InitModule3 (char *name, PyMethodDef *methods, char *doc
Return valueBorrowed reference
Create a new module object based on a hame and table of functions, returning the new module dojeist. If
nonNULL, it will be used to define the docstring for the module.

Changed in version 2.3: Older versions of Python did not supyidiiL as the value for thenethodsargument.

PyObject* Py_InitModule4 (char *name, PyMethodDef *methods, char *doc, PyObject *self, int apiver
Return valueBorrowed reference
Create a new module object based on a name and table of functions, returning the new module algject. If
is nonNULL, it will be used to define the docstring for the moduleséif is nonNULL, it will passed to the
functions of the module as their (otherwiN&ILL) first parameter. (This was added as an experimental feature,
and there are no known uses in the current version of Pythongteer, the only value which should be passed
is defined by the constaRtY THONAPI _VERSION

Note: Most uses of this function should probably be usingRye InitModule3() instead; only use this if
you are sure you need it.

Changed in version 2.3: Older versions of Python did not supyidtiL as the value for thenethodsargument.
DL_IMPORT

PyObject _Py_NoneStruct
Object which is visible in Python ddone. This should only be accessed using Bye_None macro, which
evaluates to a pointer to this object.

10.2 Common Object Structures

There are a large number of structures which are used in the definition of object types for Python. This section
describes these structures and how they are used.

All Python objects ultimately share a small number of fields at the beginning of the object’s representation in memory.
These are represented by #gObject andPyVarObject types, which are defined, in turn, by the expansions of
some macros also used, whether directly or indirectly, in the definition of all other Python objects.

PyObject
All object types are extensions of this type. This is a type which contains the information Python needs to treat
a pointer to an object as an object. In a normal “release” build, it contains only the objects reference count
and a pointer to the corresponding type object. It corresponds to the fields defined by the expansion of the
PyObject _HEADmacro.

PyVarObject
This is an extension d?yObject that adds th@b _size field. This is only used for objects that have some
notion oflength This type does not often appear in the Python/C API. It corresponds to the fields defined by
the expansion of thByObject _VAR_HEADmacro.

84 Chapter 10. Object Implementation Support

These macros are used in the definitioiPgDbject andPyVarObject

PyObject _HEAD
This is a macro which expands to the declarations of the fields &ybject type; itis used when declaring
new types which represent objects without a varying length. The specific fields it expands to depends on the
definition of Py_TRACE_REFS By default, that macro is not defined, aRgObject _HEADexpands to:

int ob_refcnt;
PyTypeObject *ob_type;

WhenPy_TRACE REFSis defined, it expands to:

PyObject * ob_next, * ob_prev;
int ob_refcnt;
PyTypeObject *ob_type;

PyObject _VAR HEAD
This is a macro which expands to the declarations of the fields oPyh&arObject type; it is used when
declaring new types which represent objects with a length that varies from instance to instance. This macro
always expands to:

PyObject_ HEAD
int ob_size;

Note thatPyObject _HEADis part of the expansion, and that it's own expansion varies depending on the
definition of Py_TRACE.REFS

PyObject HEAD_INIT

PyCFunction
Type of the functions used to implement most Python callables in C. Functions of this type take two
PyObject* parameters and return one such value. If the return valbi®is, an exception shall have been
set. If notNULL, the return value is interpreted as the return value of the function as exposed in Python. The
function must return a new reference.

PyMethodDef
Structure used to describe a method of an extension type. This structure has four fields:
Field | C Type | Meaning
ml_name | char* name of the method
ml _meth PyCFunction| pointer to the C implementation
ml _flags int flag bits indicating how the call should be constructed
ml _doc char * points to the contents of the docstring

Theml _meth is a C function pointer. The functions may be of different types, but they always ey®bject*

If the function is not of thePyCFunction , the compiler will require a cast in the method table. Even though
PyCFunction defines the first parameter BgObject* , it is common that the method implementation uses a the
specific C type of theelf object.

Theml _flags field is a bitfield which can include the following flags. The individual flags indicate either a calling
convention or a binding convention. Of the calling convention flags, bii§f HVARARG@&ndMETHKEYWORDS
can be combined (but note tHdETH KEYWORD&one is equivalent tMETH VARARGS | METHKEYWORDS
Any of the calling convention flags can be combined with a binding flag.

METHVARARGS
This is the typical calling convention, where the methods have the RygeFunction . The function ex-

10.2. Common Object Structures 85

pects twoPyObject* values. The first one is theelf object for methods; for module functions, it has the
value given toPy_InitModule4() (or NULL if Py_InitModule() was used). The second parameter
(often calledargs) is a tuple object representing all arguments. This parameter is typically processed using
PyArg _ParseTuple() or PyArg _UnpackTuple .

METHKEYWORDS
Methods with these flags must be of typeyCFunctionWithKeywords . The function ex-
pects three parameters:self, args and a dictionary of all the keyword arguments. The flag
is typically combined with METHVARARGS and the parameters are typically processed using
PyArg _ParseTupleAndKeywords()

METHNOARGS
Methods without parameters don’'t need to check whether arguments are given if they are listed with the
METHNOARGSIlag. They need to be of typeyCFunction . When used with object methods, the first
parameter is typically nameself and will hold a reference to the object instance. In all cases the second
parameter will beNULL

METHO
Methods with a single object argument can be listed with METHO flag, instead of invoking
PyArg _ParseTuple() with a"O" argument. They have the tyfyCFunction , with the self param-
eter, and &yObject* parameter representing the single argument.

METHOLDARGS
This calling convention is deprecated. The method must be ofRy@d-unction . The second argument is
NULLif no arguments are given, a single object if exactly one argument is given, and a tuple of objects if more
than one argument is given. There is no way for a function using this convention to distinguish between a call
with multiple arguments and a call with a tuple as the only argument.

These two constants are not used to indicate the calling convention but the binding when use with methods of classes.
These may not be used for functions defined for modules. At most one of these flags may be set for any given method.

METH.CLASS
The method will be passed the type object as the first parameter rather than an instance of the type. This is used
to createclass methodssimilar to what is created when using ttlassmethod() built-in function. New in

version 2.3.
METHSTATIC
The method will be passedULL as the first parameter rather than an instance of the type. This is used to create
static methodssimilar to what is created when using staticmethod() built-in function. New in version
2.3.

PyObject* Py_FindMethod (PyMethodDef table[], PyObject *ob, char *name
Return valueNew reference
Return a bound method object for an extension type implemented in C. This can be useful in the implementa-
tion of atp _getattro ortp _getattr handler that does not use tRgObject _GenericGetAttr()
function.

10.3 Type Objects

Perhaps one of the most important structures of the Python object system is the structure that defines a new type:
the PyTypeObject structure. Type objects can be handled using any oPy@bject _*() or PyType _*()

functions, but do not offer much that’s interesting to most Python applications. These objects are fundamental to how
objects behave, so they are very important to the interpreter itself and to any extension module that implements new

types.

Type objects are fairly large compared to most of the standard types. The reason for the size is that each type object
stores a large number of values, mostly C function pointers, each of which implements a small part of the type’s

86 Chapter 10. Object Implementation Support

functionality. The fields of the type object are examined in detail in this section. The fields will be described in the
order in which they occur in the structure.

Typedefs: unaryfunc, binaryfunc, ternaryfunc, inquiry, coercion, intargfunc, intintargfunc, intobjargproc, intintob-
jargproc, objobjargproc, destructor, freefunc, printfunc, getattrfunc, getattrofunc, setattrfunc, setattrofunc, cmpfunc,
reprfunc, hashfunc

The structure definition foPyTypeObject can be found inlhclude/object.h’. For convenience of reference, this
repeats the definition found there:

typedef struct _typeobject {
PyObject_ VAR_HEAD
char *tp_name; /* For printing, in format "<module>.<name>" */
int tp_basicsize, tp_itemsize; /* For allocation */

[* Methods to implement standard operations */

destructor tp_dealloc;
printfunc tp_print;
getattrfunc tp_getattr;
setattrfunc tp_setattr;
cmpfunc tp_compare;
reprfunc tp_repr;

/* Method suites for standard classes */

PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;

/* More standard operations (here for binary compatibility) */

hashfunc tp_hash;
ternaryfunc tp_call;
reprfunc tp_str;
getattrofunc tp_getattro;
setattrofunc tp_setattro;

/* Functions to access object as input/output buffer */
PyBufferProcs *tp_as_buffer;

/* Flags to define presence of optional/expanded features */
long tp_flags;

char *tp_doc; /* Documentation string */

/* Assigned meaning in release 2.0 */
/* call function for all accessible objects */
traverseproc tp_traverse;

/* delete references to contained objects */
inquiry tp_clear;

/* Assigned meaning in release 2.1 */
[* rich comparisons */
richcmpfunc tp_richcompare;

/* weak reference enabler */
long tp_weaklistoffset;

10.3. Type Objects 87

[* Added in release 2.2 */
[* lterators */

getiterfunc tp_iter;
iternextfunc tp_iternext;

/* Attribute descriptor and subclassing stuff */
struct PyMethodDef *tp_methods;

struct PyMemberDef *tp_members;

struct PyGetSetDef *tp_getset;

struct _typeobject *tp_base;

PyObiject *tp_dict;

descrgetfunc tp_descr_get;

descrsetfunc tp_descr_set;

long tp_dictoffset;

initproc tp_init;

allocfunc tp_alloc;

newfunc tp_new;

freefunc tp_free; /* Low-level free-memory routine */
inquiry tp_is_gc; /* For PyObject_IS_GC */
PyObject *tp_bases;

PyObject *tp_mro; /* method resolution order */
PyObject *tp_cache;

PyObject *tp_subclasses;

PyObject *tp_weaklist;

} PyTypeObiject;

The type object structure extends #gVarObject structure. Theb_size field is used for dynamic types (cre-
ated bytype _new() , usually called from a class statement). Note #gaiype _Type (the metatype) initializes
tp _itemsize , which means that its instances (i.e. type objects¥thave theob _size field.

PyObject* _ob_next

PyObject* _ob_prev
These fields are only present when the m&yoTRACE_REFSis defined. Their initialization tblULLis taken
care of by thePyObject _HEAD.INIT macro. For statically allocated objects, these fields always remain
NULL For dynamically allocated objects, these two fields are used to link the object into a doubly-linked list of
all live objects on the heap. This could be used for various debugging purposes; currently the only use is to print
the objects that are still alive at the end of a run when the environment variable PYTHONDUMPREFS is set.

These fields are not inherited by subtypes.

int ob_refcnt
This is the type object’s reference count, initialized .tby thePyObject _HEAD.INIT macro. Note that for
statically allocated type objects, the type’s instances (objects wdimstype points back to the type) daot
count as references. But for dynamically allocated type objects, the ins@mceant as references.

This field is not inherited by subtypes.

PyTypeObject* ob_type
This is the type's type, in other words its metatype. It is initialized by the argument to the
PyObject _HEAD.INIT macro, and its value should normally 8®yType _Type . However, for dynami-
cally loadable extension modules that must be usable on Windows (at least), the compiler complains that this is
not a valid initializer. Therefore, the convention is to pbié_L to thePyObject _HEAD.INIT macro and to
initialize this field explicitly at the start of the module’s initialization function, before doing anything else. This
is typically done like this:

Foo_Type.ob_type = &PyType_Type;

88 Chapter 10. Object Implementation Support

This should be done before any instances of the type are creBtéipe _Ready() checks ifob _type

is NULL, and if so, initializes it: in Python 2.2, it is set &PyType _Type; in Python 2.2.1 and later it will
be initialized to theob_type field of the base classPyType _Ready() will not change this field if it is
non-zero.

