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1 Overview

This manual is a detailed description of the MIT/GNU Scheme runtime system. It is
intended to be a reference document for programmers. It does not describe how to run
Scheme or how to interact with it — that is the subject of the MIT/GNU Scheme User’s
Manual.

This chapter summarizes the semantics of Scheme, briefly describes the MIT/GNU
Scheme programming environment, and explains the syntactic and lexical conventions of
the language. Subsequent chapters describe special forms, numerous data abstractions, and
facilities for input and output.

Throughout this manual, we will make frequent references to standard Scheme, which
is the language defined by the document Revised~4 Report on the Algorithmic Language
Scheme, by William Clinger, Jonathan Rees, et al., or by IEEE Std. 1178-1990, IEEE Stan-
dard for the Scheme Programming Language (in fact, several parts of this document are
copied from the Revised Report). MIT/GNU Scheme is an extension of standard Scheme.

These are the significant semantic characteristics of the Scheme language:

Variables are statically scoped
Scheme is a statically scoped programming language, which means that each
use of a variable is associated with a lexically apparent binding of that variable.
Algol is another statically scoped language.

Types are latent
Scheme has latent types as opposed to manifest types, which means that Scheme
associates types with values (or objects) rather than with variables. Other
languages with latent types (also referred to as weakly typed or dynamically
typed languages) include APL, Snobol, and other dialects of Lisp. Languages
with manifest types (sometimes referred to as strongly typed or statically typed
languages) include Algol 60, Pascal, and C.

Objects have unlimited extent
All objects created during a Scheme computation, including procedures and
continuations, have unlimited extent; no Scheme object is ever destroyed. The
system doesn’t run out of memory because the garbage collector reclaims the
storage occupied by an object when the object cannot possibly be needed by
a future computation. Other languages in which most objects have unlimited
extent include APL and other Lisp dialects.

Proper tail recursion
Scheme is properly tail-recursive, which means that iterative computation can
occur in constant space, even if the iterative computation is described by a syn-
tactically recursive procedure. With a tail-recursive implementation, you can
express iteration using the ordinary procedure-call mechanics; special iteration
expressions are provided only for syntactic convenience.

Procedures are objects
Scheme procedures are objects, which means that you can create them dy-
namically, store them in data structures, return them as the results of other
procedures, and so on. Other languages with such procedure objects include
Common Lisp and ML.
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Continuations are explicit
In most other languages, continuations operate behind the scenes. In Scheme,
continuations are objects; you can use continuations for implementing a variety
of advanced control constructs, including non-local exits, backtracking, and
coroutines.

Arguments are passed by value
Arguments to Scheme procedures are passed by value, which means that Scheme
evaluates the argument expressions before the procedure gains control, whether
or not the procedure needs the result of the evaluations. ML, C, and APL
are three other languages that pass arguments by value. In languages such as
SASL and Algol 60, argument expressions are not evaluated unless the values
are needed by the procedure.

Scheme uses a parenthesized-list Polish notation to describe programs and (other) data.
The syntax of Scheme, like that of most Lisp dialects, provides for great expressive power,
largely due to its simplicity. An important consequence of this simplicity is the susceptibility
of Scheme programs and data to uniform treatment by other Scheme programs. As with
other Lisp dialects, the read primitive parses its input; that is, it performs syntactic as well
as lexical decomposition of what it reads.

1.1 Notational Conventions

This section details the notational conventions used throughout the rest of this document.

1.1.1 Errors

When this manual uses the phrase “an error will be signalled,” it means that Scheme will
call error, which normally halts execution of the program and prints an error message.

When this manual uses the phrase “it is an error,” it means that the specified action is
not valid in Scheme, but the system may or may not signal the error. When this manual
says that something “must be,” it means that violating the requirement is an error.

1.1.2 Examples

This manual gives many examples showing the evaluation of expressions. The examples

have a common format that shows the expression being evaluated on the left hand side, an

“arrow” in the middle, and the value of the expression written on the right. For example:
(+12) = 3

Sometimes the arrow and value will be moved under the expression, due to lack of space.
Occasionally we will not care what the value is, in which case both the arrow and the value
are omitted.

If an example shows an evaluation that results in an error, an error message is shown,
prefaced by ° "
(+ 1 ’foo) Illegal datum
An example that shows printed output marks it with ‘
(begin (write ’foo) ’bar)
- foo
= bar
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When this manual indicates that the value returned by some expression is unspecified,
it means that the expression will evaluate to some object without signalling an error, but
that programs should not depend on the value in any way.

1.1.3 Entry Format

Each description of an MIT/GNU Scheme variable, special form, or procedure begins with
one or more header lines in this format:

template [category]
where category specifies the kind of item (“variable”, “special form”, or “procedure”). The
form of template is interpreted depending on category.

Variable Template consists of the variable’s name.

Special Form
Template starts with the syntactic keyword of the special form, followed by a
description of the special form’s syntax. The description is written using the
following conventions.

Named components are italicized in the printed manual, and uppercase in the
Info file. “Noise” keywords, such as the else keyword in the cond special form,
are set in a fixed width font in the printed manual; in the Info file they are not
distinguished. Parentheses indicate themselves.

A horizontal ellipsis (. ..) is describes repeated components. Specifically,
thing . ..

indicates zero or more occurrences of thing, while
thing thing . ..

indicates one or more occurrences of thing.

Brackets, [ ], enclose optional components.

Several special forms (e.g. lambda) have an internal component consisting of a
series of expressions; usually these expressions are evaluated sequentially un-
der conditions that are specified in the description of the special form. This
sequence of expressions is commonly referred to as the body of the special form.

Procedure Template starts with the name of the variable to which the procedure is bound,
followed by a description of the procedure’s arguments. The arguments are
described using “lambda list” notation (see Section 2.1 [Lambda Expressions],
page 15), except that brackets are used to denote optional arguments, and
ellipses are used to denote “rest” arguments.

The names of the procedure’s arguments are italicized in the printed manual,
and uppercase in the Info file.

When an argument names a Scheme data type, it indicates that the argument
must be that type of data object. For example,

cdr pair [procedure]
indicates that the standard Scheme procedure cdr takes one argument, which
must be a pair.
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Many procedures signal an error when an argument is of the wrong type; usually
this error is a condition of type condition-type:wrong-type-argument.

In addition to the standard data-type names (pair, list, boolean, string, etc.),
the following names as arguments also imply type restrictions:

e object: any object

e thunk: a procedure of no arguments
e x, y: real numbers

e g, n: integers

e k: an exact non-negative integer

Some examples:

list object ... [procedure]
indicates that the standard Scheme procedure list takes zero or more arguments, each of
which may be any Scheme object.

write-char char [output-port] [procedure]
indicates that the standard Scheme procedure write-char must be called with a character,
char, and may also be called with a character and an output port.

1.2 Scheme Concepts

1.2.1 Variable Bindings

Any identifier that is not a syntactic keyword may be used as a variable (see Section 1.3.3
[Identifiers], page 10). A variable may name a location where a value can be stored. A
variable that does so is said to be bound to the location. The value stored in the location
to which a variable is bound is called the variable’s value. (The variable is sometimes said
to name the value or to be bound to the value.)

A variable may be bound but still not have a value; such a variable is said to be unas-
signed. Referencing an unassigned variable is an error. When this error is signalled, it is
a condition of type condition-type:unassigned-variable; sometimes the compiler does
not generate code to signal the error. Unassigned variables are useful only in combination
with side effects (see Section 2.5 [Assignments|, page 22).

1.2.2 Environment Concepts

An environment is a set of variable bindings. If an environment has no binding for a variable,
that variable is said to be unbound in that environment. Referencing an unbound variable
signals a condition of type condition-type:unbound-variable.

A new environment can be created by extending an existing environment with a set of
new bindings. Note that “extending an environment” does not modify the environment;
rather, it creates a new environment that contains the new bindings and the old ones. The
new bindings shadow the old ones; that is, if an environment that contains a binding for x
is extended with a new binding for x, then only the new binding is seen when x is looked
up in the extended environment. Sometimes we say that the original environment is the
parent of the new one, or that the new environment is a child of the old one, or that the
new environment inherits the bindings in the old one.
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Procedure calls extend an environment, as do let, let*, letrec, and do expressions.
Internal definitions (see Section 2.4.2 [Internal Definitions], page 21) also extend an envi-
ronment. (Actually, all the constructs that extend environments can be expressed in terms
of procedure calls, so there is really just one fundamental mechanism for environment ex-
tension.) A top-level definition (see Section 2.4.1 [Top-Level Definitions|, page 21) may add
a binding to an existing environment.

1.2.3 Initial and Current Environments

MIT/GNU Scheme provides an initial environment that contains all of the variable bind-
ings described in this manual. Most environments are ultimately extensions of this initial
environment. In Scheme, the environment in which your programs execute is actually a
child (extension) of the environment containing the system’s bindings. Thus, system names
are visible to your programs, but your names do not interfere with system programs.

The environment in effect at some point in a program is called the current environment
at that point. In particular, every REP loop has a current environment. (REP stands for
“read-eval-print”; the REP loop is the Scheme program that reads your input, evaluates it,
and prints the result.) The environment of the top-level REP loop (the one you are in when
Scheme starts up) starts as user-initial-environment, although it can be changed by
the ge procedure. When a new REP loop is created, its environment is determined by the
program that creates it.

1.2.4 Static Scoping

Scheme is a statically scoped language with block structure. In this respect, it is like Algol
and Pascal, and unlike most other dialects of Lisp except for Common Lisp.

The fact that Scheme is statically scoped (rather than dynamically bound) means that
the environment that is extended (and becomes current) when a procedure is called is the
environment in which the procedure was created (i.e. in which the procedure’s defining
lambda expression was evaluated), not the environment in which the procedure is called.
Because all the other Scheme binding expressions can be expressed in terms of procedures,
this determines how all bindings behave.

