Extending and Embedding the Python

Interpreter
Release 2.2.2

Guido van Rossum

Fred L. Drake, Jr., editor

October 14, 2002

PythonLabs
Email: python-docs@python.org

Copyright (©) 2001 Python Software Foundation. All rights reserved.

Copyright (© 2000 BeOpen.com. All rights reserved.

Copyright (©) 1995-2000 Corporation for National Research Initiatives. All rights reserved.
Copyright (©) 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an interpreted, object-oriented programming language. This document describes how to write
modules in C or C++ to extend the Python interpreter with new modules. Those modules can define
new functions but also new object types and their methods. The document also describes how to embed
the Python interpreter in another application, for use as an extension language. Finally, it shows how
to compile and link extension modules so that they can be loaded dynamically (at run time) into the
interpreter, if the underlying operating system supports this feature.

This document assumes basic knowledge about Python. For an informal introduction to the language,
see the Python Tutorial. The Python Reference Manual gives a more formal definition of the language.
The Python Library Reference documents the existing object types, functions and modules (both built-in
and written in Python) that give the language its wide application range.

For a detailed description of the whole Python/C API, see the separate Python/C API Reference Manual.

Extending Python with C or C++

1.1 A Simple Example
1.2 Intermezzo: Errors and Exceptions
1.3 Back to the Example
1.4 The Module’s Method Table and Initialization Function
1.5 Compilation and Linkage
1.6 Calling Python Functions from C

1.7 Extracting Parameters in Extension Functions
1.8 Keyword Parameters for Extension Functions

1.9 Building Arbitrary Values
1.10 Reference Counts
1.11 Writing Extensions in C++
1.12 Providing a C API for an Extension Module

Defining New Types

2.1 TheBasics
2.2 Type Methods

Building C and C++ Extensions with distutils

3.1 Distributing your extension modules

Building C and C++ Extensions on Windows

4.1 A Cookbook Approach
4.2 Differences Between UNIX and Windows
4.3 Using DLLs in Practice

Embedding Python in Another Application

5.1 Very High Level Embedding
5.2 Beyond Very High Level Embedding: An overview
5.3 Pure Embedding 0oL
5.4 Extending Embedded Python
5.5 Embedding Python in C++
5.6 Linking Requirements

Reporting Bugs

History and License

B.1 History of the software
B.2 Terms and conditions for accessing or otherwise using Python

CONTENTS

23

................... 23
................... 27

35

................... 36

37

................... 37
................... 39
................... 40

41

................... 41
..................... 42
................... 42
................... 44
................... 45
................... 45

47

CHAPTER
ONE

Extending Python with C or C++

It is quite easy to add new built-in modules to Python, if you know how to program in C. Such extension
modules can do two things that can’t be done directly in Python: they can implement new built-in object
types, and they can call C library functions and system calls.

To support extensions, the Python API (Application Programmers Interface) defines a set of functions,
macros and variables that provide access to most aspects of the Python run-time system. The Python
API is incorporated in a C source file by including the header "Python.h".

The compilation of an extension module depends on its intended use as well as on your system setup;
details are given in later chapters.

1.1 A Simple Example

Let’s create an extension module called ‘spam’ (the favorite food of Monty Python fans...) and let’s say
we want to create a Python interface to the C library function system().! This function takes a null-
terminated character string as argument and returns an integer. We want this function to be callable
from Python as follows:

>>> import spam
>>> status = spam.system("ls -1")

Begin by creating a file ‘spammodule.c’. (Historically, if a module is called ‘spam’, the C file containing
its implementation is called ‘spammodule.c’; if the module name is very long, like ‘spammify’, the module
name can be just ‘spammify.c’.)

The first line of our file can be:

#include <Python.h>

which pulls in the Python API (you can add a comment describing the purpose of the module and a
copyright notice if you like). Since Python may define some pre-processor definitions which affect the
standard headers on some systems, you must include ‘Python.h’ before any standard headers are included.

All user-visible symbols defined by ‘Python.h” have a prefix of ‘Py’ or ‘PY’, except those defined in standard
header files. For convenience, and since they are used extensively by the Python interpreter, "Python.h"
includes a few standard header files: <stdio.h>, <string.h>, <errno.h>, and <stdlib.h>. If the latter
header file does not exist on your system, it declares the functions malloc(), free() and realloc()
directly.