In Python 2.2, this field is not inherited by subtypes. In 2.2.1, and in 2.3 and beyond, it is inherited by subtypes.

int ob_size
For statically allocated type objects, this should be initialized to zero. For dynamically allocated type objects,
this field has a special internal meaning.

This field is not inherited by subtypes.

char* tp _name
Pointer to a NUL-terminated string containing the name of the type. For types that are accessible as module
globals, the string should be the full module name, followed by a dot, followed by the type name; for built-in
types, it should be just the type name. If the module is a submodule of a package, the full package name is
part of the full module name. For example, a type namel&fined in moduléMin subpackag®in packageP
should have thégp _nameinitializer "P.Q.M.T"

For dynamically allocated type objects, this should just be the type name, and the module name explicitly stored
in the type dict as the value for kéy__module __" .

For statically allocated type objects, the_tame field should contain a dot. Everything before the last dot
is made accessible as themodule __ attribute, and everything after the last dot is made accessible as the
__name__ attribute.

If no dot is present, the entirgp _name field is made accessible as the name__ attribute, and the
__module __ attribute is undefined (unless explicitly set in the dictionary, as explained above). This means
your type will be impossible to pickle.

This field is not inherited by subtypes.

int tp _basicsize
int tp _itemsize
These fields allow calculating the size in bytes of instances of the type.

There are two kinds of types: types with fixed-length instances have aperntemsize field, types with
variable-length instances have a non-zgra_itemsize field. For a type with fixed-length instances, all
instances have the same size, givetpin_basicsize

For a type with variable-length instances, the instances must hawb asize field, and the instance size

istp _basicsize plus N timestp _itemsize , where N is the “length” of the object. The value of N is
typically stored in the instancesb _size field. There are exceptions: for example, long ints use a negative
ob_size toindicate a negative number, and Naiss(ob _size) there. Also, the presence of ab_size

field in the instance layout doesn’t mean that the instance structure is variable-length (for example, the structure
for the list type has fixed-length instances, yet those instances have a meaoingdide field).

The basic size includes the fields in the instance declared by the nRg@bject _HEAD or
PyObject _VAR_HEAD (whichever is used to declare the instance struct) and this in turn includes the
_ob_prev and_ob_next fields if they are present. This means that the only correct way to get an ini-
tializer for thetp _basicsize isto use thesizeof operator on the struct used to declare the instance layout.
The basic size does not include the GC header size (this is new in Python 2.2; in 2.1 and 2.0, the GC header size
was included irtp _basicsize).

These fields are inherited separately by subtypes. If the base type has a ngm-ziéemsize , it is gen-
erally not safe to sefp _itemsize to a different non-zero value in a subtype (though this depends on the
implementation of the base type).

A note about alignment: if the variable items require a particular alignment, this should be taken care of by
the value oftp _basicsize . Example: suppose a type implements an arragiaafble . tp _itemsize

is sizeof(double) . It is the programmer’s responsibility thap _basicsize is a multiple of
sizeof(double) (assuming this is the alignment requirementdouble).

10.3. Type Objects 89

destructor tp _dealloc

A pointer to the instance destructor function. This function must be defined unless the type guarantees that its
instances will never be deallocated (as is the case for the singldtoresandEllipsis).

The destructor function is called by they _DECREF() and Py_XDECREF() macros when the new
reference count is zero. At this point, the instance is still in existance, but there are no references
to it. The destructor function should free all references which the instance owns, free all memory
buffers owned by the instance (using the freeing function corresponding to the allocation function used
to allocate the buffer), and finally (as its last action) call the type's free function. If the type

is not subtypable (doesn’t have thHey_TPFLAGS BASETYPEflag bit set), it is permissible to call

the object deallocator directly instead of vip _free . The object deallocator should be the one
used to allocate the instance; this is normalyObject _Del() if the instance was allocated using
PyObject _New() or PyOject _VarNew() , or PyObject _GC Del() if the instance was allocated us-

ing PyObject _GC New() or PyObject _GC VarNew() .

This field is inherited by subtypes.

printfunc tp _print

An optional pointer to the instance print function.

The print function is only called when the instance is printed teal file; when it is printed to a pseudo-file
(like a StringlO instance), the instancetp _repr ortp _str function is called to convert it to a string.
These are also called when the typg's print field isNULL A type should never implemety _print in

a way that produces different output thin_repr ortp _str would.

The print function is called with the same signatur@g®bject _Print() :int tp _print(PyObject

*self, FILE *file, int flags) . Theself argument is the instance to be printed. Titeargument

is the stdio file to which it is to be printed. THkgsargument is composed of flag bits. The only flag bit
currently defined iRy _PRINT_RAWWhen thePy _PRINT_RAW/lag bit is set, the instance should be printed
the same way atp _str would format it; when thd®?y_PRINT _RAWlag bit is clear, the instance should be
printed the same was §s _repr would format it. It should retural and set an exception condition when an
error occurred during the comparison.

It is possible that thép _print field will be deprecated. In any case, it is recommended not to define
tp _print , but instead to rely otp _repr andtp _str for printing.

This field is inherited by subtypes.

getattrfunc tp _getattr

An optional pointer to the get-attribute-string function.

This field is deprecated. When itis defined, it should point to a function that acts the samgasdgle¢attro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as foPyObject _GetAttrString()

This field is inherited by subtypes together with_getattro : a subtype inherits bottp _getattr and
tp _getattro from its base type when the subtypgis_getattr ~ andtp _getattro are bothNULL

setattrfunc tp _setattr

An optional pointer to the set-attribute-string function.

This field is deprecated. When it is defined, it should point to a function that acts the samgpassbeattro
function, but taking a C string instead of a Python string object to give the attribute name. The signature is the
same as foPyObject _SetAttrString()

This field is inherited by subtypes together with _setattro : a subtype inherits bottp _setattr and
tp _setattro from its base type when the subtyps_setattr andtp _setattro are bothNULL

cmpfunc tp _compare

An optional pointer to the three-way comparison function.

The signature is the same as fyObject _Compare() . The function should returfh if self greater than
other, O if selfis equal toother, and-1 if self less tharother. It should returrl and set an exception condition
when an error occurred during the comparison.

90

Chapter 10. Object Implementation Support

This field is inherited by subtypes together wiih _richcompare andtp _hash: a subtypes inher-
its all three oftp _compare, tp _richcompare , andtp _hash when the subtype'sp _compare ,
tp _richcompare ,andtp _hash are alINULL

reprfunc tp _repr

An optional pointer to a function that implements the built-in functiepr()

The signature is the same as RyObject _Repr() ; it must return a string or a Unicode object. Ideally, this
function should return a string that, when passedual() , given a suitable environment, returns an object
with the same value. If this is not feasible, it should return a string starting withnd ending with &>’ from
which both the type and the value of the object can be deduced.

When this field is not set, a string of the forr%s object at %p> ' is returned, wherésosis replaced by
the type name, anthpby the object’s memory address.

This field is inherited by subtypes.

PyNumberMethods *tpas_number;

XXX

PySequenceMethods *tps_sequence;

XXX

PyMappingMethods *tpas mapping;

XXX

hashfunc tp _hash

An optional pointer to a function that implements the built-in functiash() .

The signature is the same as fyObject _Hash() ; it must return a C long. The valud should not be
returned as a normal return value; when an error occurs during the computation of the hash value, the function
should set an exception and retufn.

When this field is not set, two possibilities exist: if ttpe_compare andtp _richcompare fields are both
NULL, a default hash value based on the object’s address is returned; otherWypeEror is raised.

This field is inherited by subtypes together win _richcompare andtp _compare : a subtypes in-
herits all three otp _compare , tp _richcompare , andtp _hash, when the subtype’'tp _compare ,
tp _richcompare andtp _hash are allNULL

ternaryfunc tp _call

An optional pointer to a function that implements calling the object. This shoulUWid. if the object is not
callable. The signature is the same as”gObject _Call()

This field is inherited by subtypes.

reprfunc tp _str

An optional pointer to a function that implements the built-in operasitv) . (Note thatstr is a type now,
andstr() calls the constructor for that type. This constructor daii©bject _Str() to do the actual work,
andPyObject _Str() will call this handler.)

The signature is the same as RyObject _Str() ; it must return a string or a Unicode object. This function
should return a “friendly” string representation of the object, as this is the representation that will be used by the
print statement.

When this field is not seRyObject _Repr() is called to return a string representation.
This field is inherited by subtypes.

getattrofunc tp _getattro
An optional pointer to the get-attribute function.
The signature is the same as ByObject _GetAttr() . It is usually convenient to set this field to
PyObject _GenericGetAttr() , Which implements the normal way of looking for object attributes.

10.3.

Type Objects 91

This field is inherited by subtypes together wifh _getattr : a subtype inherits bottp _getattr and
tp _getattro from its base type when the subtypgs_getattr andtp _getattro are bothNULL

setattrofunc tp _setattro
An optional pointer to the set-attribute function.
The signature is the same as fByObject _SetAttr() . It is usually convenient to set this field to
PyObject _GenericSetAttr() , Which implements the normal way of setting object attributes.

This field is inherited by subtypes together wifh _setattr : a subtype inherits bottp _setattr and
tp _setattro from its base type when the subtypgis_setattr ~ andtp _setattro are bothNULL

PyBufferProcs* tp _as _buffer
Pointer to an additional structure contains fields relevant only to objects which implement the buffer interface.
These fields are documented in “Buffer Object Structures” (section 10.7).

Thetp _as _buffer field is not inherited, but the contained fields are inherited individually.

long tp _flags
This field is a bit mask of various flags. Some flags indicate variant semantics for certain situations; oth-
ers are used to indicate that certain fields in the type object (or in the extension structures referenced via
tp _as _number, tp _as_sequence ,tp _as_mapping , andtp _as _buffer) that were historically not
always present are valid; if such a flag bit is clear, the type fields it guards must not be accessed and must be
considered to have a zero MUJLL value instead.

Inheritance of this field is complicated. Most flag bits are inherited individually, i.e. if the base type has
a flag bit set, the subtype inherits this flag bit. The flag bits that pertain to extension structures are strictly
inherited if the extension structure is inherited, i.e. the base type’s value of the flag bit is copied into the
subtype together with a pointer to the extension structure. FfheTPFLAGS HAVE GCflag bit is inher-

ited together with theép _traverse andtp _clear fields, i.e. if thePy _TPFLAGS HAVE GCflag bit is

clear in the subtype and thp _traverse andtp _clear fields in the subtype exist (as indicated by the
Py_TPFLAGS HAVE RICHCOMPARfag bit) and havéNULL values.

The following bit masks are currently defined; these can be or-ed together usingpleeator to form the value
of thetp _flags field. The macrdPyType _HasFeature() takes a type and a flags valup,andf, and
checks whethetp->tp _flags & f is non-zero.

Py_TPFLAGS HAVE GETCHARBUFFER
If this bit is set, the PyBufferProcs struct referenced bytp _as _buffer has the
bf _getcharbuffer field.

Py_TPFLAGS HAVE_ SEQUENCHN
If this bit is set, thePySequenceMethods struct referenced byp _as_sequence has the
sq_contains field.