Consider the following definitions, made at the top-level REP loop (in the initial envi-
ronment):

(define x 1)

(define (f x) (g 2))

(define (g y) (+ x y))

(f 5) = 3 ;mnot 7

Here £ and g are bound to procedures created in the initial environment. Because Scheme

is statically scoped, the call to g from f extends the initial environment (the one in which
g was created) with a binding of y to 2. In this extended environment, y is 2 and x is 1.
(In a dynamically bound Lisp, the call to g would extend the environment in effect during
the call to £, in which x is bound to 5 by the call to £, and the answer would be 7.)

Note that with static scoping, you can tell what binding a variable reference refers
to just from looking at the text of the program; the referenced binding cannot depend
on how the program is used. That is, the nesting of environments (their parent-child
relationship) corresponds to the nesting of binding expressions in program text. (Because
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of this connection to the text of the program, static scoping is also called lexical scoping.)
For each place where a variable is bound in a program there is a corresponding region
of the program text within which the binding is effective. For example, the region of a
binding established by a lambda expression is the entire body of the lambda expression.
The documentation of each binding expression explains what the region of the bindings it
makes is. A use of a variable (that is, a reference to or assignment of a variable) refers to
the innermost binding of that variable whose region contains the variable use. If there is no
such region, the use refers to the binding of the variable in the global environment (which
is an ancestor of all other environments, and can be thought of as a region in which all your
programs are contained).

1.2.5 True and False

In Scheme, the boolean values true and false are denoted by #t and #f. However, any
Scheme value can be treated as a boolean for the purpose of a conditional test. This
manual uses the word true to refer to any Scheme value that counts as true, and the word
false to refer to any Scheme value that counts as false. In conditional tests, all values count
as true except for #£, which counts as false (see Section 2.7 [Conditionals|, page 24).

1.2.6 External Representations

An important concept in Scheme is that of the external representation of an object as
a sequence of characters. For example, an external representation of the integer 28 is the
sequence of characters ‘28’, and an external representation of a list consisting of the integers
8 and 13 is the sequence of characters ‘(8 13)’.

The external representation of an object is not necessarily unique. The integer 28 also
has representations ‘#e28.000" and ‘#x1c’, and the list in the previous paragraph also has
the representations ‘( 08 13 )’ and ‘(8 . (13 . ()))".

Many objects have standard external representations, but some, such as procedures
and circular data structures, do not have standard representations (although particular
implementations may define representations for them).

An external representation may be written in a program to obtain the corresponding
object (see Section 2.6 [Quoting], page 22).

External representations can also be used for input and output. The procedure read
parses external representations, and the procedure write generates them. Together, they
provide an elegant and powerful input/output facility.

Note that the sequence of characters ‘(+ 2 6)’ is not an external representation of the
integer 8, even though it is an expression that evaluates to the integer 8; rather, it is an
external representation of a three-element list, the elements of which are the symbol + and
the integers 2 and 6. Scheme’s syntax has the property that any sequence of characters
that is an expression is also the external representation of some object. This can lead to
confusion, since it may not be obvious out of context whether a given sequence of characters
is intended to denote data or program, but it is also a source of power, since it facilitates
writing programs such as interpreters and compilers that treat programs as data or data as
programs.
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1.2.7 Disjointness of Types

Every object satisfies at most one of the following predicates (but see Section 1.2.5 [True
and False|, page 8, for an exception):

bit-string? environment? port? symbol?
boolean? null? procedure? vector?
cell? number? promise? weak-pair?
char? pair? string?

condition?

1.2.8 Storage Model
This section describes a model that can be used to understand Scheme’s use of storage.

Variables and objects such as pairs, vectors, and strings implicitly denote locations or
sequences of locations. A string, for example, denotes as many locations as there are
characters in the string. (These locations need not correspond to a full machine word.) A
new value may be stored into one of these locations using the string-set! procedure, but
the string continues to denote the same locations as before.

An object fetched from a location, by a variable reference or by a procedure such as car,
vector-ref, or string-ref, is equivalent in the sense of eqv? to the object last stored in
the location before the fetch.

Every location is marked to show whether it is in use. No variable or object ever refers
to a location that is not in use. Whenever this document speaks of storage being allocated
for a variable or object, what is meant is that an appropriate number of locations are chosen
from the set of locations that are not in use, and the chosen locations are marked to indicate
that they are now in use before the variable or object is made to denote them.

In many systems it is desirable for constants (i.e. the values of literal expressions) to
reside in read-only memory. To express this, it is convenient to imagine that every object
that denotes locations is associated with a flag telling whether that object is mutable or
immutable. The constants and the strings returned by symbol->string are then the im-
mutable objects, while all objects created by other procedures are mutable. It is an error to
attempt to store a new value into a location that is denoted by an immutable object. Note
that the MIT/GNU Scheme compiler takes advantage of this property to share constants,
but that these constants are not immutable. Instead, two constants that are equal? may
be eq? in compiled code.

1.3 Lexical Conventions

This section describes Scheme’s lexical conventions.

1.3.1 Whitespace

Whitespace characters are spaces, newlines, tabs, and page breaks. Whitespace is used to
improve the readability of your programs and to separate tokens from each other, when nec-
essary. (A token is an indivisible lexical unit such as an identifier or number.) Whitespace
is otherwise insignificant. Whitespace may occur between any two tokens, but not within a
token. Whitespace may also occur inside a string, where it is significant.
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1.3.2 Delimiters

All whitespace characters are delimiters. In addition, the following characters act as delim-
iters:

¢y oo

Finally, these next characters act as delimiters, despite the fact that Scheme does not
define any special meaning for them:

L1 {1}

For example, if the value of the variable name is "max":

(1ist"Hi"name(+ 1 2)) = ("Hi" "max" 3)

1.3.3 Identifiers

An identifier is a sequence of one or more non-delimiter characters. Identifiers are used in
several ways in Scheme programs:

e An identifier can be used as a variable or as a syntactic keyword.

e When an identifier appears as a literal or within a literal, it denotes a symbol.

Scheme accepts most of the identifiers that other programming languages allow.
MIT/GNU Scheme allows all of the identifiers that standard Scheme does, plus many
more.

MIT/GNU Scheme defines a potential identifier to be a sequence of non-delimiter char-
acters that does not begin with either of the characters ‘#’ or ‘,’. Any such sequence of
characters that is not a syntactically valid number (see Chapter 4 [Numbers|, page 61) is
considered to be a valid identifier. Note that, although it is legal for ‘#’ and ‘,’ to appear
in an identifier (other than in the first character position), it is poor programming practice.

Here are some examples of identifiers:

lambda q
list->vector soup

+ Vi7a
<=7 a34kTMNs

the-word-recursion-has-many-meanings

1.3.4 Uppercase and Lowercase

Scheme doesn’t distinguish uppercase and lowercase forms of a letter except within character
and string constants; in other words, Scheme is case-insensitive. For example, ‘Foo’ is the
same identifier as ‘FO0’, and ‘#x1AB’ is the same number as ‘#X1ab’. But ‘#\a’ and ‘#\A’
are different characters.

1.3.5 Naming Conventions

A predicate is a procedure that always returns a boolean value (#t or #f). By convention,
predicates usually have names that end in ‘7.

A mutation procedure is a procedure that alters a data structure. By convention, mu-
tation procedures usually have names that end in ‘!’.
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1.3.6 Comments

The beginning of a comment is indicated with a semicolon (;). Scheme ignores everything
on a line in which a semicolon appears, from the semicolon until the end of the line. The
entire comment, including the newline character that terminates it, is treated as whitespace.

An alternative form of comment (sometimes called an extended comment) begins with
the characters ‘#|’ and ends with the characters ‘|#’. This alternative form is an MIT/GNU
Scheme extension. As with ordinary comments, all of the characters in an extended com-
ment, including the leading ‘#|’ and trailing ‘|#’, are treated as whitespace. Comments
of this form may extend over multiple lines, and additionally may be nested (unlike the
comments of the programming language C, which have a similar syntax).

;55 This is a comment about the FACT procedure. Scheme
;55 ignores all of this comment. The FACT procedure computes
;55 the factorial of a non-negative integer.

#|

This is an extended comment.

Such comments are useful for commenting out code fragments.
| #

(define fact

(lambda (n)
(if (= n 0) ;This is another comment:
1 ;Base case: return 1

(x n (fact (- n 1))))))
1.3.7 Additional Notations

The following list describes additional notations used in Scheme. See Chapter 4 [Numbers],
page 61, for a description of the notations used for numbers.

+- . The plus sign, minus sign, and period are used in numbers, and may also occur
in an identifier. A delimited period (not occurring within a number or identifier)
is used in the notation for pairs and to indicate a “rest” parameter in a formal
parameter list (see Section 2.1 [Lambda Expressions|, page 15).

@) Parentheses are used for grouping and to notate lists (see Chapter 7 [Lists],
page 109).
" The double quote delimits strings (see Chapter 6 [Strings|, page 91).

\ The backslash is used in the syntax for character constants (see Chapter 5

[Characters|, page 79) and as an escape character within string constants (see
Chapter 6 [Strings|, page 91).

; The semicolon starts a comment.

’ The single quote indicates literal data; it suppresses evaluation (see Section 2.6
[Quoting], page 22).

¢ The backquote indicates almost-constant data (see Section 2.6 [Quoting],
page 22).
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, The comma is used in conjunction with the backquote (see Section 2.6 [Quoting],
page 22).
,Q A comma followed by an at-sign is used in conjunction with the backquote (see

Section 2.6 [Quoting], page 22).

# The sharp (or pound) sign has different uses, depending on the character that
immediately follows it:

#t #f These character sequences denote the boolean constants (see Section 10.1
[Booleans|, page 133).

#\ This character sequence introduces a character constant (see Chapter 5 [Char-
acters|, page 79).

#( This character sequence introduces a vector constant (see Chapter 8 [Vectors],
page 125). A close parenthesis, )’, terminates a vector constant.

#e #1i #b #o #d #1 #s #x
These character sequences are used in the notation for numbers (see Chapter 4
[Numbers|, page 61).

#| This character sequence introduces an extended comment. The comment is
terminated by the sequence ‘|#’. This notation is an MIT/GNU Scheme exten-
sion.