The next thing we add to our module file is the C function that will be called when the Python expression
‘spam.system(string)’ is evaluated (we’ll see shortly how it ends up being called):

static PyObject =*

1 An interface for this function already exists in the standard module os — it was chosen as a simple and straightfoward
example.

spam_system(self, args)
PyObject *self;
PyObject *args;

{
char *command;
int sts;
if (IPyArg_ParseTuple(args, "s", &command))
return NULL;
sts = system(command) ;
return Py_BuildValue("i", sts);
}

There is a straightforward translation from the argument list in Python (for example, the single expres-
sion "1s -1") to the arguments passed to the C function. The C function always has two arguments,
conventionally named self and args.

The self argument is only used when the C function implements a built-in method, not a function. In
the example, self will always be a NULL pointer, since we are defining a function, not a method. (This
is done so that the interpreter doesn’t have to understand two different types of C functions.)

The args argument will be a pointer to a Python tuple object containing the arguments. Each item of
the tuple corresponds to an argument in the call’s argument list. The arguments are Python objects —
in order to do anything with them in our C function we have to convert them to C values. The function
PyArg_ParseTuple() in the Python API checks the argument types and converts them to C values. It
uses a template string to determine the required types of the arguments as well as the types of the C
variables into which to store the converted values. More about this later.

PyArg ParseTuple() returns true (nonzero) if all arguments have the right type and its components
have been stored in the variables whose addresses are passed. It returns false (zero) if an invalid argument
list was passed. In the latter case it also raises an appropriate exception so the calling function can return
NULL immediately (as we saw in the example).

1.2 Intermezzo: Errors and Exceptions

An important convention throughout the Python interpreter is the following: when a function fails,
it should set an exception condition and return an error value (usually a NULL pointer). Exceptions
are stored in a static global variable inside the interpreter; if this variable is NULL no exception has
occurred. A second global variable stores the “associated value” of the exception (the second argument
to raise). A third variable contains the stack traceback in case the error originated in Python code.
These three variables are the C equivalents of the Python variables sys.exc_type, sys.exc_value and
sys.exc_traceback (see the section on module sys in the Python Library Reference). It is important
to know about them to understand how errors are passed around.

The Python API defines a number of functions to set various types of exceptions.

The most common one is PyErr_SetString (). Its arguments are an exception object and a C string. The
exception object is usually a predefined object like PyExc_ZeroDivisionError. The C string indicates
the cause of the error and is converted to a Python string object and stored as the “associated value” of
the exception.

Another useful function is PyErr_SetFromErrno (), which only takes an exception argument and con-
structs the associated value by inspection of the global variable errno. The most general function is
PyErr_SetObject (), which takes two object arguments, the exception and its associated value. You
don’t need to Py_INCREF () the objects passed to any of these functions.

You can test non-destructively whether an exception has been set with PyErr_0Occurred (). This returns
the current exception object, or NULL if no exception has occurred. You normally don’t need to call
PyErr_0Occurred() to see whether an error occurred in a function call, since you should be able to tell
from the return value.

When a function f that calls another function g detects that the latter fails, f should itself return an

2 Chapter 1. Extending Python with C or C++

error value (usually NULL or -1). It should not call one of the PyErr_*() functions — one has already
been called by g. f’s caller is then supposed to also return an error indication to its caller, again without
calling PyErr_* (), and so on — the most detailed cause of the error was already reported by the function
that first detected it. Once the error reaches the Python interpreter’s main loop, this aborts the currently
executing Python code and tries to find an exception handler specified by the Python programmer.

(There are situations where a module can actually give a more detailed error message by calling another
PyErr_x() function, and in such cases it is fine to do so. As a general rule, however, this is not necessary,
and can cause information about the cause of the error to be lost: most operations can fail for a variety
of reasons.)

To ignore an exception set by a function call that failed, the exception condition must be cleared explicitly
by calling PyErr_Clear (). The only time C code should call PyErr_Clear () is if it doesn’t want to pass
the error on to the interpreter but wants to handle it completely by itself (possibly by trying something
else, or pretending nothing went wrong).