Py_TPFLAGS GC
This bit is obsolete. The bit it used to name is no longer in use. The symbol is now defined as zero.

Py_TPFLAGS HAVE_INPLACEOPS
If this bit is set, the PySequenceMethods struct referenced bytp _as_sequence
and the PyNumberMethods structure referenced bytp _as_number contain the fields

for in-place operators. In particular, this means that tRgNumberMethods structure
has the fields nb_inplace _add, nb_inplace _subtract , nb_inplace _multiply
nb_inplace _divide nb_inplace _remainder , nb_inplace _power ,
nb_inplace _lIshift , nb_inplace _rshift , nb_inplace _and, nb_inplace _xor

andnb _inplace _or ; and thePySequenceMethods struct has the fieldsq _inplace _concat
andsq_inplace _repeat .

Py_TPFLAGS CHECKTYPES
If this bit is set, the binary and ternary operations in tRgNumberMethods structure refer-
enced bytp _as_number accept arguments of arbitrary object types, and do their own type con-
versions if needed. If this bit is clear, those operations require that all arguments have the cur-

92 Chapter 10. Object Implementation Support

rent type as their type, and the caller is supposed to perform a coercion operation first. This ap-
plies tonb_add, nb_subtract , nb_multiply , nb_divide , nb_remainder , nb_divmod ,
nb_power , nb_Ishift ,nb_rshift ,nb_and, nb_xor ,andnb_or.

Py_TPFLAGS HAVE RICHCOMPARE
If this bit is set, the type object has thye _richcompare field, as well as thép _traverse and the
tp _clear fields.

Py_TPFLAGS HAVE WEAKREFS
If this bit is set, thap _weaklistoffset field is defined. Instances of a type are weakly referenceable
if the type’stp _weaklistoffset field has a value greater than zero.

Py_TPFLAGS HAVE.ITER
If this bit is set, the type object has the _iter andtp _iternext fields.

Py_TPFLAGS HAVE_CLASS
If this bit is set, the type object has several new fields defined starting in Pythorp2.2nethods ,
tp _members, tp _getset , tp _base, tp _dict , tp _descr _get, tp _descr _set,
tp _dictoffset ,tp _init ,tp _alloc ,tp _new, tp _free ,tp _is _gc, tp _bases, tp _mro,
tp _cache ,tp _subclasses , andtp _weaklist

Py_TPFLAGS HEAPTYPE
This bit is set when the type object itself is allocated on the heap. In this caseh tigpe field of its
instances is considered a reference to the type, and the type object is INCREF'ed when a new instance is
created, and DECREF’ed when an instance is destroyed (this does not apply to instances of subtypes; only
the type referenced by the instance’s tlpe gets INCREF'ed or DECREF’ed).

Py_TPFLAGS BASETYPE
This bit is set when the type can be used as the base type of another type. If this bit is clear, the type cannot
be subtyped (similar to a "final” class in Java).

Py_TPFLAGS READY
This bit is set when the type object has been fully initializedPlyifrype _Ready() .

Py_TPFLAGS READYING
This bit is set whilePyType _Ready() is in the process of initializing the type object.

Py_TPFLAGS HAVE GC
This bit is set when the object supports garbage collection. If this bit is set, instances must be created
usingPyObject _GC_New() and destroyed usingyObject _GC Del() . More information in sec-
tion XXX about garbage collection. This bit also implies that the GC-related fipld¢raverse and
tp _clear are present in the type object; but those fields also exist WyeTPFLAGS HAVE_GCis
clear butPy _TPFLAGS HAVE_RICHCOMPARE set).

Py_TPFLAGS DEFAULT
This is a bitmask of all the bits that pertain to the existence of certain fields in

the type object and its extension structures. Currently, it includes the following
bits: Py_TPFLAGS HAVE_ GETCHARBUFFER Py_TPFLAGS HAVE SEQUENCHN,
Py_TPFLAGS HAVE_INPLACEOPS Py_TPFLAGS HAVE RICHCOMPARE

Py_TPFLAGS HAVE WEAKREFS?y_TPFLAGS HAVE.ITER, andPy_TPFLAGS HAVE CLASS

char* tp _doc
An optional pointer to a NUL-terminated C string giving the docstring for this type object. This is exposed as
the __doc __ attribute on the type and instances of the type.

This field isnotinherited by subtypes.
The following three fields only exist if they_TPFLAGS HAVE_RICHCOMPAR#ag bit is set.

traverseproc tp _traverse
An optional pointer to a traversal function for the garbage collector. This is only used if the
Py_TPFLAGS HAVE_GCflag bit is set. More information in section 10.9 about garbage collection.

10.3. Type Objects 93

This field is inherited by subtypes together with_clear and thePy_TPFLAGS HAVE _GCflag bit: the
flag bit,tp _traverse , andtp _clear are all inherited from the base type if they are all zero in the subtype
andthe subtype has they _TPFLAGS HAVE RICHCOMPARftag bit set.

inquiry tp _clear

An optional pointer to a clear function for the garbage collector. This is only used if the
Py_TPFLAGS HAVE_GCflag bit is set. More information in section 10.9 about garbage collection.

This field is inherited by subtypes together with_clear and thePy_TPFLAGS HAVE _GCflag bit: the
flag bit,tp _traverse , andtp _clear are all inherited from the base type if they are all zero in the subtype
andthe subtype has they _TPFLAGS HAVE_RICHCOMPARftag bit set.

richcmpfunc tp _richcompare

An optional pointer to the rich comparison function.

The signature is the same as RyObject _RichCompare() . The function should returh if the requested
comparison returns trué, if it returns false. It should retursl and set an exception condition when an error
occurred during the comparison.

This field is inherited by subtypes together with _compare and tp _hash: a subtype inherits
all three of tp _compare, tp _richcompare , and tp _hash, when the subtype'dsp _compare ,
tp _richcompare ,andtp _hash are allINULL

The following constants are defined to be used as the third argumenp farichcompare and for
PyObject _RichCompare()

Constant | Comparison
Py_LT <
Py_LE <=
Py,EQ ==
Py_NE I=
Py_GT >
Py_GE >=

The next field only exists if thy _TPFLAGS HAVE_ WEAKREF8ag bit is set.

long

tp _weaklistoffset

If the instances of this type are weakly referenceable, this field is greater than zero and contains the offset in
the instance structure of the weak reference list head (ignoring the GC header, if present); this offset is used
by PyObject _ClearWeakRefs() and thePyWeakref _*() functions. The instance structure needs to
include a field of typd?yObject* which is initialized toNULL

Do not confuse this field wittp _weaklist ; that is the list head for weak references to the type object itself.

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype uses a different weak reference list head than the base type. Since the list head is always found
viatp _weaklistoffset , this should not be a problem.

When a type defined by a class statement has rebots __ declaration, and none of its base types are weakly
referenceable, the type is made weakly referenceable by adding a weak reference list head slot to the instance
layout and setting this _weaklistoffset of that slot’s offset.

When a type’'s__slots __ declaration contains a slot namedweakref __, that slot becomes the weak
reference list head for instances of the type, and the slot’s offset is stored in thetpyp@igaklistoffset

When a type’'s__slots __ declaration does not contain a slot namedveakref __, the type inherits its

tp _weaklistoffset from its base type.

The next two fields only exist if thBy _TPFLAGS HAVE_CLASSflag bit is set.

getiterfunc tp _iter

An optional pointer to a function that returns an iterator for the object. Its presence normally signals that the
instances of this type are iterable (although sequences may be iterable without this function, and classic instances
always have this function, even if they don't define_ariter __() method).

94

Chapter 10. Object Implementation Support

This function has the same signatureP3®bject _Getlter()
This field is inherited by subtypes.

iternextfunc tp _iternext
An optional pointer to a function that returns the next item in an iterator, or rSisgdteration when the
iterator is exhausted. Its presence normally signals that the instances of this type are iterators (although classic
instances always have this function, even if they don’t definexa() = method).

Iterator types should also define ttge _iter function, and that function should return the iterator instance
itself (not a new iterator instance).

This function has the same signaturePadter _Next()
This field is inherited by subtypes.
The next fields, up to and includirtg _weaklist , only exist if thePy _TPFLAGS HAVE_CLASSflag bit is set.

struct PyMethodDef* tp _methods
An optional pointer to a statidULL-terminated array dPyMethodDef structures, declaring regular methods
of this type.

For each entry in the array, an entry is added to the type’s dictionarysedict below) containing a method
descriptor.

This field is not inherited by subtypes (methods are inherited through a different mechanism).

struct PyMemberDef* tp _members
An optional pointer to a statibllULL-terminated array oPyMemberDef structures, declaring regular data
members (fields or slots) of instances of this type.

For each entry in the array, an entry is added to the type’s dictionarysedict below) containing a member
descriptor.

This field is not inherited by subtypes (members are inherited through a different mechanism).

struct PyGetSetDef* tp _getset
An optional pointer to a statiblULL-terminated array oPyGetSetDef structures, declaring computed at-
tributes of instances of this type.

For each entry in the array, an entry is added to the type’s dictionarygsedict below) containing a getset
descriptor.

This field is not inherited by subtypes (computed attributes are inherited through a different mechanism).
Docs for PyGetSetDef (XXX belong elsewhere):

typedef PyObject *(*getter)(PyObject *, void *);
typedef int (*setter)(PyObject *, PyObject *, void *);

typedef struct PyGetSetDef {

char *name; /* attribute name */

getter get; [* C function to get the attribute */
setter set; /* C function to set the attribute */
char *doc; /* optional doc string */

void *closure; /* optional additional data for getter and setter */
} PyGetSetDef;

PyTypeObject* tp _base
An optional pointer to a base type from which type properties are inherited. At this level, only single inheritance
is supported; multiple inheritance require dynamically creating a type object by calling the metatype.

This field is not inherited by subtypes (obviously), but it defauli&RyBaseObject _Type (which to Python
programmers is known as the typbject).

10.3. Type Objects 95

PyObject* tp _dict

The type’s dictionary is stored here ByType _Ready() .

This field should normally be initialized tNULL before PyTypeReady is called; it may also be initialized to

a dictionary containing initial attributes for the type. Oreglype _Ready() has initialized the type, extra
attributes for the type may be added to this dictionary only if they don't correspond to overloaded operations
(like __add__()).

This field is not inherited by subtypes (though the attributes defined in here are inherited through a different
mechanism).

descrgetfunc tp _descr _get

An optional pointer to a "descriptor get” function.
XXX blah, blah.
This field is inherited by subtypes.

descrsetfunc tp _descr _set

long

An optional pointer to a "descriptor set” function.
XXX blah, blah.
This field is inherited by subtypes.

tp _dictoffset

If the instances of this type have a dictionary containing instance variables, this field is non-zero and
contains the offset in the instances of the type of the instance variable dictionary; this offset is used by
PyObject _GenericGetAttr()

Do not confuse this field witkp _dict ; that is the dictionary for attributes of the type object itself.

If the value of this field is greater than zero, it specifies the offset from the start of the instance structure. If
the value is less than zero, it specifies the offset from the *end* of the instance structure. A negative offset
is more expensive to use, and should only be used when the instance structure contains a variable-length part.
This is used for example to add an instance variable dictionary to subtypsds obr tuple . Note that the

tp _basicsize field should account for the dictionary added to the end in that case, even though the dictionary

is not included in the basic object layout. On a system with a pointer size of 4 hytedjctoffset should

be setto4 to indicate that the dictionary is at the very end of the structure.