#! This character sequence is used to denote a small set of named constants. Cur-

rently there are only two of these, #!optional and #!rest, both of which are
used in the lambda special form to mark certain parameters as being “optional”
or “rest” parameters. This notation is an MIT/GNU Scheme extension.

#x This character sequence introduces a bit string (see Chapter 9 [Bit Strings]
page 129). This notation is an MIT/GNU Scheme extension.

9

#[ This character sequence is used to denote objects that do not have a readable
external representation (see Section 14.7 [Custom Output], page 196). A close
bracket, ‘], terminates the object’s notation. This notation is an MIT/GNU
Scheme extension.

#0 This character sequence is a convenient shorthand used to refer to objects by
their hash number (see Section 14.7 [Custom Output], page 196). This notation
is an MIT/GNU Scheme extension.

#it These character sequences introduce a notation used to show circular structures
in printed output, or to denote them in input. The notation works much like
that in Common Lisp, and is an MIT/GNU Scheme extension.

1.4 Expressions

A Scheme expression is a construct that returns a value. An expression may be a literal, a
variable reference, a special form, or a procedure call.
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1.4.1 Literal Expressions

Literal constants may be written by using an external representation of the data. In general,
the external representation must be quoted (see Section 2.6 [Quoting], page 22); but some
external representations can be used without quotation.

llabcll :> llabcll
145932 = 145932
#t = #t

#\a = #\a

The external representation of numeric constants, string constants, character constants,
and boolean constants evaluate to the constants themselves. Symbols, pairs, lists, and
vectors require quoting.

1.4.2 Variable References

An expression consisting of an identifier (see Section 1.3.3 [Identifiers|, page 10) is a variable
reference; the identifier is the name of the variable being referenced. The value of the
variable reference is the value stored in the location to which the variable is bound. An
error is signalled if the referenced variable is unbound or unassigned.

(define x 28)

X = 28

1.4.3 Special Form Syntax

(keyword component ...)

A parenthesized expression that starts with a syntactic keyword is a special form. Each
special form has its own syntax, which is described later in the manual.

Note that syntactic keywords and variable bindings share the same namespace. A local
variable binding may shadow a syntactic keyword, and a local syntactic-keyword definition
may shadow a variable binding.

The following list contains all of the syntactic keywords that are defined when MIT/GNU
Scheme is initialized:

access and begin

case cond cons-stream

declare define

define-integrable define-structure define-syntax

delay do er-macro-transformer

fluid-let if lambda

let let* let*-syntax

let-syntax letrec letrec-syntax

local-declare named-lambda non-hygienic-macro-
transformer

or quasiquote quote

rsc-macro-transformer sc-macro-transformer set!

syntax-rules the-environment

1.4.4 Procedure Call Syntax

(operator operand ...)
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A procedure call is written by simply enclosing in parentheses expressions for the proce-
dure to be called (the operator) and the arguments to be passed to it (the operands). The
operator and operand expressions are evaluated and the resulting procedure is passed the
resulting arguments. See Section 2.1 [Lambda Expressions|, page 15, for a more complete
description of this.

Another name for the procedure call expression is combination. This word is more
specific in that it always refers to the expression; “procedure call” sometimes refers to the
process of calling a procedure.

Unlike some other dialects of Lisp, Scheme always evaluates the operator expression
and the operand expressions with the same evaluation rules, and the order of evaluation is
unspecified.

(+ 34) = 7
((if #f = %) 3 4) = 12
A number of procedures are available as the values of variables in the initial environment;
for example, the addition and multiplication procedures in the above examples are the values
of the variables + and *. New procedures are created by evaluating lambda expressions.

If the operator is a syntactic keyword, then the expression is not treated as a procedure
call: it is a special form.
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2 Special Forms

A special form is an expression that follows special evaluation rules. This chapter describes
the basic Scheme special forms.

2.1 Lambda Expressions

lambda formals expression expression . . . [special form)]
A lambda expression evaluates to a procedure. The environment in effect when the
lambda expression is evaluated is remembered as part of the procedure; it is called
the closing environment. When the procedure is later called with some arguments,
the closing environment is extended by binding the variables in the formal parameter
list to fresh locations, and the locations are filled with the arguments according to
rules about to be given. The new environment created by this process is referred to
as the invocation environment.

Once the invocation environment has been constructed, the expressions in the body
of the 1lambda expression are evaluated sequentially in it. This means that the region
of the variables bound by the lambda expression is all of the expressions in the body.
The result of evaluating the last expression in the body is returned as the result of
the procedure call.

Formals, the formal parameter list, is often referred to as a lambda list.

The process of matching up formal parameters with arguments is somewhat involved.
There are three types of parameters, and the matching treats each in sequence:

Required  All of the required parameters are matched against the arguments first.
If there are fewer arguments than required parameters, an error of type
condition-type:wrong-number-of-arguments is signalled; this error is
also signalled if there are more arguments than required parameters and
there are no further parameters.

Optional  Once the required parameters have all been matched, the optional param-
eters are matched against the remaining arguments. If there are fewer ar-
guments than optional parameters, the unmatched parameters are bound
to special objects called default objects. If there are more arguments
than optional parameters, and there are no further parameters, an error
of type condition-type:wrong-number-of-arguments is signalled.

The predicate default-object?, which is true only of default objects,
can be used to determine which optional parameters were supplied, and
which were defaulted.

Rest Finally, if there is a rest parameter (there can only be one), any remaining
arguments are made into a list, and the list is bound to the rest parameter.
(If there are no remaining arguments, the rest parameter is bound to the
empty list.)
In Scheme, unlike some other Lisp implementations, the list to which a
rest parameter is bound is always freshly allocated. It has infinite extent
and may be modified without affecting the procedure’s caller.
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Specially recognized keywords divide the formals parameters into these three classes.
The keywords used here are ‘#!optional’, ‘.’ and ‘#!rest’. Note that only ‘.’ is
defined by standard Scheme — the other keywords are MIT /GNU Scheme extensions.
‘#!rest’ has the same meaning as ‘.’ in formals.

The use of these keywords is best explained by means of examples. The following
are typical lambda lists, followed by descriptions of which parameters are required,
optional, and rest. We will use ‘#!rest’ in these examples, but anywhere it appears
‘.7 could be used instead.

(abc) a, b, and c are all required. The procedure must be passed exactly three
arguments.

(a b #'!'optional c)
a and b are required, c is optional. The procedure may be passed either
two or three arguments.

(#!optional a b c)
a, b, and c are all optional. The procedure may be passed any number
of arguments between zero and three, inclusive.

a

(#'rest a)
These two examples are equivalent. a is a rest parameter. The procedure
may be passed any number of arguments. Note: this is the only case in
which ‘.’ cannot be used in place of ‘#!rest’.

(a b #'optional c d #!rest e)
a and b are required, ¢ and d are optional, and e is rest. The procedure
may be passed two or more arguments.

Some examples of lambda expressions:

(lambda (x) (+ x x)) = #[compound-procedure 53]
((lambda (x) (+ x x)) 4) = 8

(define reverse-subtract
(lambda (x y)
-y x)))

(reverse—-subtract 7 10) = 3

(define foo
(let ((x 4))
(lambda (y) (+ x y))))
(foo 6) = 10

named-lambda formals expression expression . . . [special form]

The named-lambda special form is similar to lambda, except that the first “required
parameter” in formals is not a parameter but the name of the resulting procedure;
thus formals must have at least one required parameter. This name has no semantic
meaning, but is included in the external representation of the procedure, making



Chapter 2: Special Forms 17

it useful for debugging. In MIT/GNU Scheme, lambda is implemented as named-
lambda, with a special name that means “unnamed”.

(named-lambda (f x) (+ x x)) = #[compound-procedure 53 f]
((named-lambda (f x) (+ x x)) 4) = 8

2.2 Lexical Binding

The three binding constructs let, let*, and letrec, give Scheme block structure. The
syntax of the three constructs is identical, but they differ in the regions they establish for
their variable bindings. In a let expression, the initial values are computed before any
of the variables become bound. In a let* expression, the evaluations and bindings are
sequentially interleaved. And in a letrec expression, all the bindings are in effect while
the initial values are being computed (thus allowing mutually recursive definitions).

let ((variable init) ...) expression expression . . . [special form)]
The inits are evaluated in the current environment (in some unspecified order), the
variables are bound to fresh locations holding the results, the expressions are evalu-
ated sequentially in the extended environment, and the value of the last expression is
returned. Each binding of a variable has the expressions as its region.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.
Note that the following are equivalent:

(let ((variable init) ...) expression expression ...)

((lambda (variable ...) expression expression ...) init ...)
Some examples:

(et ((x 2) (y 3
(*x x y)) = 6

(let ((x 2) (y 3))
(let ((foo (lambda (z) (+ x y 2)))
(x 7))
(foo 4))) = 9

See Section 2.9 [Iteration], page 27, for information on “named let”.

let* ((variable init) ...) expression expression . . . [special form]|
let* is similar to let, but the bindings are performed sequentially from left to right,
and the region of a binding is that part of the let* expression to the right of the
binding. Thus the second binding is done in an environment in which the first binding
is visible, and so on.

Note that the following are equivalent:

(let* ((variablel initl)
(variable2 init2)

(variableN inith))
expression
expression ...)
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(let ((variablel initl1))
(let ((variable2 init2))

(let ((variableN initN))
expression
expression ...)

co))

An example:

(let ((x 2) (y 3))
(letx ((x 7)

(z (+ x 7))
(x z x))) = 70
letrec ((variable init) ...) expression expression . . . [special form)]

The variables are bound to fresh locations holding unassigned values, the inits are
evaluated in the extended environment (in some unspecified order), each variable is
assigned to the result of the corresponding init, the expressions are evaluated sequen-
tially in the extended environment, and the value of the last expression is returned.
Each binding of a variable has the entire letrec expression as its region, making it
possible to define mutually recursive procedures.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

(letrec ((even?
(lambda (n)
(if (zero? n)
#t
(0dd? (- n 1)))))
(odd?
(lambda (n)
(if (zero? n)
#f
(even? (- n 1))))))
(even? 88)) = #t

One restriction on letrec is very important: it shall be possible to evaluated each
init without assigning or referring to the value of any variable. If this restriction
is violated, then it is an error. The restriction is necessary because Scheme passes
arguments by value rather than by name. In the most common uses of letrec, all the
inits are lambda or delay expressions and the restriction is satisfied automatically.