Every failing malloc() call must be turned into an exception — the direct caller of malloc() (or
realloc()) must call PyErr_NoMemory() and return a failure indicator itself. All the object-creating
functions (for example, PyInt_FromLong()) already do this, so this note is only relevant to those who
call malloc () directly.

Also note that, with the important exception of PyArg_ParseTuple () and friends, functions that return
an integer status usually return a positive value or zero for success and -1 for failure, like UNIX system
calls.

Finally, be careful to clean up garbage (by making Py_XDECREF () or Py_DECREF () calls for objects you
have already created) when you return an error indicator!

The choice of which exception to raise is entirely yours. There are predeclared C objects corresponding
to all built-in Python exceptions, such as PyExc_ZeroDivisionError, which you can use directly. Of
course, you should choose exceptions wisely — don’t use PyExc_TypeError to mean that a file couldn’t
be opened (that should probably be PyExc_IOError). If something’s wrong with the argument list, the
PyArg_ParseTuple() function usually raises PyExc_TypeError. If you have an argument whose value
must be in a particular range or must satisfy other conditions, PyExc_ValueError is appropriate.

You can also define a new exception that is unique to your module. For this, you usually declare a static
object variable at the beginning of your file:

static PyObject *SpamError;

and initialize it in your module’s initialization function (initspam()) with an exception object (leaving
out the error checking for now):

void
initspam(void)
{
PyObject *m, *d;

m = Py_InitModule("spam", SpamMethods);
d = PyModule_GetDict(m);
SpamError = PyErr_NewException("spam.error", NULL, NULL);
PyDict_SetItemString(d, "error", SpamError);
}

Note that the Python name for the exception object is spam.error. The PyErr_NewException() func-
tion may create a class with the base class being Exception (unless another class is passed in instead of
NULL), described in the Python Library Reference under “Built-in Exceptions.”

Note also that the SpamError variable retains a reference to the newly created exception class; this is
intentional! Since the exception could be removed from the module by external code, an owned reference
to the class is needed to ensure that it will not be discarded, causing SpamError to become a dangling
pointer. Should it become a dangling pointer, C code which raises the exception could cause a core dump
or other unintended side effects.

1.2. Intermezzo: Errors and Exceptions 3

1.3 Back to the Example

Going back to our example function, you should now be able to understand this statement:

if (!PyArg_ParseTuple(args, "s", &command))
return NULL;

It returns NULL (the error indicator for functions returning object pointers) if an error is detected in the
argument list, relying on the exception set by PyArg_ParseTuple(). Otherwise the string value of the
argument has been copied to the local variable command. This is a pointer assignment and you are not
supposed to modify the string to which it points (so in Standard C, the variable command should properly
be declared as ‘const char *command’).

The next statement is a call to the UNIX function system(), passing it the string we just got from
PyArg_ParseTuple():

sts = system(command) ;

Our spam.system() function must return the value of sts as a Python object. This is done using
the function Py_BuildValue(), which is something like the inverse of PyArg ParseTuple(): it takes
a format string and an arbitrary number of C values, and returns a new Python object. More info on
Py_BuildValue() is given later.

return Py_BuildValue("i", sts);
In this case, it will return an integer object. (Yes, even integers are objects on the heap in Python!)
If you have a C function that returns no useful argument (a function returning void), the corresponding
Python function must return None. You need this idiom to do so:

Py_INCREF (Py_None) ;

return Py_None;

Py_None is the C name for the special Python object None. It is a genuine Python object rather than a
NULL pointer, which means “error” in most contexts, as we have seen.

1.4 The Module's Method Table and Initialization Function

I promised to show how spam_system() is called from Python programs. First, we need to list its name
and address in a “method table”:

static PyMethodDef SpamMethods[] = {

{"system", spam_system, METH_VARARGS,
"Execute a shell command."},

{NULL, NULL, O, NULL} /* Sentinel */
};
Note the third entry (‘METH_VARARGS’). This is a flag telling the interpreter the calling convention

to be used for the C function. It should normally always be ‘METH_VARARGS’ or ‘METH_VARARGS |
METH_KEYWORDS’; a value of 0 means that an obsolete variant of PyArg_ParseTuple() is used.