The real dictionary offset in an instance can be computed from a negativdictoffset as follows:

dictoffset = tp_basicsize + abs(ob_size)*tp_itemsize + tp_dictoffset
if dictoffset is not aligned on sizeof(void*):
round up to sizeof(void*)

where tp _basicsize , tp _itemsize and tp _dictoffset are taken from the type object, and

ob _size is taken from the instance. The absolute value is taken because long ints use theokigsiné

to store the sign of the number. (There’s never a need to do this calculation yourself; it is done for you by
_PyObject _GetDictPtr() J)

This field is inherited by subtypes, but see the rules listed below. A subtype may override this offset; this means
that the subtype instances store the dictionary at a difference offset than the base type. Since the dictionary is
always found viap _dictoffset , this should not be a problem.

When a type defined by a class statement has relots __ declaration, and none of its base types has an
instance variable dictionary, a dictionary slot is added to the instance layout atpd_thectoffset is setto
that slot's offset.

When a type defined by a class statement hassdots __ declaration, the type inherits itig _dictoffset
from its base type.

(Adding a slot named__dict __ to the __slots __ declaration does not have the expected effect, it just
causes confusion. Maybe this should be added as a feature just kkeakref __ though.)

96

Chapter 10. Object Implementation Support

initproc tp _init
An optional pointer to an instance initialization function.

This function corresponds to the_init __() method of classes. Like_init __() , it is possible to
create an instance without calling_init __() , and it is possible to reinitialize an instance by calling its
__init __() method again.

The function signature is

int tp_init(PyObject *self, PyObject *args, PyObject *kwds)

The self argument is the instance to be initialized;atgsandkwdsarguments represent positional and keyword
arguments of the call ta_init __() .

Thetp _init function, if notNULL, is called when an instance is created normally by calling its type, after
the type’stp _new function has returned an instance of the type. Iftthenew function returns an instance of
some other type that is not a subtype of the original typdgpnoinit function is called; iftp _new returns an
instance of a subtype of the original type, the subtype’sinit is called. (VERSION NOTE: described here

is what is implemented in Python 2.2.1 and later. In Python 2.2pthénit of the type of the object returned
by tp _new was always called, if nd{iULL.)

This field is inherited by subtypes.

allocfunc tp _alloc
An optional pointer to an instance allocation function.

The function signature is

PyObject *tp_alloc(PyTypeObject *self, int nitems)

The purpose of this function is to separate memory allocation from memory initialization. It should return a
pointer to a block of memory of adequate length for the instance, suitably aligned, and initialized to zeros, but
with ob_refcnt set tol andob _type set to the type argument. If the typédfs _itemsize is non-zero,

the object'sob _size field should be initialized taitemsand the length of the allocated memory block should
betp _basicsize + nitemgtp _itemsize , rounded up to a multiple afizeof(void*) ; otherwise,
nitemsis not used and the length of the block shouldfbe basicsize

Do not use this function to do any other instance initialization, not even to allocate additional memory; that
should be done bip _new.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement); in
the latter, this field is always set RyType _GenericAlloc() , to force a standard heap allocation strategy.
That is also the recommended value for statically defined types.

newfunc tp _new
An optional pointer to an instance creation function.

If this function isNULL for a particular type, that type cannot be called to create new instances; presumably
there is some other way to create instances, like a factory function.

The function signature is

PyObject *tp_new(PyTypeObject *subtype, PyObject *args, PyObject *kwds)

The subtype argument is the type of the object being createdrgisendkwdsarguments represent positional
and keyword arguments of the call to the type. Note that subtype doesn't have to equal the typgwhuse
function is called; it may be a subtype of that type (but not an unrelated type).

Thetp _new function should calsubtype>tp _alloc(subtype nitemg to allocate space for the object,
and then do only as much further initialization as is absolutely necessary. Initialization that can safely be ignored
or repeated should be placed in tipe_init handler. A good rule of thumb is that for immutable types, all

10.3. Type Objects 97

initialization should take place itp _new, while for mutable types, most initialization should be deferred to
tp _init

This field is inherited by subtypes, except it is not inherited by static types wiposbase is NULL or
&PyBaseObject _Type. The latter exception is a precaution so that old extension types don't become
callable simply by being linked with Python 2.2.

destructor tp _free
An optional pointer to an instance deallocation function.

The signature of this function has changed slightly: in Python 2.2 and 2.2.1, its signalesgtrisctor

void tp_free(PyObject *)

In Python 2.3 and beyond, its signaturdrisefunc

void tp_free(void *)

The only initializer that is compatible with both versions iByObject _Del , whose definition has suitably
adapted in Python 2.3.

This field is inherited by static subtypes, but not by dynamic subtypes (subtypes created by a class statement);
in the latter, this field is set to a deallocator suitable to m&ghype _GenericAlloc() and the value of
thePy_TPFLAGS HAVE GCflag bit.

inquiry tp _is _gc
An optional pointer to a function called by the garbage collector.

The garbage collector needs to know whether a particular object is collectible or not. Normally, it is sufficient
to look at the object’s type’p _flags field, and check th®y_TPFLAGS HAVE GCflag bit. But some

types have a mixture of statically and dynamically allocated instances, and the statically allocated instances are
not collectible. Such types should define this function; it should retuiar a collectible instance, aréifor a
non-collectible instance. The signature is

int tp_is_gc(PyObject *self)
(The only example of this are types themselves. The metaBykype _Type, defines this function to distin-

guish between statically and dynamically allocated types.)

This field is inherited by subtypes. (VERSION NOTE: in Python 2.2, it was not inherited. It is inherited in 2.2.1
and later versions.)

PyObject* tp _bases
Tuple of base types.
This is set for types created by a class statement. It shou\lLlhé for statically defined types.
This field is not inherited.

PyObject* tp _mro

Tuple containing the expanded set of base types, starting with the type itself and endirgbjeith , in
Method Resolution Order.

This field is not inherited; it is calculated fresh ByType _Ready() .
PyObject* tp _cache
Unused. Not inherited. Internal use only.
PyObject* tp _subclasses
List of weak references to subclasses. Not inherited. Internal use only.
PyObject* tp _weakilist
Weak reference list head, for weak references to this type object. Not inherited. Internal use only.

98 Chapter 10. Object Implementation Support

The remaining fields are only defined if the feature test mM&@WNTALLOCSIs defined, and are for internal use
only. They are documented here for completeness. None of these fields are inherited by subtypes.

int tp _allocs
Number of allocations.

int tp _frees
Number of frees.

int tp _maxalloc
Maximum simultaneously allocated objects.

PyTypeObject* tp _next
Pointer to the next type object with a non-zé¢po_allocs field.

10.4 Mapping Object Structures

PyMappingMethods
Structure used to hold pointers to the functions used to implement the mapping protocol for an extension type.

10.5 Number Object Structures

PyNumberMethods
Structure used to hold pointers to the functions an extension type uses to implement the number protocol.

10.6 Sequence Object Structures

PySequenceMethods
Structure used to hold pointers to the functions which an object uses to implement the sequence protocol.

10.7 Buffer Object Structures

The buffer interface exports a model where an object can expose its internal data as a set of chunks of data, where each
chunk is specified as a pointer/length pair. These chunks are saligdentsnd are presumed to be non-contiguous
in memory.

If an object does not export the buffer interface, thengts as _buffer member in thePyTypeObject structure
should beNULL Otherwise, thép _as _buffer will point to a PyBufferProcs structure.

Note: It is very important that youPyTypeObject structure usePy_TPFLAGS DEFAULTfor the value of the

tp _flags member rather tha@. This tells the Python runtime that yoByBufferProcs structure contains the

bf _getcharbuffer slot. Older versions of Python did not have this member, so a new Python interpreter using
an old extension needs to be able to test for its presence before using it.

PyBufferProcs
Structure used to hold the function pointers which define an implementation of the buffer protocol.
The first slot isbf _getreadbuffer , of typegetreadbufferproc . If this slot isNULL, then the object

does not support reading from the internal data. This is non-sensical, so implementors should fill this in, but
callers should test that the slot contains a Nk L value.

The next slot idf _getwritebuffer having typegetwritebufferproc . This slot may beNULL.if the
object does not allow writing into its returned buffers.

10.4. Mapping Object Structures 99

The third slot ishf _getsegcount , with typegetsegcountproc . This slot must not b&lULLand is used
to inform the caller how many segments the object contains. Simple objects sigistizyg _Type and
PyBuffer _Type objects contain a single segment.

The last slot isbf _getcharbuffer , of type getcharbufferproc . This slot will only be present

if the Py_TPFLAGS HAVE_ GETCHARBUFFERag is present in thap _flags field of the object's
PyTypeObject . Before using this slot, the caller should test whether it is present by using the
PyType _HasFeature() function. If present, it may b&lULL, indicating that the object’'s contents can-

not be used a8-bit characters The slot function may also raise an error if the object’s contents cannot be
interpreted as 8-bit characters. For example, if the object is an array which is configured to hold floating point
values, an exception may be raised if a caller attempts tdolisgetcharbuffer to fetch a sequence of

8-bit characters. This notion of exporting the internal buffers as “text” is used to distinguish between objects
that are binary in nature, and those which have character-based content.

Note: The current policy seems to state that these characters may be multi-byte characters. This implies that a
buffer size ofN does not mean there axecharacters present.

Py_TPFLAGS HAVE GETCHARBUFFER
Flag bit set in the type structure to indicate that tfie_getcharbuffer slot is known. This being set does
not indicate that the object supports the buffer interface or thaifthegyetcharbuffer slot is nonNULL

int (*getreadbufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a readable segment of the buffer. This function is allowed to raise an exception, in which
case it must returAl . Thesegmentvhich is passed must be zero or positive, and strictly less than the number
of segments returned by thé _getsegcount slot function. On success, it returns the length of the buffer
memory, and setsptrptr to a pointer to that memory.

int (*getwritebufferproc) (PyObject *self, int segment, void **ptrptr)
Return a pointer to a writable memory buffertiptrptr, and the length of that segment as the function return
value. The memory buffer must correspond to buffer segreegmentMust return-1 and set an exception on
error. TypeError should be raised if the object only supports read-only buffers SystemError should
be raised whesegmenspecifies a segment that doesn't exist.

int (*getsegcountproc) (PyObject *self, int *lenp)
Return the number of memory segments which comprise the bufféenpfis not NULL, the implementation
must report the sum of the sizes (in bytes) of all segmentsanp. The function cannot fail.

int (*getcharbufferproc) (PyObject *self, int segment, const char **ptrptr)
Return the size of the memory bufferpirptr for segmensegment* ptrptr is set to the memory buffer.

10.8 Supporting the Iterator Protocol

10.9 Supporting Cyclic Garbarge Collection

Python’s support for detecting and collecting garbage which involves circular references requires support from object
types which are “containers” for other objects which may also be containers. Types which do not store references to
other objects, or which only store references to atomic types (such as numbers or strings), do not need to provide any
explicit support for garbage collection.

An example showing the use of these interfaces can be found@lupgorting the Cycle Collectbin Extending and
Embedding the Python Interpreter

To create a container type, the _flags field of the type object must include thiy_TPFLAGS HAVE GCand
provide an implementation of thp _traverse handler. If instances of the type are mutablg aclear imple-
mentation must also be provided.