2.3 Dynamic Binding

fluid-let ((variable init) ...) expression expression . . . [special form)]

The inits are evaluated in the current environment (in some unspecified order), the
current values of the variables are saved, the results are assigned to the variables, the
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expressions are evaluated sequentially in the current environment, the variables are
restored to their original values, and the value of the last expression is returned.

The syntax of this special form is similar to that of let, but fluid-let temporarily
rebinds existing variables. Unlike let, fluid-let creates no new bindings; instead
it assigns the value of each init to the binding (determined by the rules of lexical
scoping) of its corresponding variable.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are temporarily unassigned.

An error of type condition-type:unbound-variable is signalled if any of the vari-
ables are unbound. However, because fluid-let operates by means of side effects,
it is valid for any variable to be unassigned when the form is entered.

Here is an example showing the difference between fluid-let and let. First see how
let affects the binding of a variable:

(define variable #t)
(define (access-variable) variable)

variable = #t
(let ((variable #f))

(access-variable)) = #t
variable = #t

access-variable returns #t in this case because it is defined in an environment with
variable bound to #t. fluid-1let, on the other hand, temporarily reuses an existing

variable:
variable = #t
(fluid-let ((variable #f)) ;reuses old binding
(access-variable)) = #f
variable = #t

The extent of a dynamic binding is defined to be the time period during which the
variable contains the new value. Normally this time period begins when the body is
entered and ends when it is exited; on a sequential machine it is normally a contiguous
time period. However, because Scheme has first-class continuations, it is possible to
leave the body and then reenter it, as many times as desired. In this situation, the
extent becomes non-contiguous.

When the body is exited by invoking a continuation, the new value is saved, and
the variable is set to the old value. Then, if the body is reentered by invoking a
continuation, the old value is saved, and the variable is set to the new value. In
addition, side effects to the variable that occur both inside and outside of body are
preserved, even if continuations are used to jump in and out of body repeatedly.

Here is a complicated example that shows the interaction between dynamic binding and
continuations:
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(define (complicated-dynamic-binding)
(let ((variable 1)
(inside-continuation))
(write-line variable)
(call-with-current-continuation
(lambda (outside-continuation)
(fluid-let ((variable 2))
(write-line variable)
(set! variable 3)
(call-with-current-continuation
(lambda (k)
(set! inside-continuation k)
(outside-continuation #t)))
(write-line variable)
(set! inside-continuation #f))))
(write-line variable)
(if inside-continuation
(begin
(set! variable 4)
(inside-continuation #£f)))))

Evaluating ‘(complicated-dynamic-binding)’ writes the following on the console:

Commentary: the first two values written are the initial binding of variable and its
new binding after the fluid-let’s body is entered. Immediately after they are written,
variable is set to ‘3’, and then outside-continuation is invoked, causing us to exit the
body. At this point, ‘1’ is written, demonstrating that the original value of variable has
been restored, because we have left the body. Then we set variable to ‘4’ and reenter the
body by invoking inside-continuation. At this point, ‘3’ is written, indicating that the
side effect that previously occurred within the body has been preserved. Finally, we exit
body normally, and write ‘4’, demonstrating that the side effect that occurred outside of
the body was also preserved.

2.4 Definitions

define variable [expression] [special form]

define formals expression expression . [special form)]
Definitions are valid in some but not all contexts where expressions are allowed.
Definitions may only occur at the top level of a program and at the beginning of
a lambda body (that is, the body of a lambda, let, let*, letrec, fluid-let, or
“procedure define” expression). A definition that occurs at the top level of a program
is called a top-level definition, and a definition that occurs at the beginning of a body
is called an internal definition.
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In the second form of define (called “procedure define”), the component formals is
identical to the component of the same name in a named-lambda expression. In fact,
these two expressions are equivalent:

(define (namel name2 ...)
expression
expression ...)

(define namel

(named-lambda (namel name2 ...)
expression
expression ...))

2.4.1 Top-Level Definitions
A top-level definition,

(define variable expression)
has essentially the same effect as this assignment expression, if variable is bound:
(set! variable expression)

If variable is not bound, however, define binds variable to a new location in the current
environment before performing the assignment (it is an error to perform a set! on an
unbound variable). If you omit expression, the variable becomes unassigned; an attempt to
reference such a variable is an error.

(define add3

(lambda (x) (+ x 3))) = unspecified
(add3 3) = 6
(define first car) = unspecified
(first ’(1 2)) = 1
(define bar) = unspecified
bar Unassigned variable

2.4.2 Internal Definitions

An internal definition is a definition that occurs at the beginning of a body (that is, the
body of a lambda, let, let*, letrec, fluid-let, or “procedure define” expression),
rather than at the top level of a program. The variable defined by an internal definition is
local to the body. That is, variable is bound rather than assigned, and the region of the
binding is the entire body. For example,

(let ((x 5))
(define foo (lambda (y) (bar x y)))
(define bar (lambda (a b) (+ (x a b) a)))
(foo (+ x 3))) = 45

A body containing internal definitions can always be converted into a completely equiva-
lent letrec expression. For example, the let expression in the above example is equivalent
to
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(let ((x 5))
(letrec ((foo (lambda (y) (bar x y)))
(bar (lambda (a b) (+ (x a b) a))))
(foo (+ x 3))))
2.5 Assignments
set! variable [expression] [special form]
If expression is specified, evaluates expression and stores the resulting value in the
location to which variable is bound. If expression is omitted, variable is altered to be
unassigned; a subsequent reference to such a variable is an error. In either case, the
value of the set! expression is unspecified.
Variable must be bound either in some region enclosing the set! expression, or at
the top level. However, variable is permitted to be unassigned when the set! form
is entered.
(define x 2) = unspecified
(+ x 1) = 3
(set! x 4) = unspecified
(+ x 1) = 5
Variable may be an access expression (see Chapter 13 [Environments|, page 179).
This allows you to assign variables in an arbitrary environment. For example,
(define x (let ((y 0)) (the-environment)))
(define y ’a)
y = a
(access y x) = 0
(set! (access y x) 1) = unspecified
y = a
(access y x) = 1
2.6 Quoting
This section describes the expressions that are used to modify or prevent the evaluation of
objects.
quote datum [special form)]

(quote datum) evaluates to datum. Datum may be any external representation of a
Scheme object (see Section 1.2.6 [External Representations|, page 8). Use quote to
include literal constants in Scheme code.

(quote a) = a
(quote #(a b c)) = #(a b c)
(quote (+ 1 2)) = (+12)

(quote datum) may be abbreviated as ’datum. The two notations are equivalent in
all respects.
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’a = a

'#(a b c) = #(abc)
Y+ 1 2) = (+12)

> (quote a) = (quote a)
’ra = (quote a)

Numeric constants, string constants, character constants, and boolean constants eval-

uate to themselves, so they don’t need to be quoted.

)llabcll j llabcll
llabcll :> llabcll
7145932 = 145932
145932 = 145932
‘#t = #t
#t = #t
"#\a = #\a
#\a = #\a
quasiquote template [special form)]

“Backquote” or “quasiquote” expressions are useful for constructing a list or vector
structure when most but not all of the desired structure is known in advance. If no
commas appear within the template, the result of evaluating ¢ template is equivalent
(in the sense of equal?) to the result of evaluating ’template. If a comma appears
within the template, however, the expression following the comma is evaluated (“un-
quoted”) and its result is inserted into the structure instead of the comma and the
expression. If a comma appears followed immediately by an at-sign (@), then the
following expression shall evaluate to a list; the opening and closing parentheses of
the list are then “stripped away” and the elements of the list are inserted in place of
the comma at-sign expression sequence.

“(list ,(+ 1 2) 4) = (list 3 4)
(let ((name ’a)) ‘(list ,name ’,name)) = (list a ’a)
‘(a ,(+ 1 2) ,0(map abs ’(4 -5 6)) b) = (a3456D0b

“((foo ,(- 10 3)) ,@(cdr ’(c)) . ,(car ’(comns)))
= ((foo 7) . coms)

‘#(10 5 ,(sqrt 4) ,@(map sqrt ’(16 9)) 8)
= #(10 5 2 4 3 8)

“,(+ 2 3) = 5

Quasiquote forms may be nested. Substitutions are made only for unquoted compo-
nents appearing at the same nesting level as the outermost backquote. The nesting
level increases by one inside each successive quasiquotation, and decreases by one
inside each unquotation.
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‘(a ‘(b ,(+12) ,(foo ,(+ 1 3) d) e) £)
= (a ‘(b ,(+12) ,(foo 4 d) e) f)

(let ((namel ’x)
(name2 ’y))
‘(a ‘(b ,,namel ,’,name2 d) e))
= (a ‘(M ,x ,’y d e)
The notations ‘template and (quasiquote template) are identical in all respects.
,expression is identical to (unquote expression) and ,Q@expression is identical
to (unquote-splicing expression).

(quasiquote (list (unquote (+ 1 2)) 4))
= (list 3 4)

’(quasiquote (list (unquote (+ 1 2)) 4))
= ‘(1list ,(+ 1 2) 4)
i.e., (quasiquote (list (unquote (+ 1 2)) 4))

Unpredictable behavior can result if any of the symbols quasiquote, unquote, or
unquote-splicing appear in a template in ways otherwise than as described above.

2.7 Conditionals

The behavior of the conditional expressions is determined by whether objects are true or
false. The conditional expressions count only #f as false. They count everything else,
including #t, pairs, symbols, numbers, strings, vectors, and procedures as true (but see
Section 1.2.5 [True and False], page 8).