When using only ‘METH_VARARGS’, the function should expect the Python-level parameters to be passed
in as a tuple acceptable for parsing via PyArg_ParseTuple(); more information on this function is
provided below.

The METH_KEYWORDS bit may be set in the third field if keyword arguments should be passed to the
function. In this case, the C function should accept a third ‘PyObject *’ parameter which will be

4 Chapter 1. Extending Python with C or C++

a dictionary of keywords. Use PyArg_ ParseTupleAndKeywords() to parse the arguments to such a
function.

The method table must be passed to the interpreter in the module’s initialization function. The initial-
ization function must be named initname(), where name is the name of the module, and should be
the only non-static item defined in the module file:

void
initspam(void)
{
(void) Py_InitModule("spam", SpamMethods);
}

Note that for C++, this method must be declared extern "C".

When the Python program imports module spam for the first time, initspam() is called. (See below
for comments about embedding Python.) It calls Py_InitModule(), which creates a “module object”
(which is inserted in the dictionary sys.modules under the key "spam"), and inserts built-in function
objects into the newly created module based upon the table (an array of PyMethodDef structures) that
was passed as its second argument. Py_InitModule() returns a pointer to the module object that
it creates (which is unused here). It aborts with a fatal error if the module could not be initialized
satisfactorily, so the caller doesn’t need to check for errors.

When embedding Python, the initspam() function is not called automatically unless there’s an
entry in the _PyImport_Inittab table. The easiest way to handle this is to statically initialize
your statically-linked modules by directly calling initspam() after the call to Py_Initialize() or
PyMac_Initialize():

int main(int argc, char **argv)

{
/* Pass argv[0] to the Python interpreter */
Py_SetProgramName (argv[0]) ;

/* Initialize the Python interpreter. Required. */
Py_Initialize();

/* Add a static module */
initspam();

An example may be found in the file ‘Demo/embed/demo.c’ in the Python source distribution.

Note: Removing entries from sys.modules or importing compiled modules into multiple interpreters
within a process (or following a fork() without an intervening exec()) can create problems for some
extension modules. Extension module authors should exercise caution when initializing internal data
structures. Note also that the reload() function can be used with extension modules, and will call the
module initialization function (initspam() in the example), but will not load the module again if it was
loaded from a dynamically loadable object file (‘.so’ on UNIX, ‘.dII’ on Windows).

A more substantial example module is included in the Python source distribution as ‘Modules/xxmodule.c’.
This file may be used as a template or simply read as an example. The modulator.py script included
in the source distribution or Windows install provides a simple graphical user interface for declaring the
functions and objects which a module should implement, and can generate a template which can be filled
in. The script lives in the ‘Tools/modulator/’ directory; see the ‘README’ file there for more information.

1.5 Compilation and Linkage

There are two more things to do before you can use your new extension: compiling and linking it with the
Python system. If you use dynamic loading, the details may depend on the style of dynamic loading your
system uses; see the chapters about building extension modules (chapter 3) and additional information
that pertains only to building on Windows (chapter 4) for more information about this.

1.5. Compilation and Linkage 5

If you can’t use dynamic loading, or if you want to make your module a permanent part of the Python
interpreter, you will have to change the configuration setup and rebuild the interpreter. Luckily, this is
very simple on UNIX: just place your file (‘spammodule.c’ for example) in the ‘Modules/’ directory of an
unpacked source distribution, add a line to the file ‘Modules/Setup.local’ describing your file:

spam spammodule.o

and rebuild the interpreter by running make in the toplevel directory. You can also run make in the
‘Modules/’ subdirectory, but then you must first rebuild ‘Makefile’ there by running ‘make Makefile’.
(This is necessary each time you change the ‘Setup’ file.)

If your module requires additional libraries to link with, these can be listed on the line in the configuration
file as well, for instance:

spam spammodule.o -1X11

1.6 Calling Python Functions from C

So far we have concentrated on making C functions callable from Python. The reverse is also useful:
calling Python functions from C. This is especially the case for libraries that support so-called “callback”
functions. If a C interface makes use of callbacks, the equivalent Python often needs to provide a callback
mechanism to the Python programmer; the implementation will require calling the Python callback
functions from a C callback. Other uses are also imaginable.