Py_TPFLAGS HAVE.GC

100 Chapter 10. Object Implementation Support

Objects with a type with this flag set must conform with the rules documented here. For convenience these
objects will be referred to as container objects.

Constructors for container types must conform to two rules:

1. The memory for the object must be allocated usty@bject _GC _New() or PyObject _GC VarNew() .

2. Once all the fields which may contain references to other containers are initialized, it must call
PyObject _GC_Track()

TYPE PyObject _GC New TYPE, PyTypeObiject *type
Analogous tdPyObject _New() but for container objects with thiey_TPFLAGS HAVE _GCflag set.

TYPE PyObject _GC NewVar(TYPE, PyTypeObject *type, int sjze
Analogous tdPyObject _NewVar() but for container objects with tHey_TPFLAGS HAVE GCflag set.

PyVarObject * PyObject _GC_Resize (PyVarObject *op, in}
Resize an object allocated ByObject _NewVar() . Returns the resized object MiJLL on failure.
void PyObject _GC Track (PyObject *op
Adds the objecbpto the set of container objects tracked by the collector. The collector can run at unexpected

times so objects must be valid while being tracked. This should be called once all the fields followed by the
tp _traverse handler become valid, usually near the end of the constructor.

void _PyObject _GC_ TRACK PyObject *op
A macro version oPyObject _GC Track() . It should not be used for extension modules.

Similarly, the deallocator for the object must conform to a similar pair of rules:

1. Before fields which refer to other containers are invalida®g®bject _GC.UnTrack() must be called.

2. The object’'s memory must be deallocated ustg@bject _GC_Del()

void PyObject _GC Del (PyObject *op
Releases memory allocated to an object uslg@bject _GC_New() or PyObject _GC_NewVar() .

void PyObject _GC UnTrack (PyObject *op
Remove the objectop from the set of container objects tracked by the collector. Note that
PyObject _GC Track() can be called again on this object to add it back to the set of tracked objects.
The deallocatortp _dealloc handler) should call this for the object before any of the fields used by the
tp _traverse handler become invalid.

void _PyObject _GC UNTRACKPyODbject *op
A macro version oPyObject _GC.UnTrack() . It should not be used for extension modules.

Thetp _traverse handler accepts a function parameter of this type:

int (*visitproc)(PyObject *object, void *arg)
Type of the visitor function passed to ttge _traverse handler. The function should be called with an object
to traverse asbjectand the third parameter to thye _traverse handler asrg.

Thetp _traverse handler must have the following type:

int (*traverseproc)(PyObject *self, visitproc visit, void *arg)
Traversal function for a container object. Implementations must caWNigiefunction for each object directly
contained byself, with the parameters wasit being the contained object and tiig value passed to the handler.
If visit returns a non-zero value then an error has occurred and that value should be returned immediately.

Thetp _clear handler must be of thaquiry type, orNULLIf the object is immutable.

int (*inquiry)(PyObject *self)
Drop references that may have created reference cycles. Immutable objects do not have to define this method

10.9. Supporting Cyclic Garbarge Collection 101

since they can never directly create reference cycles. Note that the object must still be valid after calling this
method (don't just calPy_DECREF() on a reference). The collector will call this method if it detects that this
object is involved in a reference cycle.

102 Chapter 10. Object Implementation Support

APPENDIX
A

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to maintain this
reputation, the developers would like to know of any deficiencies you find in Python or its documentation.

Before submitting a report, you will be required to log into SourceForge; this will make it possible for the developers
to contact you for additional information if needed. It is not possible to submit a bug report anonymously.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group_id=5470). The bug tracker offers a Web form which allows pertinent infor-
mation to be entered and submitted to the developers.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in doing
so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the problem has
already been fixed for the next release, or additional information is needed (in which case you are welcome to provide
it if you can!). To do this, search the bug database using the search box near the bottom of the page.

If the problem you're reporting is not already in the bug tracker, go back to the Python Bug Tracker
(nttp://sourceforge.net/bugs/?group_id=5470). Select the “Submit a Bug” link at the top of the page to open the bug
reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and “Details” fields.
For the summary, enter\gery short description of the problem; less than ten words is good. In the Details field,
describe the problem in detail, including what you expected to happen and what did happen. Be sure to include the
version of Python you used, whether any extension modules were involved, and what hardware and software platform
you were using (including version information as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug report into a
broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem. You
will receive an update each time action is taken on the bug.

See Also:

How to Report Bugs Effectively

(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)
Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines

(http://www.mozilla.org/quality/bug-writing-guidelines.html)
Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

103

104

APPENDIX
B

History and License

B.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting Mathematisch Centrum (CWI, see
http://mwww.cwi.nl/) in the Netherlands as a successor of a language called ABC. Guido remains Python’s principal
author, although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National Research Initiatives (CNRI, see
http://www.cnri.reston.va.us/) in Reston, Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to BeOpen.com to form the BeOpen PythonLabs
team. In October of the same year, the PythonLabs team moved to Digital Creations (now Zope Corporation; see
http://www.zope.com/). In 2001, the Python Software Foundation (PSF,tsge//www.python.org/psf/) was formed, a
non-profit organization created specifically to own Python-related Intellectual Property. Zope Corporation is a spon-
soring member of the PSF.

All Python releases are Open Source (s&e//www.opensource.org/ for the Open Source Definition). Historically,
most, but not all, Python releases have also been GPL-compatible; the table below summarizes the various releases.

Release Derived from Year Owner GPL compatible?
0.9.0thru1.2 n/a 1991-1995 CWwWI yes
1.3thru1.5.2 1.2 1995-1999 CNRI yes

1.6 152 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
16.1 1.6 2001 CNRI no
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
211 2.1+2.0.1 2001 PSF yes
2.2 211 2001 PSF yes
2.1.2 211 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
221 2.2 2002 PSF yes
2.2.2 221 2002 PSF yes
2.2.3 2.2.2 2002-2003 PSF yes
2.3 222 2002-2003 PSF yes
2.3.1 2.3 2002-2003 PSF yes
2.3.2 2.3.1 2003 PSF yes

Note: GPL-compatible doesn’t mean that we’re distributing Python under the GPL. All Python licenses, unlike the
GPL, let you distribute a modified version without making your changes open source. The GPL-compatible licenses
make it possible to combine Python with other software that is released under the GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido’s direction to make these releases possible.

105

B.2 Terms and conditions for accessing or otherwise using Python

PSF LICENSE AGREEMENT FOR PYTHON 2.3.2

. This LICENSE AGREEMENT is between the Python Software Foundation (“PSF”), and the Individual or Or-

ganization (“Licensee”) accessing and otherwise using Python 2.3.2 software in source or binary form and its
associated documentation.

. Subject to the terms and conditions of this License Agreement, PSF hereby grants Licensee a nonexclusive,

royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare deriva-
tive works, distribute, and otherwise use Python 2.3.2 alone or in any derivative version, provided, however,
that PSF's License Agreement and PSF’s notice of copyright, i.e., “Copy@gh001-2003 Python Software
Foundation; All Rights Reserved” are retained in Python 2.3.2 alone or in any derivative version prepared by
Licensee.

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 2.3.2 or any part thereof,

and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 2.3.2.

. PSF is making Python 2.3.2 available to Licensee on an “AS IS” basis. PSF MAKES NO REPRESENTA-

TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
PSF MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.3.2 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 2.3.2 FOR ANY

INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 2.3.2, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. Nothing in this License Agreement shall be deemed to create any relationship of agency, partnership, or joint

venture between PSF and Licensee. This License Agreement does not grant permission to use PSF trademarks
or trade name in a trademark sense to endorse or promote products or services of Licensee, or any third party.

. By copying, installing or otherwise using Python 2.3.2, Licensee agrees to be bound by the terms and conditions

of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1

. This LICENSE AGREEMENT is between BeOpen.com (“BeOpen”), having an office at 160 Saratoga Avenue,

Santa Clara, CA 95051, and the Individual or Organization (“Licensee”) accessing and otherwise using this
software in source or binary form and its associated documentation (“the Software”).

. Subject to the terms and conditions of this BeOpen Python License Agreement, BeOpen hereby grants Licensee

a non-exclusive, royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use the Software alone or in any derivative version, provided,
however, that the BeOpen Python License is retained in the Software, alone or in any derivative version prepared
by Licensee.

. BeOpen is making the Software available to Licensee on an “AS IS” basis. BEOPEN MAKES NO REPRE-

SENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMI-
TATION, BEOPEN MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MER-
CHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFT-
WARE WILL NOT INFRINGE ANY THIRD PARTY RIGHTS.

106

Appendix B. History and License

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE SOFTWARE FOR
ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY DERIVATIVE THEREOF, EVEN IF AD-
VISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects by the law of the State of Cali-
fornia, excluding conflict of law provisions. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and Licensee. This License Agreement
does not grant permission to use BeOpen trademarks or trade names in a trademark sense to endorse or promote
products or services of Licensee, or any third party. As an exception, the “BeOpen Python” logos available at
http://www.pythonlabs.com/logos.html may be used according to the permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to be bound by the terms and conditions
of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National Research Initiatives, having an office
at 1895 Preston White Drive, Reston, VA 20191 (“CNRI"), and the Individual or Organization (“Licensee”)
accessing and otherwise using Python 1.6.1 software in source or binary form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI hereby grants Licensee a nonexclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative version, provided, however, that
CNRI's License Agreement and CNRI’s notice of copyright, i.e., “Copyri@htL995-2001 Corporation for
National Research Initiatives; All Rights Reserved” are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License Agreement, Licensee may substitute the
following text (omitting the quotes): “Python 1.6.1 is made available subject to the terms and conditions in
CNRI's License Agreement. This Agreement together with Python 1.6.1 may be located on the Internet using
the following unique, persistent identifier (known as a handle): 1895.22/1013. This Agreement may also be
obtained from a proxy server on the Internet using the following URtp://hdl.handle.net/1895.22/1013."

. Inthe event Licensee prepares a derivative work that is based on or incorporates Python 1.6.1 or any part thereof,
and wants to make the derivative work available to others as provided herein, then Licensee hereby agrees to
include in any such work a brief summary of the changes made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an “AS IS” basis. CNRI MAKES NO REPRESENTA-
TIONS OR WARRANTIES, EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION,
CNRI MAKES NO AND DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABIL-

ITY OR FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON 1.6.1 FOR ANY
INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF MODIFYING,
DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF
ADVISED OF THE POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual property law of the United States, including
without limitation the federal copyright law, and, to the extent such U.S. federal law does not apply, by the
law of the Commonwealth of Virginia, excluding Virginia’s conflict of law provisions. Notwithstanding the
foregoing, with regard to derivative works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL), the law of the Commonwealth of
Virginia shall govern this License Agreement only as to issues arising under or with respect to Paragraphs 4, 5,

. Terms and conditions for accessing or otherwise using Python 107

and 7 of this License Agreement. Nothing in this License Agreement shall be deemed to create any relationship
of agency, partnership, or joint venture between CNRI and Licensee. This License Agreement does not grant
permission to use CNRI trademarks or trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.