In the descriptions that follow, we say that an object has “a true value” or “is true”
when the conditional expressions treat it as true, and we say that an object has “a false
value” or “is false” when the conditional expressions treat it as false.

if predicate consequent [alternative] [special form]
Predicate, consequent, and alternative are expressions. An if expression is evaluated
as follows: first, predicate is evaluated. If it yields a true value, then consequent is
evaluated and its value is returned. Otherwise alternative is evaluated and its value
is returned. If predicate yields a false value and no alternative is specified, then the
result of the expression is unspecified.

An if expression evaluates either consequent or alternative, never both. Programs
should not depend on the value of an if expression that has no alternative.

(if (> 3 2) ’yes ’no) = yes
(if (> 2 3) ’yes ’no) = 1no
(if (> 3 2)
(- 32)
(+ 3 2) = 1
cond clause clause . . . [special form]

Each clause has this form:

(predicate expression ...)
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case

where predicate is any expression. The last clause may be an else clause, which has
the form:

(else expression expression ...)
A cond expression does the following;:
1. Evaluates the predicate expressions of successive clauses in order, until one of
the predicates evaluates to a true value.

2. When a predicate evaluates to a true value, cond evaluates the expressions in
the associated clause in left to right order, and returns the result of evaluating
the last expression in the clause as the result of the entire cond expression.

If the selected clause contains only the predicate and no expressions, cond returns
the value of the predicate as the result.

3. If all predicates evaluate to false values, and there is no else clause, the result of
the conditional expression is unspecified; if there is an else clause, cond evaluates
its expressions (left to right) and returns the value of the last one.

(cond ((> 3 2) ’greater)
((x 3 2) ’less)) = greater

(cond ((> 3 3) ’greater)
((< 3 3) ’less)
(else ’equal)) = equal
Normally, programs should not depend on the value of a cond expression that has no
else clause. However, some Scheme programmers prefer to write cond expressions
in which at least one of the predicates is always true. In this style, the final clause is
equivalent to an else clause.
Scheme supports an alternative clause syntax:
(predicate => recipient)
where recipient is an expression. If predicate evaluates to a true value, then recipient
is evaluated. Its value must be a procedure of one argument; this procedure is then
invoked on the value of the predicate.

(cond ((assv ’b ’((a 1) (b 2))) => cadr)
(else #f)) = 9

key clause clause . . . [special form)]
Key may be any expression. Each clause has this form:

((object ...) expression expression ...)

No object is evaluated, and all the objects must be distinct. The last clause may be
an else clause, which has the form:

(else expression expression ...)
A case expression does the following:
1. Evaluates key and compares the result with each object.

2. If the result of evaluating key is equivalent (in the sense of eqv?; see Chapter 3
[Equivalence Predicates], page 55) to an object, case evaluates the expressions
in the corresponding clause from left to right and returns the result of evaluating
the last expression in the clause as the result of the case expression.
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3. If the result of evaluating key is different from every object, and if there’s an
else clause, case evaluates its expressions and returns the result of the last one
as the result of the case expression. If there’s no else clause, case returns an
unspecified result. Programs should not depend on the value of a case expression

that has no else clause.

For example,

(case (x 2 3)
((2 35 7) ’prime)
((1 4 6 89) ’composite)) =

(case (car ’(c d))
((a) ’a)
() ’v)) =

(case (car ’(c d))
((a e i o u) ’vowel)
((w y) ’semivowel)
(else ’consonant)) =

and expression . . .

composite

unspecified

consonant

[special form)]

The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a false value is returned. Any remaining expressions are not evalu-
ated. If all the expressions evaluate to true values, the value of the last expression is

returned. If there are no expressions then #t is returned.

(and (=2 2) > 2 1))
(and (= 2 2) (< 2 1))
(and 1 2 ’c (£ g))
(and)

LR

or expression . . .

#t
#f
(f g)
#t

[special form]

The expressions are evaluated from left to right, and the value of the first expression
that evaluates to a true value is returned. Any remaining expressions are not eval-
uated. If all expressions evaluate to false values, the value of the last expression is

returned. If there are no expressions then #f is returned.

(or (=22) (> 2 1)) =
(or (=2 2) (<2 1)) =
(or #f #f #f) =
(or (memq ’b ’(a b ¢)) (/ 3 0)) =

2.8 Sequencing

#t
#t
#f
(b c)

The begin special form is used to evaluate expressions in a particular order.

begin expression expression . . .

[special form)]

The expressions are evaluated sequentially from left to right, and the value of the last
expression is returned. This expression type is used to sequence side effects such as

input and output.



Chapter 2: Special Forms 27

(define x 0)
(begin (set! x 5)
(+ x 1)) = 6

(begin (display "4 plus 1 equals ")
(display (+ 4 1)))
<+ 4 plus 1 equals 5
= unspecified

Often the use of begin is unnecessary, because many special forms already support
sequences of expressions (that is, they have an implicit begin). Some of these special
forms are:

case
cond

define ;““procedure define” only
do

fluid-let

lambda

let

let*

letrec

named-lambda

The obsolete special form sequence is identical to begin. It should not be used in
new code.

2.9 Iteration

The iteration expressions are: “named let” and do. They are also binding expressions,
but are more commonly referred to as iteration expressions. Because Scheme is properly
tail-recursive, you don’t need to use these special forms to express iteration; you can simply
use appropriately written “recursive” procedure calls.

let name ((variable init) ...) expression expression . . . [special form]
MIT/GNU Scheme permits a variant on the syntax of let called “named let” which
provides a more general looping construct than do, and may also be used to express
recursions.

Named let has the same syntax and semantics as ordinary let except that name is
bound within the expressions to a procedure whose formal arguments are the variables
and whose body is the expressions. Thus the execution of the expressions may be
repeated by invoking the procedure named by name.

MIT/GNU Scheme allows any of the inits to be omitted, in which case the corre-
sponding variables are unassigned.

Note: the following expressions are equivalent:
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(let name ((variable init) ...)
expression
expression ...)

((Qletrec ((name

(named-lambda (name variable ...)
expression
expression ...)))
name)
init ...)

Here is an example:

(let loop

((numbers ’(3 -2 1 6 -5))

(nonneg ’ ()

(neg >0)))

(cond ((null? numbers)
(1ist nonneg neg))
((>= (car numbers) 0)
(loop (cdr numbers)
(cons (car numbers) nonneg)

neg))

(else

(loop (cdr numbers)
nonneg

(cons (car numbers) neg)))))

= ((6 13) (-5 -2))

do ((variable init step) ...) (test expression ...) command [special form]

do is an iteration construct. It specifies a set of variables to be bound, how they are
to be initialized at the start, and how they are to be updated on each iteration. When
a termination condition is met, the loop exits with a specified result value.

do expressions are evaluated as follows: The init expressions are evaluated (in some
unspecified order), the variables are bound to fresh locations, the results of the init
expressions are stored in the bindings of the variables, and then the iteration phase
begins.

Each iteration begins by evaluating test; if the result is false, then the command
expressions are evaluated in order for effect, the step expressions are evaluated in
some unspecified order, the variables are bound to fresh locations, the results of the
steps are stored in the bindings of the variables, and the next iteration begins.

If test evaluates to a true value, then the expressions are evaluated from left to right
and the value of the last expression is returned as the value of the do expression. If no
expressions are present, then the value of the do expression is unspecified in standard
Scheme; in MIT/GNU Scheme, the value of test is returned.
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The region of the binding of a variable consists of the entire do expression except
for the inits. It is an error for a variable to appear more than once in the list of do
variables.

A step may be omitted, in which case the effect is the same as if (variable init
variable) had been written instead of (variable init).

(do ((vec (make-vector 5))
10 (+1i1)))
((= i 5) vec)
(vector-set! vec i i)) = #(0 12 3 4)

(let ((x (1 357 9
(do ((x x (cdr x))
(sum 0 (+ sum (car x))))
((null? x) sum))) = 25

2.10 Structure Definitions

This section provides examples and describes the options and syntax of define-structure,
an MIT/GNU Scheme macro that is very similar to defstruct in Common Lisp. The
differences between them are summarized at the end of this section. For more information,
see Steele’s Common Lisp book.

define-structure (name structure-option . ..) slot-description . . . [special form]
Each slot-description takes one of the following forms:

slot-name
(slot-name default-init [slot-option value]x*)

The fields name and slot-name must both be symbols. The field default-init is an
expression for the initial value of the slot. It is evaluated each time a new instance
is constructed. If it is not specified, the initial content of the slot is undefined.
Default values are only useful with a BOA constructor with argument list or a keyword
constructor (see below).

Evaluation of a define-structure expression defines a structure descriptor and a
set of procedures to manipulate instances of the structure. These instances are repre-
sented as records by default (see Section 10.4 [Records|, page 138) but may alternately
be lists or vectors. The accessors and modifiers are marked with compiler declara-
tions so that calls to them are automatically transformed into appropriate references.
Often, no options are required, so a simple call to define-structure looks like:

(define-structure foo a b c)

This defines a type descriptor rtd:foo, a constructor make-foo, a predicate foo?,
accessors foo-a, foo-b, and foo-c, and modifiers set-foo-a!, set-foo-b!, and
set-foo-c!.

In general, if no options are specified, define-structure defines the following (using
the simple call above as an example):
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type descriptor
The name of the type descriptor is "rtd:" followed by the name of
the structure, e.g. ‘rtd:foo’. The type descriptor satisfies the predicate
record-type”?.

constructor
The name of the constructor is "make-" followed by the name of the
structure, e.g. ‘make-foo’. The number of arguments accepted by the
constructor is the same as the number of slots; the arguments are the
initial values for the slots, and the order of the arguments matches the
order of the slot definitions.

predicate  The name of the predicate is the name of the structure followed by "?",
e.g. ‘foo?’. The predicate is a procedure of one argument, which re-
turns #t if its argument is a record of the type defined by this structure
definition, and #f otherwise.

accessors  For each slot, an accessor is defined. The name of the accessor is formed
by appending the name of the structure, a hyphen, and the name of the
slot, e.g. ‘foo-a’. The accessor is a procedure of one argument, which
must be a record of the type defined by this structure definition. The
accessor extracts the contents of the corresponding slot in that record
and returns it.

modifiers  For each slot, a modifier is defined. The name of the modifier is formed by
appending "set-", the name of the accessor, and "!", e.g. ‘set-foo-a!’.
The modifier is a procedure of two arguments, the first of which must
be a record of the type defined by this structure definition, and the sec-
ond of which may be any object. The modifier modifies the contents of
the corresponding slot in that record to be that object, and returns an
unspecified value.