Fortunately, the Python interpreter is easily called recursively, and there is a standard interface to
call a Python function. (I won’t dwell on how to call the Python parser with a particular string as
input — if you're interested, have a look at the implementation of the -¢ command line option in
‘Python/pythonmain.c’ from the Python source code.)

Calling a Python function is easy. First, the Python program must somehow pass you the Python
function object. You should provide a function (or some other interface) to do this. When this function
is called, save a pointer to the Python function object (be careful to Py_INCREF () it!) in a global variable
— or wherever you see fit. For example, the following function might be part of a module definition:

static PyObject *my_callback = NULL;
static PyObject *

my_set_callback(dummy, args)
PyObject *dummy, *args;

{
PyObject *result = NULL;
PyObject *temp;
if (PyArg_ParseTuple(args, "O:set_callback", &temp)) {
if (!PyCallable_Check(temp)) {
PyErr_SetString(PyExc_TypeError, "parameter must be callable");
return NULL;
}
Py_XINCREF (temp) ; /* Add a reference to new callback */
Py_XDECREF (my_callback); /* Dispose of previous callback */
my_callback = temp; /* Remember new callback */
/* Boilerplate to return "None" */
Py_INCREF (Py_None) ;
result = Py_None;
}
return result;
}

This function must be registered with the interpreter using the METH_VARARGS flag; this is described in

6 Chapter 1. Extending Python with C or C++

section 1.4, “The Module’s Method Table and Initialization Function.” The PyArg_ParseTuple() func-
tion and its arguments are documented in section 1.7, “Extracting Parameters in Extension Functions.”

The macros Py_XINCREF() and Py_XDECREF() increment/decrement the reference count of an object
and are safe in the presence of NULL pointers (but note that temp will not be NULL in this context). More
info on them in section 1.10, “Reference Counts.”

Later, when it is time to call the function, you call the C function PyEval_CallObject (). This function
has two arguments, both pointers to arbitrary Python objects: the Python function, and the argument
list. The argument list must always be a tuple object, whose length is the number of arguments. To
call the Python function with no arguments, pass an empty tuple; to call it with one argument, pass a
singleton tuple. Py_BuildValue() returns a tuple when its format string consists of zero or more format
codes between parentheses. For example:

int arg;
PyObject *arglist;
PyObject *result;

arg = 123;

/* Time to call the callback */

arglist = Py_BuildValue("(i)", arg);

result = PyEval_CallObject(my_callback, arglist);
Py_DECREF (arglist) ;

PyEval_CallObject() returns a Python object pointer: this is the return value of the Python function.
PyEval_CallObject() is “reference-count-neutral” with respect to its arguments. In the example a new
tuple was created to serve as the argument list, which is Py_DECREF ()-ed immediately after the call.

The return value of PyEval_CallObject() is “new”: either it is a brand new object, or it is an existing
object whose reference count has been incremented. So, unless you want to save it in a global variable,
you should somehow Py_DECREF () the result, even (especially!) if you are not interested in its value.

Before you do this, however, it is important to check that the return value isn’t NULL. If it is, the Python
function terminated by raising an exception. If the C code that called PyEval_CallObject() is called
from Python, it should now return an error indication to its Python caller, so the interpreter can print
a stack trace, or the calling Python code can handle the exception. If this is not possible or desirable,
the exception should be cleared by calling PyErr_Clear (). For example:

if (result == NULL)

return NULL; /* Pass error back */
...use result...
Py_DECREF (result) ;

Depending on the desired interface to the Python callback function, you may also have to provide an
argument list to PyEval_CallObject (). In some cases the argument list is also provided by the Python
program, through the same interface that specified the callback function. It can then be saved and used
in the same manner as the function object. In other cases, you may have to construct a new tuple to
pass as the argument list. The simplest way to do this is to call Py_BuildValue(). For example, if you
want to pass an integral event code, you might use the following code:

PyObject *arglist;

arglist = Py_BuildValue("(1)", eventcode);
result = PyEval_CallObject(my_callback, arglist);
Py_DECREF (arglist) ;
if (result == NULL)
return NULL; /* Pass error back */
/* Here maybe use the result */
Py_DECREF (result) ;

Note the placement of ‘Py_DECREF (arglist)’ immediately after the call, before the error check! Also
note that strictly spoken this code is not complete: Py_BuildValue() may run out of memory, and this
should be checked.