8. By clicking on the “ACCEPT” button where indicated, or by copying, installing or otherwise using Python 1.6.1,
Licensee agrees to be bound by the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright© 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and
this permission notice appear in supporting documentation, and that the name of Stichting Mathematisch Centrum or
CWI not be used in advertising or publicity pertaining to distribution of the software without specific, written prior
permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFT-
WARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT
SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE FOR ANY SPECIAL, INDIRECT OR CON-
SEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA
OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

108 Appendix B. History and License

Symbols

_Pylmport _FindExtension() , 21
_Pylmport _Fini() ,21
_Pylmport _FixupExtension() , 21
_Pylmport _Init() ,21
_PyObject _Del() ,83

_PyObject _GC.TRACK(), 101
_PyObject _GC_UNTRACK(), 101
_PyObject _New() , 83

_PyObject _NewVar() , 83
_PyString _Resize() ,48
_PyTuple _Resize() ,58
_Py_NoneStruct , 84
_Py_c_diff) ,45

_Py_c_neg() ,45

_Py_c_pow() , 45

_Py_c_prod() ,45

_Py_c_quot() ,45

_Py_c_sum() , 45

__all __ (package variable), 20
__builtin __ (built-in module), 8, 69
__dict __ (module attribute), 64
__doc __ (module attribute), 64
__file __ (module attribute), 64
__import __() (built-in function), 20
__main __ (built-in module), 8, 69
__name__ (module attribute), 64
_ob_next (PyObject member), 88
_ob_prev (PyObject member), 88

A

abort() ,20

abs() (built-in function), 33
apply() (built-in function), 31
argv (in module sys), 72

B

buffer
object, 56
buffer interface, 56
BufferType (in module types), 56

INDEX

C

calloc() ,79
classmethod() (built-in function), 86
cleanup functions, 20
close() (in module os), 70
cmp() (built-in function), 30
CObject

object, 67
coerce() (built-in function), 35
compile() (built-in function), 21
complex number

object, 45
copyright (in module sys), 71

D

dictionary

object, 59
DictionaryType (in module types), 59
DictType (in module types), 59
divmod() (built-in function), 33

E

environment variables
PATH, 8
PYTHONDUMPREFS, 88
PYTHONHOME, 8
PYTHONPATH, 8
exec_prefix, 1, 2
prefix, 1, 2
EOFError (built-in exception), 62
errno , 73
exc _info() (in module sys), 6, 72
exc _traceback (in module sys), 6, 13
exc _type (in module sys), 6, 13
exc _value (in module sys), 6, 13
Exception (built-in exception), 17
exceptions (built-in module), 8
exec_prefix, 1, 2
executable (in module sys), 71
exit() ,20

109

F
file

object, 61
FileType (in module types), 62
float() (built-in function), 36
floating point

object, 44
FloatType (in modules types), 44
fopen() ,62
free() ,79
freeze utility, 21

G

global interpreter lock, 72

H
hash() (built-in function), 31, 91

ihooks (standard module), 20
incr _item() ,6,7

instance

object, 63
int() (built-in function), 35
getcharbufferproc (C type), 100
getreadbufferproc (C type), 100
getsegcountproc (C type), 100
getwritebufferproc (C type), 100

inquiry (C type), 101
Py_tracefunc (Ctype), 76
traverseproc (C type), 101
visitproc (C type), 101
integer

object, 42
interpreter lock, 72
IntType (in modules types), 42

K

Keyboardinterrupt

L

len() (built-in function), 32, 36, 37, 58, 60
list

(built-in exception), 16

object, 58
ListType (in module types), 58
lock, interpreter, 72
long() (built-in function), 35
long integer

object, 43
LONGMAX 43, 44
LongType (in modules types), 43

M

main() , 70,72
malloc() ,79
mapping

object, 59
METHCLASS(data in), 86
METHKEYWORD@ata in), 86
METHNOARG®data in), 86
METHO(data in), 86
METHOLDARG%data in), 86
METHSTATIC (datain), 86
METHVARARG®data in), 85
method

object, 63
MethodType (in module types), 63
module

object, 64

search path, 8, 69, 71
modules (in module sys), 20, 69
ModuleType (in module types), 64

N

None
object, 42
numeric
object, 42

O

ob_refcnt (PyObject member), 88
ob_size (PyVarObject member), 89
ob_type (PyObject member), 88
object

buffer, 56

CObject, 67

complex number, 45

dictionary, 59

file, 61

floating point, 44

instance, 63

integer, 42

list, 58

long integer, 43

mapping, 59

method, 63

module, 64

None, 42

numeric, 42

sequence, 46

string, 46

tuple, 57

type, 2,41

OverflowError (built-in exception), 44

110

Index

P

package variable

_all __,20
PATH, 8
path

module search, 8, 69, 71
path (in module sys), 8, 69, 71
plattorm (in module sys), 71
pow() (built-in function), 33, 35
prefix, 1, 2
Py_AtExit() ,20
Py_BEGIN_ALLOWTHREADS73
Py_BEGIN_ALLOW.THREADSmacro), 75
Py_BLOCK THREADSmacro), 75
Py_BuildVvalue() , 27
Py_CompileString() , 10
Py_CompileString() , 10
Py_complex (C type), 45
Py_DECREF(), 11
Py_DECREF(), 2
Py_END ALLOWTHREADS73
Py_END ALLOWTHREADSmacro), 75
Py_END OF _BUFFER 56

Py_Endinterpreter() , 70
Py_eval _input , 10
Py_Exit() ,20

Py_FatalError() , 20
Py_FatalError() , 12

Py _FdlsiInteractive() , 19
Py_file _input , 10
Py_Finalize() , 69
Py_Finalize() , 20,69, 70
Py_FindMethod() , 86

Py _GetBuildinfo() , 71
Py_GetCompiler() ,71
Py_GetCopyright() , 71
Py_GetExecPrefix() , 70
Py_GetExecPrefix() , 8
Py_GetPath() ,71
Py_GetPath() , 8,70
Py_GetPlatform() , 71
Py_GetPrefix() , 70
Py_GetPrefix() , 8
Py_GetProgramFullPath() , 71
Py _GetProgramFullPath() , 8
Py_GetProgramName() , 70
Py_GetVersion() ,71
Py_INCREF() , 11
Py_INCREF() , 2

Py _Initialize() , 69

Py _Initialize() ,8,70,74
Py _InitModule() , 84

Py _InitModule3() , 84

Py _InitModule4() , 84

Py _lslInitialized() , 69
Py _lIsInitialized() , 8
Py_Main() ,9
Py_NewiInterpreter() , 69
Py_None, 42

Py_PRINT_RAW62
Py_SetProgramName() , 70
Py_SetProgramName() , 8, 69-71
Py_single _input , 10
Py_TPFLAGS BASETYPHdata in), 93
Py_TPFLAGS CHECKTYPE®ata in), 92
Py_TPFLAGS DEFAULT(data in), 93
Py_TPFLAGS GC(datain), 92
Py_TPFLAGS HAVE CLASS(data in), 93
Py_TPFLAGS HAVE GC(data in), 93, 100
Py_TPFLAGS HAVE GETCHARBUFFERlata in),
92, 100
Py_TPFLAGS HAVE.INPLACEOPS(data in), 92
Py_TPFLAGS HAVELITER (datain), 93
Py_TPFLAGS HAVE_RICHCOMPAREHata in), 93
Py_TPFLAGS HAVE_SEQUENCHN (data in), 92
Py_TPFLAGS HAVE WEAKREF®&lata in), 93
Py_TPFLAGS HEAPTYPHdata in), 93
Py_TPFLAGS READY(data in), 93
Py_TPFLAGS READYING(data in), 93
Py_UNBLOCKTHREADSmacro), 75
Py_UNICODEC type), 49
Py_UNICODE.ISALNUM() , 50
Py_UNICODEISALPHA() , 50
Py_UNICODE.ISDECIMAL() , 50
Py_UNICODEISDIGIT() ,50
Py_UNICODE.ISLINEBREAK() , 49
Py_UNICODE.ISLOWER(), 49
Py_UNICODE.ISNUMERIC() , 50
Py_UNICODE.ISSPACE() , 49
Py_UNICODELISTITLE() ,49
Py_UNICODE.ISUPPER() , 49
Py_UNICODE.TODECIMAL(), 50
Py_UNICODETODIGIT() ,50
Py_UNICODE.TOLOWER() 50
Py_UNICODE. TONUMERIC(), 50
Py_UNICODETOTITLE() , 50
Py_UNICODE.TOUPPER(), 50
Py_XDECREF(), 11
Py_XDECREF(), 7
Py_XINCREF() , 11
PyArg _Parse() , 26
PyArg _ParseTuple() , 26
PyArg _ParseTupleAndKeywords() , 26
PyArg _UnpackTuple() , 26
PyBuffer _Check() , 56
PyBuffer _FromMemory() , 57
PyBuffer _FromObiject() ,57
PyBuffer _FromReadWriteMemory() ,57

Index

111

PyBuffer _FromReadWriteObject()
PyBuffer _New() , 57

PyBuffer _Type, 56
PyBufferObject (C type), 56
PyBufferProcs , 56
PyBufferProcs (C type), 99
PyCallable _Check() , 31
PyCalliter _Check() , 65
PyCalliter ~ _New() , 65
PyCalliter _Type, 65

PyCell _Check() , 67

PyCell _GET(), 68

PyCell _Get() , 68

PyCell _New() , 68

PyCell _SET() , 68

PyCell _Set() , 68

PyCell _Type, 67

PyCellObject (C type), 67
PyCFunction (C type), 85
PyCObject (C type), 67
PyCObject _AsVoidPtr() ,67
PyCObject _Check() , 67
PyCObject _FromVoidPtr() ,67
PyCObject _FromVoidPtrAndDesc()
PyCObject _GetDesc() , 67
PyComplex _AsCComplex() , 46
PyComplex _Check() , 46
PyComplex _CheckExact() , 46
PyComplex _FromCComplex() , 46
PyComplex _FromDoubles() , 46
PyComplex _ImagAsDouble() , 46
PyComplex _RealAsDouble() , 46
PyComplex _Type, 46
PyComplexObject (C type), 46
PyDescr _IsData() , 65
PyDescr _NewGetSet() , 65
PyDescr _NewMember() , 65
PyDescr _NewMethod() , 65
PyDescr _NewWrapper() , 65
PyDict _Check() , 59

PyDict _Clear() ,60

PyDict _Copy() , 60

PyDict _Delltem() ,60

PyDict _DelltemString() , 60
PyDict _Getltem() , 60

PyDict _GetltemString() , 60
PyDict _ltems() , 60

PyDict _Keys() , 60

PyDict _Merge() , 61

PyDict _MergeFromSeq2() , 61
PyDict _New() , 59

PyDict _Next() , 60

PyDict _Setltem() , 60

PyDict _SetltemString() , 60

, 57

, 67

PyDict _Size() , 60

PyDict _Type, 59

PyDict _Update() ,61

PyDict _Values() ,60

PyDictObject (C type), 59

PyDictProxy _New() , 59

PyErr _BadArgument() , 14

PyErr _BadInternalCall() , 15

PyErr _CheckSignals() , 16

PyErr _Clear() ,14

PyErr _Clear() ,6,7

PyErr _ExceptionMatches() , 13
PyErr _ExceptionMatches() 7
PyErr _Fetch() ,14

PyErr _Format() ,14

PyErr _GivenExceptionMatches() , 13
PyErr _NewException() , 16

PyErr _NoMemory() , 14

PyErr _NormalizeException() , 13
PyErr _Occurred() ,13

PyErr _Occurred() ,6

PyErr _Print() ,13

PyErr _Restore() ,14

PyErr _SetExcFromWindowsErr() , 15
PyErr _SetExcFromWindowsErrWithFilename()