When options are not supplied, (name) may be abbreviated to name. This convention
holds equally for structure-options and slot-options. Hence, these are equivalent:

(define-structure foo a b c)
(define-structure (foo) (a) b (c))

as are
(define-structure (foo keyword-constructor) a b c)
(define-structure (foo (keyword-constructor)) a b c)

When specified as option values, false and nil are equivalent to #f, and true and

t are equivalent to #t.

Possible slot-options are:

read-only value [slot option]

When given a value other than #f, this specifies that no modifier should be created
for the slot.

type type-descriptor [slot option]

This is accepted but not presently used.
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Possible structure-options are:

predicate [name] [structure option]
This option controls the definition of a predicate procedure for the structure. If name
is not given, the predicate is defined with the default name (see above). If name is
#f, the predicate is not defined at all. Otherwise, name must be a symbol, and the
predicate is defined with that symbol as its name.

copier [name] [structure option]
This option controls the definition of a procedure to copy instances of the struc-
ture. This is a procedure of one argument, a structure instance, that makes a newly
allocated copy of the structure and returns it. If name is not given, the copier is
defined, and the name of the copier is "copy-" followed by the structure name (e.g.
‘copy-foo’). If name is #f, the copier is not defined. Otherwise, name must be a
symbol, and the copier is defined with that symbol as its name.

print-procedure expression [structure option]
Evaluating expression must yield a procedure of two arguments, which is used to print
instances of the structure. The procedure is an unparser method (see Section 14.7
[Custom Output], page 196). If the structure instances are records, this option has
the same effect as calling set-record-type-unparser-method!.

constructor [name [argument-list|| [structure option]
This option controls the definition of constructor procedures. These constructor pro-
cedures are called “BOA constructors”, for “By Order of Arguments”, because the
arguments to the constructor specify the initial contents of the structure’s slots by
the order in which they are given. This is as opposed to “keyword constructors”, which
specify the initial contents using keywords, and in which the order of arguments is
irrelevant.

If name is not given, a constructor is defined with the default name and arguments (see
above). If name is #f, no constructor is defined; argument-list may not be specified
in this case. Otherwise, name must be a symbol, and a constructor is defined with
that symbol as its name. If name is a symbol, argument-list is optionally allowed;
if it is omitted, the constructor accepts one argument for each slot in the structure
definition, in the same order in which the slots appear in the definition. Otherwise,
argument-list must be a lambda list (see Section 2.1 [Lambda Expressions|, page 15),
and each of the parameters of the lambda list must be the name of a slot in the
structure. The arguments accepted by the constructor are defined by this lambda
list. Any slot that is not specified by the lambda list is initialized to the default-init
as specified above; likewise for any slot specified as an optional parameter when the
corresponding argument is not supplied.

If the constructor option is specified, the default constructor is not defined. Addi-
tionally, the constructor option may be specified multiple times to define multiple
constructors with different names and argument lists.

(define-structure (foo
(constructor make-foo (#!optional a b)))
(a 6 read-only #t)
(b 9))
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keyword-constructor [name] [structure option]

This option controls the definition of keyword constructor procedures. A keyword
constructor is a procedure that accepts arguments that are alternating slot names
and values. If name is omitted, a keyword constructor is defined, and the name of
the constructor is "make-" followed by the name of the structure (e.g. ‘make-foo’).
Otherwise, name must be a symbol, and a keyword constructor is defined with this
symbol as its name.

If the keyword-constructor option is specified, the default constructor is not defined.
Additionally, the keyword-constructor option may be specified multiple times to
define multiple keyword constructors; this is usually not done since such constructors
would all be equivalent.

(define-structure (foo (keyword-constructor make-bar)) a b)
(foo-a (make-bar ’b 20 ’a 19)) = 19

type-descriptor name [structure option]

This option cannot be used with the type or named options.

By default, structures are implemented as records. The name of the structure is
defined to hold the type descriptor of the record defined by the structure. The type-
descriptor option specifies a different name to hold the type descriptor.

(define-structure foo a b)
foo = #[record-type 18]

(define-structure (bar (type-descriptor <bar>)) a b)
bar Unbound variable: bar
<bar> = #[record-type 19]

conc-name [name] [structure option]

type

By default, the prefix for naming accessors and modifiers is the name of the structure
followed by a hyphen. The conc-name option can be used to specify an alternative.
If name is not given, the prefix is the name of the structure followed by a hyphen (the
default). If name is #£, the slot names are used directly, without prefix. Otherwise,
name must a symbol, and that symbol is used as the prefix.

(define-structure (foo (conc-name moby/)) a b)

defines accessors moby/a and moby/b, and modifiers set-moby/a! and set-moby/b!.
(define-structure (foo (conc-name #f)) a b)

defines accessors a and b, and modifiers set-a! and set-b!.

representation-type [structure option]
This option cannot be used with the type-descriptor option.

By default, structures are implemented as records. The type option overrides this
default, allowing the programmer to specify that the structure be implemented using
another data type. The option value representation-type specifies the alternate data
type; it is allowed to be one of the symbols vector or 1ist, and the data type used
is the one corresponding to the symbol.

If this option is given, and the named option is not specified, the representation will
not be tagged, and neither a predicate nor a type descriptor will be defined; also, the
print-procedure option may not be given.
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(define-structure (foo (type list)) a b)
(make-foo 1 2) = (1 2)

named [expression] [structure option]
This is valid only in conjunction with the type option and specifies that the structure
instances be tagged to make them identifiable as instances of this structure type. This
option cannot be used with the type-descriptor option.

In the usual case, where expression is not given, the named option causes a type
descriptor and predicate to be defined for the structure (recall that the type option
without named suppresses their definition), and also defines a default unparser method
for the structure instances (which can be overridden by the print-procedure option).
If the default unparser method is not wanted then the print-procedure option should
be specified as #F. This causes the structure to be printed in its native representation,
as a list or vector, which includes the type descriptor. The type descriptor is a unique
object, not a record type, that describes the structure instances and is additionally
stored in the structure instances to identify them: if the representation type is vector,
the type descriptor is stored in the zero-th slot of the vector, and if the representation
type is 1list, it is stored as the first element of the list.

(define-structure (foo (type vector) named) a b c)
(vector-ref (make-foo 1 2 3) 0) = #[structure-type 52]

If expression is specified, it is an expression that is evaluated to yield a tag object. The
expression is evaluated once when the structure definition is evaluated (to specify the
unparser method), and again whenever a predicate or constructor is called. Because
of this, expression is normally a variable reference or a constant. The value yielded by
expression may be any object at all. That object is stored in the structure instances
in the same place that the type descriptor is normally stored, as described above. If
expression is specified, no type descriptor is defined, only a predicate.

(define-structure (foo (type vector) (named ’foo)) a b c)
(vector-ref (make-foo 1 2 3) 0) = foo

safe-accessors [boolean] [structure option]
This option allows the programmer to have some control over the safety of the slot
accessors (and modifiers) generated by define-structure. If safe-accessors is not
specified, or if boolean is #£, then the accessors are optimized for speed at the expense
of safety; when compiled, the accessors will turn into very fast inline sequences, usually
one to three machine instructions in length. However, if safe-accessors is specified
and boolean is either omitted or #t, then the accessors are optimized for safety, will
check the type and structure of their argument, and will be close-coded.

(define-structure (foo safe-accessors) a b c)

initial-offset offset [structure option]
This is valid only in conjunction with the type option. Offset must be an exact non-
negative integer and specifies the number of slots to leave open at the beginning of
the structure instance before the specified slots are allocated. Specifying an offset of
zero is equivalent to omitting the initial-offset option.
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If the named option is specified, the structure tag appears in the first slot, followed
by the “offset” slots, and then the regular slots. Otherwise, the “offset” slots come
first, followed by the regular slots.

(define-structure (foo (type vector) (initial-offset 3))
abc)
(make-foo 1 2 3) = #(O O O 123)

The essential differences between MIT/GNU Scheme’s define-structure and Common

Lisp’s defstruct are:

The default constructor procedure takes positional arguments, in the same order as
specified in the definition of the structure. A keyword constructor may be specified by
giving the option keyword-constructor.

BOA constructors are described using Scheme lambda lists. Since there is nothing
corresponding to &aux in Scheme lambda lists, this functionality is not implemented.

By default, no copier procedure is defined.

The side-effect procedure corresponding to the accessor foo is given the name set-
foo!.

Keywords are ordinary symbols — use foo instead of :foo.

The option values false, nil, true, and t are treated as if the appropriate boolean
constant had been specified instead.

The print-function option is named print-procedure. Its argument is a procedure
of two arguments (the unparser state and the structure instance) rather than three as
in Common Lisp.

By default, named structures are tagged with a unique object of some kind. In Common
Lisp, the structures are tagged with symbols. This depends on the Common Lisp
package system to help generate unique tags; MIT/GNU Scheme has no such way to
generate unique symbols.

The named option may optionally take an argument, which is normally the name of
a variable (any expression may be used, but it is evaluated whenever the tag name is
needed). If used, structure instances will be tagged with that variable’s value. The
variable must be defined when define-structure is evaluated.

The type option is restricted to the values vector and list.

The include option is not implemented.

2.11 Macros

(This section is largely taken from the Revised~4 Report on the Algorithmic Language
Scheme. The section on Syntactic Closures is derived from a document written by Chris
Hanson. The section on Explicit Renaming is derived from a document written by William
Clinger.)

Scheme programs can define and use new derived expression types, called macros.