1.6. Calling Python Functions from C 7

1.7 Extracting Parameters in Extension Functions

The PyArg_ParseTuple () function is declared as follows:

int PyArg_ParseTuple(PyObject *arg, char *format, ...);

The arg argument must be a tuple object containing an argument list passed from Python to a C
function. The format argument must be a format string, whose syntax is explained below. The remaining
arguments must be addresses of variables whose type is determined by the format string. For the
conversion to succeed, the arg object must match the format and the format must be exhausted. On
success, PyArg_ParseTuple () returns true, otherwise it returns false and raises an appropriate exception.

Note that while PyArg_ParseTuple() checks that the Python arguments have the required types, it
cannot check the validity of the addresses of C variables passed to the call: if you make mistakes there,
your code will probably crash or at least overwrite random bits in memory. So be careful!

A format string consists of zero or more “format units”. A format unit describes one Python object;
it is usually a single character or a parenthesized sequence of format units. With a few exceptions, a
format unit that is not a parenthesized sequence normally corresponds to a single address argument to
PyArg_ParseTuple(). In the following description, the quoted form is the format unit; the entry in
(round) parentheses is the Python object type that matches the format unit; and the entry in [square]
brackets is the type of the C variable(s) whose address should be passed. (Use the ‘&’ operator to pass
a variable’s address.)

Note that any Python object references which are provided to the caller are borrowed references; do not
decrement their reference count!

‘s’ (string or Unicode object) [char *] Convert a Python string or Unicode object to a C pointer
to a character string. You must not provide storage for the string itself; a pointer to an existing
string is stored into the character pointer variable whose address you pass. The C string is null-
terminated. The Python string must not contain embedded null bytes; if it does, a TypeError
exception is raised. Unicode objects are converted to C strings using the default encoding. If this
conversion fails, an UnicodeError is raised.

‘s#’ (string, Unicode or any read buffer compatible object) [char *, int] This variant on ‘s’
stores into two C variables, the first one a pointer to a character string, the second one its length.
In this case the Python string may contain embedded null bytes. Unicode objects pass back a
pointer to the default encoded string version of the object if such a conversion is possible. All other
read buffer compatible objects pass back a reference to the raw internal data representation.

‘z’ (string or None) [char *] Like ‘s’, but the Python object may also be None, in which case the C
pointer is set to NULL.

‘z#’ (string or None or any read buffer compatible object) [char *, int] This is to ‘s#’ as ‘2’ is
to ‘s’.

‘0’ (Unicode object) [Py_UNICODE *] Convert a Python Unicode object to a C pointer to a null-
terminated buffer of 16-bit Unicode (UTF-16) data. As with ‘s’, there is no need to provide storage
for the Unicode data buffer; a pointer to the existing Unicode data is stored into the Py _UNICODE
pointer variable whose address you pass.

‘u#’ (Unicode object) [Py _UNICODE *, int] This variant on ‘u’ stores into two C variables, the
first one a pointer to a Unicode data buffer, the second one its length.

‘es’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
This variant on ‘s’ is used for encoding Unicode and objects convertible to Unicode into a character
buffer. It only works for encoded data without embedded NULL bytes.

The variant reads one C variable and stores into two C variables, the first one a pointer to an
encoding name string (encoding), and the second a pointer to a pointer to a character buffer
(**buffer, the buffer used for storing the encoded data).

The encoding name must map to a registered codec. If set to NULL, the default encoding is used.

8 Chapter 1. Extending Python with C or C++

PyArg_ParseTuple () will allocate a buffer of the needed size using PyMem_NEW (), copy the encoded
data into this buffer and adjust *buffer to reference the newly allocated storage. The caller is
responsible for calling PyMem_Free () to free the allocated buffer after usage.