15
PyErr _SetFromErmo() , 14
PyErr _SetFromErrnoWithFilename() , 15

PyErr _SetFromWindowsErr() , 15

PyErr _SetFromWindowsErrWithFilename()
15

PyErr _Setinterrupt() , 16

PyErr _SetNone() , 14

PyErr _SetObject() ,14

PyErr _SetString() , 14

PyErr _SetString() , 6

PyErr _Warn() , 15

PyErr _WarnExplicit() , 16

PyErr _WriteUnraisable() , 16

PyEval _AcquireLock() ,74

PyEval _AcquireLock() ,69,73

PyEval _AcquireThread() , 75

PyEval _InitThreads() , 74

PyEval _InitThreads() , 69

PyEval _ReleaseLock() ,74

PyEval _Releaselock() ,69,73,74

PyEval _ReleaseThread() ,75

PyEval _ReleaseThread() ,74

PyEval _RestoreThread() ,75

PyEval _RestoreThread() ,73,74

PyEval _SaveThread() ,75

PyEval _SaveThread() ,73,74

PyEval _SetProfile() 77

PyEval _SetTrace() ,77

112

Index

PyFile _AsFile() 62

PylInterpreterState _Next() ,77

PyFile _Check() , 62 PylInterpreterState _ThreadHead() , 77
PyFile _CheckExact() ,62 PyIntObject (C type), 42

PyFile _Encoding() , 62 Pylter _Check() , 38

PyFile _FromFile() ,62 Pylter _Next() ,38

PyFile _FromString() ,62 PyList _Append() , 59

PyFile _GetLine() ,62 PyList _AsTuple() ,59

PyFile _Name(), 62 PyList _Check() , 58

PyFile _SetBufSize() ,62 PyList _GET.ITEM() , 58

PyFile _SoftSpace() ,62 PyList _GET_SIZE() , 58

PyFile _Type, 62 PyList _Getltem() ,58

PyFile _WriteObject() , 62 PyList _Getltem() ,4

PyFile _WriteString() , 62 PyList _GetSlice() ,59
PyFileObject (C type), 62 PyList _lInsert() ,59

PyFloat _AS_DOUBLE(), 45 PyList _New() , 58

PyFloat _AsDouble() , 45 PyList _Reverse() ,59

PyFloat _Check() , 44 PyList _SET_ITEM() , 59

PyFloat _CheckExact() ,44 PyList _Setltem() ,58

PyFloat _FromDouble() ,45 PyList _Setltem() ,3

PyFloat _FromString() ,45 PyList _SetSlice() ,59

PyFloat _Type, 44 PyList _Size() ,58

PyFloatObject (C type), 44 PyList _Sort() ,59

Pylmport _AddModule() , 20 PyList _Type, 58

Pylmport _AppendInittab() , 21 PyListObject (C type), 58

Pylmport _Cleanup() ,21 PyLong _AsDouble() ,44

Pylmport _ExecCodeModule() ,21 PyLong _AsLong() , 44

Pylmport _ExtendIlnittab() , 22 PyLong _AsLongLong() ,44
Pylmport _FrozenModules , 21 PyLong _AsUnsignedLong() , 44
Pylmport _GetMagicNumber() ,21 PyLong _AsUnsignedLongLong() , 44
Pylmport _GetModuleDict() ,21 PyLong _AsUnsignedLongLongMask() , 44
Pylmport _Import() , 20 PyLong _AsUnsignedLongMask() , 44
Pylmport _ImportFrozenModule() PyLong _AsVoidPtr() , 44

Pylmport _ImportModule() , 20 PyLong _Check() , 43

Pylmport _ImportModuleEx() , 20 PyLong _CheckExact() ,43
Pylmport _ReloadModule() , 20 PyLong _FromDouble() , 43
Pylnstance _Check() , 63 PyLong _FromLong() , 43

Pylnstance _New() , 63 PyLong _FromLongLong() , 43
Pylnstance _NewRaw(), 63 PyLong _FromString() , 43
Pylnstance _Type, 63 PyLong _FromUnicode() , 44

Pyint _AS_LONG(), 43 PyLong _FromUnsignedLong() , 43
Pyint _AslLong() , 42 PyLong _FromUnsignedLongLong() , 43
PyInt _AsUnsignedLongLongMask() PyLong _FromVoidPtr() , 44

PyIint _AsUnsignedLongMask() , 43 PyLong _Type, 43

PyInt _Check() , 42 PyLongObject (C type), 43

Pyint _CheckExact() ,42 PyMapping _Check() , 37

Pyint _FromLong() , 42 PyMapping _Delltem() , 38

PyInt _FromString() , 42 PyMapping _DelltemString() , 37
Pyint _GetMax() , 43 PyMapping _GetltemString() , 38
Pyint _Type, 42 PyMapping _HasKey() , 38
PylInterpreterState (Ctype), 74 PyMapping _HasKeyString() , 38
PylInterpreterState _Clear() ,75 PyMapping _Items() , 38
PylInterpreterState _Delete() ,75 PyMapping _Keys() , 38
PylnterpreterState _Head() , 77 PyMapping _Length() , 37
PylInterpreterState _New() , 75 PyMapping _SetltemString() , 38
Index 113

PyMapping _Values() , 38

PyMappingMethods (C type), 99

PyMarshal _ReadlLastObjectFromFile() ,
23

PyMarshal _ReadLongFromFile() 22

PyMarshal _ReadObjectFromFile() , 22

PyMarshal _ReadObjectFromString() , 23
PyMarshal _ReadShortFromFile() , 22
PyMarshal _WriteLongToFile() , 22
PyMarshal _WriteObjectToFile() , 22
PyMarshal _WriteObjectToString() , 22

PyMem Del() , 80

PyMem Free() , 80

PyMem Malloc() , 80

PyMem New() , 80

PyMem Realloc() , 80

PyMem Resize() , 80
PyMethod _Check() , 63
PyMethod _Class() , 63
PyMethod _Function() , 63
PyMethod _GET_CLASS(), 63
PyMethod _GET_FUNCTION(), 63
PyMethod _GET_SELF() , 64
PyMethod _New() , 63

PyMethod _Self() , 63
PyMethod _Type, 63
PyMethodDef (C type), 85
PyModule _AddIntConstant() , 64
PyModule _AddObject() , 64
PyModule _AddsStringConstant() , 64
PyModule _Check() , 64
PyModule _CheckExact() , 64
PyModule _GetDict() ,64
PyModule _GetFilename() , 64
PyModule _GetName() , 64
PyModule _New() , 64

PyModule _Type, 64
PyNumber_Absolute() , 33
PyNumber_Add() , 33
PyNumber_And() , 34
PyNumber_Check() , 32
PyNumber_Coerce() , 35
PyNumber_Divide() , 33
PyNumber_Divmod() , 33
PyNumber_Float() , 35
PyNumber_FloorDivide() , 33
PyNumber_InPlaceAdd() ,34
PyNumber_InPlaceAnd() , 35

PyNumber _InPlaceDivide() , 34
PyNumber _InPlaceFloorDivide() , 34
PyNumber _InPlaceLshift() , 35
PyNumber _InPlaceMultiply() , 34

PyNumber_InPlaceOr() ,35
PyNumber_InPlacePower() , 35

PyNumber _InPlaceRemainder() , 35
PyNumber _InPlaceRshift() , 35
PyNumber _InPlaceSubtract() , 34
PyNumber _InPlaceTrueDivide() , 34
PyNumber_InPlaceXor() ,35
PyNumber_Int() ,35
PyNumber_Invert() , 33
PyNumber_Long() , 35
PyNumber_Lshift() ,34

PyNumber _Multiply() , 33
PyNumber_Negative() ,33
PyNumber_Or() , 34

PyNumber _Positive() , 33
PyNumber_Power() , 33
PyNumber_Remainder() , 33
PyNumber_Rshift() ,34
PyNumber_Subtract() , 33
PyNumber_TrueDivide() , 33
PyNumber_Xor() , 34
PyNumberMethods (C type), 99
PyObject (C type), 84

PyObject _AsCharBuffer() , 39
PyObject _AsFileDescriptor() , 32
PyObject _AsReadBuffer() , 39
PyObject _AsWriteBuffer() , 39
PyObject _Call() ,31

PyObject _CallFunction() , 31

PyObject _CallFunctionObjArgs() , 31

PyObject _CallMethod() ,31
PyObject _CallMethodObjArgs() , 31
PyObject _CallObject() , 31
PyObject _CheckReadBuffer() , 39
PyObject _Cmp(), 30

PyObject _Compare() , 30
PyObject _DEL() , 84

PyObject _Del() , 83

PyObject _DelAttr() ,29
PyObject _DelAttrString() , 29
PyObject _Delltem() , 32
PyObject _Dir() ,32

PyObject _GCDel() , 101
PyObject _GC New() , 101
PyObject _GC NewVar() , 101
PyObject _GC Resize() , 101
PyObject _GC Track() ,101
PyObject _GC.UnTrack() , 101
PyObject _GetAttr() ,29
PyObject _GetAttrString() , 29
PyObject _Getltem() , 32
PyObject _Getlter() , 32
PyObject _HasAttr() ,29
PyObject _HasAttrString() , 29
PyObject _Hash() , 31

PyObject _HEAD(macro), 85

114

Index

PyObject _Init() ,83

PyObject _lInitVar() , 83

PyObject _lsInstance() , 30
PyObject _IsSubclass() , 30
PyObject _IsTrue() ,31

PyObject _Length() , 32

PyObject _NEW(), 83

PyObject _New() , 83

PyObject _NEWVAR(), 84

PyObject _NewVar() , 83

PyObject _Not() , 31

PyObject _Print() ,29

PyObject _Repr() , 30

PyObject _RichCompare() , 30
PyObject _RichCompareBool() , 30
PyObject _SetAttr() ,29

PyObject _SetAttrString() , 29
PyObject _Setltem() ,32
PyObject _Size() , 32

PyObject _Str() , 30

PyObject _Type() , 32

PyObject _TypeCheck() , 32
PyObject _Unicode() , 30
PyObject _VAR_HEAD(macro), 85
PyOS_AfterFork() , 19
PyOS_CheckStack() ,19
PyOS_GetLastModificationTime() , 19
PyOS getsig() ,19

PyOS_ setsig() ,19

PyParser _SimpleParseFile() , 10
PyParser _SimpleParseString() , 9
PyProperty _Type, 65
PyRun_AnyFile() ,9

PyRun_File() , 10
PyRun_lInteractiveLoop() , 9
PyRun_InteractiveOne() , 9
PyRun_SimpleFile() , 9
PyRun_SimpleString() , 9
PyRun_String() , 10

PySeqlter _Check() , 65

PySeqlter _New() , 65

PySeqlter _Type, 64

PySequence _Check() , 36
PySequence _Concat() , 36
PySequence _Contains() , 37
PySequence _Count() , 37
PySequence _Delltem() , 36
PySequence _DelSlice() ,36
PySequence _Fast() , 37
PySequence _Fast _GETITEM() , 37
PySequence _Fast _GET_SIZE() , 37
PySequence _Getltem() , 36
PySequence _Getltem() ,4
PySequence _GetSlice() , 36

PySequence _Index() , 37
PySequence _InPlaceConcat()
PySequence _InPlaceRepeat()
PySequence _ITEM() , 37
PySequence _Length() , 36
PySequence _List() ,37
PySequence _Repeat() , 36
PySequence _Setltem() , 36
PySequence _SetSlice() ,36
PySequence _Size() , 36
PySequence _Tuple() , 37