Program-defined expression types have the syntax

(keyword datum ...)
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where keyword is an identifier that uniquely determines the expression type. This identifier
is called the syntactic keyword, or simply keyword, of the macro. The number of the datums,
and their syntax, depends on the expression type.

Each instance of a macro is called a use of the macro. The set of rules that specifies how
a use of a macro is transcribed into a more primitive expression is called the transformer
of the macro.

MIT/GNU Scheme also supports anonymous syntactic keywords. This means that it’s
not necessary to bind a macro transformer to a syntactic keyword before it is used. Instead,
any macro-transformer expression can appear as the first element of a form, and the form
will be expanded by the transformer.

The macro definition facility consists of these parts:

e A set of expressions used to establish that certain identifiers are macro keywords,
associate them with macro transformers, and control the scope within which a macro
is defined.

e A standard high-level pattern language for specifying macro transformers, introduced
by the syntax-rules special form.

e Two non-standard low-level languages for specifying macro transformers, syntactic clo-
sures and explicit renaming.

The syntactic keyword of a macro may shadow variable bindings, and local variable
bindings may shadow keyword bindings. All macros defined using the pattern language are
“hygienic” and “referentially transparent” and thus preserve Scheme’s lexical scoping:

e If a macro transformer inserts a binding for an identifier (variable or keyword), the
identifier will in effect be renamed throughout its scope to avoid conflicts with other
identifiers.

e If a macro transformer inserts a free reference to an identifier, the reference refers to
the binding that was visible where the transformer was specified, regardless of any local
bindings that may surround the use of the macro.

2.11.1 Binding Constructs for Syntactic Keywords

let-syntax, letrec-syntax, let*-syntax and define-syntax are analogous to let,
letrec, let* and define, but they bind syntactic keywords to macro transformers in-
stead of binding variables to locations that contain values.

Any argument named transformer-spec must be a macro-transformer expression, which
is one of the following;:

e A macro transformer defined by the pattern language and denoted by the syntactic
keyword syntax-rules.

e A macro transformer defined by one of the low-level mechanisms and denoted by one
of the syntactic keywords sc-macro-transformer, rsc-macro-transformer, or er-
macro-transformer.

e A syntactic keyword bound in the enclosing environment. This is used to bind another
name to an existing macro transformer.

let-syntax bindings expression expression . . . [special form)]
Bindings should have the form
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((keyword transformer-spec) ...)
Each keyword is an identifier, each transformer-spec is a a macro-transformer ex-
pression, and the body is a sequence of one or more expressions. It is an error for a
keyword to appear more than once in the list of keywords being bound.
The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the let-syntax expression with macros whose keywords are
the keywords, bound to the specified transformers. Each binding of a keyword has
the expressions as its region.
(let-syntax ((when (syntax-rules ()
((when test stmtl stmt2 ...)
(if test
(begin stmtl
stmt2 ...))))))
(let ((if #t))
(when if (set! if ’now))
if)) = now
(let ((x ’outer))
(let-syntax ((m (syntax-rules () ((m) x))))
(let ((x ’inner))
(m)))) = outer
letrec-syntax bindings expression expression . . . [special form]

The syntax of letrec-syntax is the same as for let-syntax.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the bindings as well as the expressions within its region, so the transformers
can transcribe expressions into uses of the macros introduced by the letrec-syntax
expression.
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(letrec-syntax
((my-or (syntax-rules ()
((my-or) #f)
((my-or e) e)
((my-or el e2 ...)
(let ((temp el))
(if temp
temp
(my-or €2 ...)))))))
(let ((x #f)
(y 7)
(temp 8)
(let odd?)
(if even?))
(my-or x
(let temp)
Gif y)
¥))) = 7

let*—syntax bindings expression expression . . . [special form)]

The syntax of let*-syntax is the same as for let-syntax.

The expressions are expanded in the syntactic environment obtained by extending the
syntactic environment of the letrec-syntax expression with macros whose keywords
are the keywords, bound to the specified transformers. Each binding of a keyword
has the subsequent bindings as well as the expressions within its region. Thus

(let*-syntax

((a (syntax-rules ...))
(b (syntax-rules ...)))

o)

is equivalent to
(let-syntax ((a (syntax-rules ...)))
(let-syntax ((b (syntax-rules ...)))
o))
define-syntax keyword transformer-spec [special form]

Keyword is an identifier, and transformer-spec is a macro transformer expression.
The syntactic environment is extended by binding the keyword to the specified trans-
former.

The region of the binding introduced by define-syntax is the entire block in which
it appears. However, the keyword may only be used after it has been defined.

MIT/GNU Scheme permits define-syntax to appear both at top level and within
lambda bodies. The Revised~4 Report permits only top-level uses of define-syntax.

When compiling a program, a top-level instance of define-syntax both defines the
syntactic keyword and generates code that will redefine the keyword when the program
is loaded. This means that the same syntax can be used for defining macros that will
be used during compilation and for defining macros to be used at run time.
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Although macros may expand into definitions and syntax definitions in any context
that permits them, it is an error for a definition or syntax definition to shadow a
syntactic keyword whose meaning is needed to determine whether some form in the
group of forms that contains the shadowing definition is in fact a definition, or, for
internal definitions, is needed to determine the boundary between the group and the
expressions that follow the group. For example, the following are errors:

(define define 3)
(begin (define begin list))

(let-syntax
((foo (syntax-rules ()
((foo (proc args ...) body ...)
(define proc
(lambda (args ...)
body ...))))))
(let ((x 3))
(foo (plus x y) (+ x y))
(define foo x)
(plus foo x)))

2.11.2 Pattern Language

MIT/GNU Scheme supports a high-level pattern language for specifying macro transform-
ers. This pattern language is defined by the Revised”4 Report and is portable to other
conforming Scheme implementations. To use the pattern language, specify a transformer-
spec as a syntax-rules form:

syntax-rules literals syntax-rule ... [special form]
Literals is a list of identifiers and each syntax-rule should be of the form

(pattern template)

The pattern in a syntax-rule is a list pattern that begins with the keyword for the
macro.

A pattern is either an identifier, a constant, or one of the following

(pattern ...)

(pattern pattern ... . pattern)

(pattern ... pattern ellipsis)
and a template is either an identifier, a constant, or one of the following

(element ...)

(element element ... . template)
where an element is a template optionally followed by an ellipsis and an ellipsis is
the identifier ‘...’ (which cannot be used as an identifier in either a template or a
pattern).

An instance of syntax-rules produces a new macro transformer by specifying a
sequence of hygienic rewrite rules. A use of a macro whose keyword is associated with
a transformer specified by syntax-rules is matched against the patterns contained
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in the syntax-rules, beginning with the leftmost syntax-rule. When a match is found,
the macro use is transcribed hygienically according to the template.

An identifier that appears in the pattern of a syntax-rule is a pattern-variable, unless
it is the keyword that begins the pattern, is listed in literals, or is the identifier ‘. ..".
Pattern variables match arbitrary input elements and are used to refer to elements
of the input in the template. It is an error for the same pattern variable to appear
more than once in a pattern.

The keyword at the beginning of the pattern in a syntax-rule is not involved in the
matching and is not considered a pattern variable or literal identifier.

Identifiers that appear in literals are interpreted as literal identifiers to be matched
against corresponding subforms of the input. A subform in the input matches a literal
identifier if and only if it is an identifier and either both its occurrence in the macro
expression and its occurrence in the macro definition have the same lexical binding,
or the two identifiers are equal and both have no lexical binding.

A subpattern followed by ‘. ..’ can match zero or more elements of the input. It is an
error for ‘...’ to appear in literals. Within a pattern the identifier ‘...’ must follow
the last element of a nonempty sequence of subpatterns.

More formally, an input form F' matches a pattern P if and only if:
e P is a non-literal identifier; or
e P is a literal identifier and F is an identifier with the same binding; or

e Pisalist (P_1 ... P_n) and F is a list of n forms that match P_1 through P_n,
respectively; or

e P is an improper list (P_1 P_2 ... P_n . P_n+1) and F is a list or improper
list of n or more forms that match P_1 through P_n, respectively, and whose nth
“cdr” matches P_n+1; or

e P is of the form (P_1 ... P_n P_n+1 ellipsis) where ellipsis is the identifier
‘...7 and F is a proper list of at least n forms, the first n of which match P_1
through P_n, respectively, and each remaining element of F' matches P_n+1; or

e P is a datum and F is equal to P in the sense of the equal? procedure.

It is an error to use a macro keyword, within the scope of its binding, in an expression
that does not match any of the patterns.

When a macro use is transcribed according to the template of the matching syntax
rule, pattern variables that occur in the template are replaced by the subforms they
match in the input. Pattern variables that occur in subpatterns followed by one
or more instances of the identifier ‘...’ are allowed only in subtemplates that are
followed by as many instances of ‘...’. They are replaced in the output by all of
the subforms they match in the input, distributed as indicated. It is an error if the
output cannot be built up as specified.

Identifiers that appear in the template but are not pattern variables or the identifier
‘... are inserted into the output as literal identifiers. If a literal identifier is inserted
as a free identifier then it refers to the binding of that identifier within whose scope
the instance of syntax-rules appears. If a literal identifier is inserted as a bound
identifier then it is in effect renamed to prevent inadvertent captures of free identifiers.
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(let ((=> #£))
(cond (#t => ’0k))) = ok

The macro transformer for cond recognizes => as a local variable, and hence an
expression, and not as the top-level identifier =>, which the macro transformer treats
as a syntactic keyword. Thus the example expands into

(let ((=> #£))
(if #t (begin => ’0k)))
instead of

(let ((=> #£))
(let ((temp #t))
(if temp
(’ok temp))))

which would result in an invalid procedure call.

2.11.3 Syntactic Closures

MIT/GNU Scheme’s syntax-transformation engine is an implementation of syntactic clo-
sures, a mechanism invented by Alan Bawden and Jonathan Rees. The main feature of the
syntactic-closures mechanism is its simplicity and its close relationship to the environment
models commonly used with Scheme. Using the mechanism to write macro transformers
is somewhat cumbersome and can be confusing for the newly initiated, but it is easily
mastered.