‘et’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer]
Same as ‘es’ except that string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

‘es#’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer
This variant on ‘s#’ is used for encoding Unicode and objects convertible to Unicode into a char-
acter buffer. It reads one C variable and stores into three C variables, the first one a pointer
to an encoding name string (encoding), the second a pointer to a pointer to a character buffer
(**buffer, the buffer used for storing the encoded data) and the third one a pointer to an integer
(*buffer_length, the buffer length).

The encoding name must map to a registered codec. If set to NULL, the default encoding is used.
There are two modes of operation:

If *buffer points a NULL pointer, PyArg_ParseTuple() will allocate a buffer of the needed size
using PyMem_NEW(), copy the encoded data into this buffer and adjust *buffer to reference the
newly allocated storage. The caller is responsible for calling PyMem_Free() to free the allocated
buffer after usage.

If *buffer points to a non-NULL pointer (an already allocated buffer), PyArg_ParseTuple() will
use this location as buffer and interpret *buffer_length as buffer size. It will then copy the encoded
data into the buffer and 0-terminate it. Buffer overflow is signalled with an exception.

In both cases, *buffer_length is set to the length of the encoded data without the trailing 0-byte.
‘et#’ (string, Unicode object or character buffer compatible object) [const char *encoding, char **buffer

Same as ‘es#’ except that string objects are passed through without recoding them. Instead, the
implementation assumes that the string object uses the encoding passed in as parameter.

‘v’ (integer) [char] Convert a Python integer to a tiny int, stored in a C char.
‘h’ (integer) [short int] Convert a Python integer to a C short int.

[

[
‘i’ (integer) [int] Convert a Python integer to a plain C int.
‘1’ (integer) [long int] Convert a Python integer to a C long int.
[

‘L’ (integer) [LONG_LONG] Convert a Python integer to a C long long. This format is only
available on platforms that support long long (or _int64 on Windows).

‘c’ (string of length 1) [char] Convert a Python character, represented as a string of length 1, to a
C char.

‘£’ (float) [float] Convert a Python floating point number to a C float.
‘d’ (float) [double] Convert a Python floating point number to a C double.
‘D’ (complex) [Py_complex] Convert a Python complex number to a C Py_complex structure.

‘0’ (object) [PyObject *] Store a Python object (without any conversion) in a C object pointer. The
C program thus receives the actual object that was passed. The object’s reference count is not
increased. The pointer stored is not NULL.

‘0!” (object) [typeobject, PyObject *] Store a Python object in a C object pointer. This is similar
to ‘0’, but takes two C arguments: the first is the address of a Python type object, the second is
the address of the C variable (of type PyObject *) into which the object pointer is stored. If the
Python object does not have the required type, TypeError is raised.

‘0&’ (object) [converter, anything] Convert a Python object to a C variable through a converter
function. This takes two arguments: the first is a function, the second is the address of a C
variable (of arbitrary type), converted to void *. The converter function in turn is called as
follows:

1.7. Extracting Parameters in Extension Functions 9

status = conwverter Cobject, address) ;

where object is the Python object to be converted and address is the void * argument that was
passed to PyArg_ParseTuple(). The returned status should be 1 for a successful conversion and
0 if the conversion has failed. When the conversion fails, the converter function should raise an
exception.

‘S’ (string) [PyStringObject *] Like ‘0’ but requires that the Python object is a string object. Raises
TypeError if the object is not a string object. The C variable may also be declared as PyObject
*.

‘0’ (Unicode string) [PyUnicodeObject *] Like ‘0’ but requires that the Python object is a Unicode
object. Raises TypeError if the object is not a Unicode object. The C variable may also be declared
as PyObject *.

‘t#’ (read-only character buffer) [char *, int] Like ‘s#’, but accepts any object which implements
the read-only buffer interface. The char * variable is set to point to the first byte of the buffer,
and the int is set to the length of the buffer. Only single-segment buffer objects are accepted;
TypeError is raised for all others.

‘w’ (read-write character buffer) [char *] Similar to ‘s’, but accepts any object which implements
the read-write buffer interface. The caller must determine the length of the buffer by other means,
or use ‘w#’ instead. Only single-segment buffer objects are accepted; TypeError is raised for all
others.