PySequenceMethods (C type), 99

PySlice _Check() , 66

PySlice _Getindices() , 66
PySlice _GetindicesEx() , 66
PySlice _New() , 66

PySlice _Type, 65

PyString _AS_STRING() , 47
PyString _AsDecodedObject()
PyString _AsEncodedObject()
PyString _AsString() , 47
PyString _AsStringAndSize()
PyString _Check() , 46
PyString _CheckExact() , 46
PyString _Concat() ,47
PyString _ConcatAndDel() , 48
PyString _Decode() , 48
PyString _Encode() , 48
PyString _Format() , 48
PyString _FromFormat() , 47
PyString _FromFormatV() , 47
PyString _FromString() , 46
PyString _FromString() , 60
PyString _FromStringAndSize()
PyString _GET_SIZE() , 47
PyString _InternFromString()

, 36
, 36

, 48
, 48

47

47

, 48

PyString _InterninPlace() , 48

PyString _Size() ,47

PyString _Type, 46
PyStringObject (C type), 46
PySys _SetArgv() ,72

PySys _SetArgv() , 8,69
PYTHONDUMPREFS, 88
PYTHONHOME, 8
PYTHONPATH, 8

PyThreadState , 72
PyThreadState (C type), 74
PyThreadState _Clear() ,76
PyThreadState _Delete() ,76
PyThreadState _Get() , 76
PyThreadState _GetDict() ,76
PyThreadState _New() , 75
PyThreadState _Next() ,77
PyThreadState _SetAsyncExc()

, 76

Index

115

PyThreadState _Swap() , 76 PyUnicode _DecodeRawUnicodeEscape()

PyTrace _CALL, 76 53
PyTrace _EXCEPT77 PyUnicode _DecodeUnicodeEscape() ,53
PyTrace _LINE, 77 PyUnicode _DecodeUTF16() , 52
PyTrace _RETURN77 PyUnicode _DecodeUTF8() , 52
PyTuple _Check() ,57 PyUnicode _Encode() ,51
PyTuple _CheckExact() ,57 PyUnicode _EncodeASCIl() ,53
PyTuple _GET_ITEM() , 58 PyUnicode _EncodeCharmap() , 54
PyTuple _GET_SIZE() , 57 PyUnicode _Encodelatinl() ,53
PyTuple _Getltem() ,57 PyUnicode _EncodeMBCS(), 54
PyTuple _GetSlice() ,58 PyUnicode _EncodeRawUnicodeEscape()
PyTuple _New() , 57 53
PyTuple _SET_ITEM() , 58 PyUnicode _EncodeUnicodeEscape() ,53
PyTuple _Setltem() ,58 PyUnicode _EncodeUTF16() , 52
PyTuple _Setltem() ,3 PyUnicode _EncodeUTF8() , 52
PyTuple _Size() ,57 PyUnicode _Find() ,55
PyTuple _Type, 57 PyUnicode _Format() ,56
PyTupleObject (C type), 57 PyUnicode _FromEncodedObject() ,50
PyType _Check() , 41 PyUnicode _FromObject() ,51
PyType _CheckExact() ,41 PyUnicode _FromUnicode() ,50
PyType _GenericAlloc() ,41 PyUnicode _FromWideChar() ,51
PyType _GenericNew() , 42 PyUnicode _GET_DATASIZE() , 49
PyType _HasFeature() ,41 PyUnicode _GET_SIZE() , 49
PyType _HasFeature() , 100 PyUnicode _GetSize() ,50
PyType _IS _GC(), 41 PyUnicode _Join() ,55
PyType _IsSubtype() ,41 PyUnicode _Replace() ,55
PyType _Ready() , 42 PyUnicode _Split() ,55
PyType _Type, 41 PyUnicode _Splitlines() , 55
PyTypeObject (C type), 41 PyUnicode _Tailmatch() ,55
PyUnicode _AS _DATA(), 49 PyUnicode _Translate() ,55
PyUnicode _AS_UNICODE(), 49 PyUnicode _TranslateCharmap() , 54
PyUnicode _AsASCIIString() , 54 PyUnicode _Type, 49
PyUnicode _AsCharmapString() ,54 PyUnicodeObject (C type), 49
PyUnicode _AsEncodedString() , 51 PyVarObject (C type), 84
PyUnicode _AsLatin1String() , 53 PyWeakref _Check() , 66
PyUnicode _AsMBCSString() , 55 PyWeakref _CheckProxy() , 66
PyUnicode _AsRawUnicodeEscapeString() , PyWeakref _CheckRef() , 66

53 PyWeakref _GET_OBJECT(), 67
PyUnicode _AsUnicode() ,50 PyWeakref _GetObject() ,67
PyUnicode _AsUnicodeEscapeString() , 53 PyWeakref _NewProxy() , 66
PyUnicode _AsUTF16String() ,52 PyWeakref _NewRef() , 66
PyUnicode _AsUTF8String() ,52 PyWrapper _New() , 65
PyUnicode _AsWideChar() ,51
PyUnicode _Check() , 49 R
PyUnicode _CheckExact() ,49 realloc() , 79
PyUnicode _Compare() , 56 reload() (built-in function), 20
PyUnicode _Concat() ,55 repr() (built-in function), 30, 91
PyUnicode _Contains() ,56 rexec (standard module), 20
PyUnicode _Count() ,55
PyUnicode _Decode() ,51 S
PyUnicode _DecodeASCII() ,53 search
PyUnicode _DecodeCharmap() , 54 path, module, 8, 69, 71
PyUnicode _Decodelatinl() ,53 sequence
PyUnicode _DecodeMBCS(), 54 object, 46

116 Index

set _all) ,4
setcheckinterval()
setvbuf() , 62
SIGINT , 16
signal (built-in module), 16
SliceType (in module types), 65
softspace (file attribute), 62
staticmethod() (built-in function), 86
stderr (in module sys), 69
stdin (in module sys), 69
stdout (in module sys), 69
str() (built-in function), 30
strerror() , 15
string

object, 46
StringType (in module types), 46
_frozen (Ctype), 21
_inittab (C type), 22
sum_list() ,5
sum_sequence() ,5,6
sys (built-in module), 8, 69
SystemError (built-in exception), 64

T

thread (built-in module), 74

tp _alloc (PyTypeObject member), 97

tp _allocs (PyTypeObject member), 99

tp _as _buffer (PyTypeObject member), 92
tp _base (PyTypeObject member), 95

tp _bases (PyTypeObject member), 98

tp _basicsize (PyTypeObject member), 89
tp _cache (PyTypeObject member), 98

tp _call (PyTypeObject member), 91

tp _clear (PyTypeObject member), 94

tp _compare (PyTypeObject member), 90

tp _dealloc (PyTypeObject member), 90
tp _descr _get (PyTypeObject member), 96
tp _descr _set (PyTypeObject member), 96
tp _dict (PyTypeObject member), 96

tp _dictoffset (PyTypeObject member), 96
tp _doc (PyTypeObject member), 93

tp _flags (PyTypeObject member), 92

tp _free (PyTypeObject member), 98

tp _frees (PyTypeObject member), 99

tp _getattr (PyTypeObject member), 90

tp _getattro (PyTypeObject member), 91
tp _getset (PyTypeObject member), 95

tp _hash (PyTypeObject member), 91

tp _init (PyTypeObject member), 97

tp _is _gc (PyTypeObject member), 98

tp _itemsize (PyTypeObject member), 89
tp _iter (PyTypeObject member), 94

tp _iternext (PyTypeObject member), 95
tp _maxalloc (PyTypeObject member), 99

(in module sys), 72

tp _members (PyTypeObject member), 95
tp _methods (PyTypeObject member), 95
tp _mro (PyTypeObject member), 98
tp _name (PyTypeObject member), 89
tp _new (PyTypeObject member), 97
tp _next (PyTypeObject member), 99
tp _print (PyTypeObject member), 90
tp _repr (PyTypeObject member), 91
tp _richcompare (PyTypeObject member), 94
tp _setattr (PyTypeObject member), 90
tp _setattro (PyTypeObject member), 92
tp _str (PyTypeObject member), 91
tp _subclasses (PyTypeObject member), 98
tp _traverse (PyTypeObject member), 93
tp _weaklist (PyTypeObject member), 98
tp _weaklistoffset
tuple

object, 57
tuple() (built-in function), 37, 59
TupleType (in module types), 57
type

object, 2, 41
type() (built-in function), 32
TypeType (in module types), 41

U

ULONGMAX 44

unicode() (built-in function), 30
\Y

version (in module sys), 71, 72

Index

117

(PyTypeObject member), 94

	1 Introduction
	1.1 Include Files
	1.2 Objects, Types and Reference Counts
	1.2.1 Reference Counts
	Reference Count Details

	1.2.2 Types

	1.3 Exceptions
	1.4 Embedding Python

	2 The Very High Level Layer
	3 Reference Counting
	4 Exception Handling
	4.1 Standard Exceptions
	4.2 Deprecation of String Exceptions

	5 Utilities
	5.1 Operating System Utilities
	5.2 Process Control
	5.3 Importing Modules
	5.4 Data marshalling support
	5.5 Parsing arguments and building values

	6 Abstract Objects Layer
	6.1 Object Protocol
	6.2 Number Protocol
	6.3 Sequence Protocol
	6.4 Mapping Protocol
	6.5 Iterator Protocol
	6.6 Buffer Protocol

	7 Concrete Objects Layer
	7.1 Fundamental Objects
	7.1.1 Type Objects
	7.1.2 The None Object

	7.2 Numeric Objects
	7.2.1 Plain Integer Objects
	7.2.2 Long Integer Objects
	7.2.3 Floating Point Objects
	7.2.4 Complex Number Objects
	Complex Numbers as C Structures
	Complex Numbers as Python Objects

	7.3 Sequence Objects
	7.3.1 String Objects
	7.3.2 Unicode Objects
	Built-in Codecs
	Methods and Slot Functions

	7.3.3 Buffer Objects
	7.3.4 Tuple Objects
	7.3.5 List Objects

	7.4 Mapping Objects
	7.4.1 Dictionary Objects

	7.5 Other Objects
	7.5.1 File Objects
	7.5.2 Instance Objects
	7.5.3 Method Objects
	7.5.4 Module Objects
	7.5.5 Iterator Objects
	7.5.6 Descriptor Objects
	7.5.7 Slice Objects
	7.5.8 Weak Reference Objects
	7.5.9 CObjects
	7.5.10 Cell Objects

	8 Initialization, Finalization, and Threads
	8.1 Thread State and the Global Interpreter Lock
	8.2 Profiling and Tracing
	8.3 Advanced Debugger Support

	9 Memory Management
	9.1 Overview
	9.2 Memory Interface
	9.3 Examples

	10 Object Implementation Support
	10.1 Allocating Objects on the Heap
	10.2 Common Object Structures
	10.3 Type Objects
	10.4 Mapping Object Structures
	10.5 Number Object Structures
	10.6 Sequence Object Structures
	10.7 Buffer Object Structures
	10.8 Supporting the Iterator Protocol
	10.9 Supporting Cyclic Garbarge Collection

	A Reporting Bugs
	B History and License
	B.1 History of the software
	B.2 Terms and conditions for accessing or otherwise using Python

	Index