‘w#’ (read-write character buffer) [char *, int] Like ‘s#’, but accepts any object which implements
the read-write buffer interface. The char * variable is set to point to the first byte of the buffer,
and the int is set to the length of the buffer. Only single-segment buffer objects are accepted;
TypeError is raised for all others.

‘(items)’ (tuple) [matching-items] The object must be a Python sequence whose length is the num-
ber of format units in items. The C arguments must correspond to the individual format units in
items. Format units for sequences may be nested.

Note: Prior to Python version 1.5.2, this format specifier only accepted a tuple containing the
individual parameters, not an arbitrary sequence. Code which previously caused TypeError to
be raised here may now proceed without an exception. This is not expected to be a problem for
existing code.

It is possible to pass Python long integers where integers are requested; however no proper range checking
is done — the most significant bits are silently truncated when the receiving field is too small to receive
the value (actually, the semantics are inherited from downcasts in C — your mileage may vary).

A few other characters have a meaning in a format string. These may not occur inside nested parentheses.
They are:

‘]’ Indicates that the remaining arguments in the Python argument list are optional. The C variables
corresponding to optional arguments should be initialized to their default value — when an optional
argument is not specified, PyArg_ParseTuple() does not touch the contents of the corresponding
C variable(s).

¢:? The list of format units ends here; the string after the colon is used as the function name in error
messages (the “associated value” of the exception that PyArg_ParseTuple() raises).

¢;? The list of format units ends here; the string after the semicolon is used as the error message instead

of the default error message. Clearly, ‘:’ and ‘;’ mutually exclude each other.

Some example calls:

int ok;
int i, j;
long k, 1;

10 Chapter 1. Extending Python with C or C++

char *s;
int size;

ok = PyArg_ParseTuple(args, ""); /* No arguments */
/* Python call: £f() */

ok = PyArg_ParseTuple(args, "s", &s); /* A string */
/* Possible Python call: f(’whoops!’) */

ok = PyArg_ParseTuple(args, "1lls", &k, &1, &s); /* Two longs and a string */
/* Possible Python call: £(1, 2, ’three’) */

ok = PyArg_ParseTuple(args, "(ii)s#", &i, &j, &s, &size);
/* A pair of ints and a string, whose size is also returned */
/* Possible Python call: £((1, 2), ’three’) */

char x*file;
char *mode = "r";
int bufsize = 0;
ok = PyArg_ParseTuple(args, "s|si", &file, &mode, &bufsize);
/* A string, and optionally another string and an integer */
/* Possible Python calls:

£ (’spam’)

f(’spam’, ’w’)

£(’spam’, ’wb’, 100000) */

int left, top, right, bottom, h, v;
ok = PyArg_ParseTuple(args, "((ii)(ii))(ii)",
&left, &top, &right, &bottom, &h, &v);
/* A rectangle and a point */
/* Possible Python call:
£((C0, 0), (400, 300)), (10, 10)) */

Py_complex c;

ok = PyArg_ParseTuple(args, "D:myfunction", &c);

/* a complex, also providing a function name for errors */
/* Possible Python call: myfunction(1+2j) */

1.8 Keyword Parameters for Extension Functions

The PyArg_ParseTupleAndKeywords () function is declared as follows:

int PyArg_ParseTupleAndKeywords(PyObject *arg, PyObject *kwdict,
char *format, char **kwlist, ...);

The arg and format parameters are identical to those of the PyArg ParseTuple() function. The
kwdict parameter is the dictionary of keywords received as the third parameter from the Python
runtime. The kwlist parameter is a NULL-terminated list of strings which identify the parameters;

1.8. Keyword Parameters for Extension Functions 11

the names are matched with the type information from format from left to right. On success,
PyArg_ParseTupleAndKeywords() returns true, otherwise it returns false and raises an appropriate
exception.

Note: Nested tuples cannot be parsed when using keyword arguments! Keyword parameters passed in
which are not present in the kwlist will cause TypeError to be raised.

Here is an example module which uses keywords, based on an example by Geoff Philbrick
(philbrick@hks.com):

#include "Python.h"

static PyObject *
keywdarg_parrot(self, args, keywds)
PyObject *self;
PyObject *args;
PyObject *keywds;

{
int voltage;
char *state = "a stiff";
char *action