2.11.3.1 Syntax Terminology

This section defines the concepts and data types used by the syntactic closures facility.

e Forms are the syntactic entities out of which programs are recursively constructed. A
form is any expression, any definition, any syntactic keyword, or any syntactic closure.
The variable name that appears in a set! special form is also a form. Examples of
forms:

17

#t

car

(+ x 4)

(lambda (x) x)
(define pi 3.14159)
if

define

e An alias is an alternate name for a given symbol. It can appear anywhere in a form that
the symbol could be used, and when quoted it is replaced by the symbol; however, it
does not satisfy the predicate symbol?. Macro transformers rarely distinguish symbols
from aliases, referring to both as identifiers. Another name for an alias is synthetic
identifier; this document uses both names.

e A syntactic environment maps identifiers to their meanings. More precisely, it deter-
mines whether an identifier is a syntactic keyword or a variable. If it is a keyword,
the meaning is an interpretation for the form in which that keyword appears. If it
is a variable, the meaning identifies which binding of that variable is referenced. In
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short, syntactic environments contain all of the contextual information necessary for
interpreting the meaning of a particular form.

e A syntactic closure consists of a form, a syntactic environment, and a list of identifiers.
All identifiers in the form take their meaning from the syntactic environment, except
those in the given list. The identifiers in the list are to have their meanings determined
later.

A syntactic closure may be used in any context in which its form could have been used.
Since a syntactic closure is also a form, it may not be used in contexts where a form
would be illegal. For example, a form may not appear as a clause in the cond special
form.

A syntactic closure appearing in a quoted structure is replaced by its form.

2.11.3.2 Transformer Definition

This section describes the special forms for defining syntactic-closures macro transformers,
and the associated procedures for manipulating syntactic closures and syntactic environ-
ments.

sc-macro-transformer expression [special form]
The expression is expanded in the syntactic environment of the sc-macro-
transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This
macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the syntactic closures facility, a macro transformer is a procedure that takes two
arguments, a form and a syntactic environment, and returns a new form. The first
argument, the input form, is the form in which the macro keyword occurred. The
second argument, the usage environment, is the syntactic environment in which the
input form occurred. The result of the transformer, the output form, is automatically
closed in the transformer environment, which is the syntactic environment in which
the transformer expression occurred.

For example, here is a definition of a push macro using syntax-rules:

(define-syntax push
(syntax-rules ()
((push item list)
(set! list (cons item list)))))

Here is an equivalent definition using sc-macro-transformer:

(define-syntax push
(sc-macro-transformer
(lambda (exp env)
(let ((item (make-syntactic-closure env ’() (cadr exp)))
(list (make-syntactic-closure env ’() (caddr exp))))
‘(set! ,1list (comns ,item ,1list))))))
In this example, the identifiers set! and cons are closed in the transformer environ-
ment, and thus will not be affected by the meanings of those identifiers in the usage
environment env.
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Some macros may be non-hygienic by design. For example, the following defines a
loop macro that implicitly binds exit to an escape procedure. The binding of exit
is intended to capture free references to exit in the body of the loop, so exit must
be left free when the body is closed:

(define-syntax loop

(sc-macro-transformer
(lambda (exp env)

(let ((body (cdr exp)))
¢(call-with-current-continuation

(lambda (exit)

(let £ O
,0(map (lambda (exp)
(make-syntactic-closure env ’(exit)
exp))
body)
(£3)2)))))
rsc-macro-transformer expression [special form)]

This form is an alternative way to define a syntactic-closures macro transformer. Its
syntax and usage are identical to sc-macro-transformer, except that the roles of the
usage environment and transformer environment are reversed. (Hence RSC stands for
Reversed Syntactic Closures.) In other words, the procedure specified by expression
still accepts two arguments, but its second argument will be the transformer environ-
ment rather than the usage environment, and the returned expression is closed in the
usage environment rather than the transformer environment.

The advantage of this arrangement is that it allows a simpler definition style in some
situations. For example, here is the push macro from above, rewritten in this style:

(define-syntax push
(rsc-macro-transformer
(lambda (exp env)
“(, (make-syntactic-closure env ’() ’SET!)
, (caddr exp)
(, (make-syntactic-closure env ’() ’CONS)
, (cadr exp)
, (caddr exp))))))

In this style only the introduced keywords are closed, while everything else remains
open.

Note that rsc-macro-transformer and sc-macro-transformer are easily
interchangeable. Here is how to emulate rsc-macro-transformer using
sc-macro-transformer. (This technique can be used to effect the opposite
emulation as well.)
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(define-syntax push
(sc-macro-transformer
(lambda (exp usage-env)
(capture-syntactic-environment
(lambda (env)
(make-syntactic-closure usage-env ’ ()
¢ (, (make-syntactic-closure env ’() ’SET!)
, (caddr exp)
(, (make-syntactic-closure env ’() ’CONS)
, (cadr exp)

, (caddr exp)))))))))

To assign meanings to the identifiers in a form, use make-syntactic-closure to close
the form in a syntactic environment.

make-syntactic-closure environment free-names form [procedure]
Environment must be a syntactic environment, free-names must be a list of identi-
fiers, and form must be a form. make-syntactic-closure constructs and returns a
syntactic closure of form in environment, which can be used anywhere that form could
have been used. All the identifiers used in form, except those explicitly excepted by
free-names, obtain their meanings from environment.

Here is an example where free-names is something other than the empty list. It is
instructive to compare the use of free-names in this example with its use in the loop
example above: the examples are similar except for the source of the identifier being
left free.

(define-syntax letl
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(exp (cadddr exp)))
‘((lambda (,id)
, (make-syntactic-closure env (list id) exp))
, (make-syntactic-closure env ’() init))))))

let1 is a simplified version of let that only binds a single identifier, and whose body
consists of a single expression. When the body expression is syntactically closed in
its original syntactic environment, the identifier that is to be bound by let1 must be
left free, so that it can be properly captured by the lambda in the output form.

In most situations, the free-names argument to make-syntactic-closure is the empty
list. In those cases, the more succinct close-syntax can be used:

close-syntax form environment [procedure]
Environment must be a syntactic environment and form must be a form. Returns a
new syntactic closure of form in environment, with no free names. Entirely equivalent
to

(make-syntactic-closure environment ’() form)
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To obtain a syntactic environment other than the usage environment, use capture-
syntactic-environment.

capture-syntactic-environment procedure [procedure]
capture-syntactic-environment returns a form that will, when transformed, call
procedure on the current syntactic environment. Procedure should compute and
return a new form to be transformed, in that same syntactic environment, in place of
the form.

An example will make this clear. Suppose we wanted to define a simple loop-until
keyword equivalent to

(define-syntax loop-until
(syntax-rules ()
((loop-until id init test return step)
(letrec ((loop
(lambda (id)
(if test return (loop step)))))
(loop init)))))

The following attempt at defining loop-until has a subtle bug:

(define-syntax loop-until
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))
(init (caddr exp))
(test (cadddr exp))
(return (cadddr (cdr exp)))
(step (cadddr (cddr exp)))
(close
(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
(lambda (,id)
(if ,(close test (list id))
,(close return (list id))
(loop ,(close step (list id)))))))
(loop ,(close init >())))))))

This definition appears to take all of the proper precautions to prevent unintended
captures. It carefully closes the subexpressions in their original syntactic environment
and it leaves the id identifier free in the test, return, and step expressions, so that it
will be captured by the binding introduced by the lambda expression. Unfortunately
it uses the identifiers if and loop within that lambda expression, so if the user of
loop-until just happens to use, say, if for the identifier, it will be inadvertently
captured.

The syntactic environment that if and loop want to be exposed to is the one just
outside the lambda expression: before the user’s identifier is added to the syntactic
environment, but after the identifier loop has been added. capture-syntactic-
environment captures exactly that environment as follows:
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(define-syntax loop-until
(sc-macro-transformer
(lambda (exp env)
(let ((id (cadr exp))

(init (caddr exp))

(test (cadddr exp))

(return (cadddr (cdr exp)))

(step (cadddr (cddr exp)))

(close

(lambda (exp free)
(make-syntactic-closure env free exp))))
‘(letrec ((loop
, (capture-syntactic-environment
(lambda (env)
¢ (lambda (,id)
(, (make-syntactic-closure env ’() ‘if)

,(close test (1list id))
,(close return (list id))
(, (make-syntactic-closure env ’() ‘loop)
, (close step (list id)))))))))

(loop ,(close init >())))))))

In this case, having captured the desired syntactic environment, it is convenient to
construct syntactic closures of the identifiers if and the loop and use them in the
body of the lambda.

A common use of capture-syntactic-environment is to get the transformer envi-
ronment of a macro transformer:

(sc-macro-transformer

(lambda (exp env)
(capture-syntactic-environment
(lambda (transformer-env)

o))

2.11.3.3 Identifiers

This section describes the procedures that create and manipulate identifiers. The identifier
data type extends the syntactic closures facility to be compatible with the high-level syntax-
rules facility.

As discussed earlier, an identifier is either a symbol or an alias. An alias is implemented
as a syntactic closure whose form is an identifier:

(make-syntactic-closure env ’() ’a) = an alias

Aliases are implemented as syntactic closures because they behave just like syntactic closures
most of the time. The difference is that an alias may be bound to a new value (for example
by lambda or let-syntax); other syntactic closures may not be used this way. If an alias is
bound, then within the scope of that binding it is looked up in the syntactic environment
just like any other identifier.



46 MIT/GNU Scheme 7.7.90+

Aliases are used in the implementation of the high-level facility syntax-rules. A macro
transformer created by syntax-rules uses a template to generate its output form, substi-
tuting subforms of the input form into the template. In a syntactic closures implementation,
all of the symbols in the template are replaced by aliases closed in the transformer envi-
ronment, while the output form itself is closed in the usage environment. This guarantees
that the macro transformation is hygienic, without requiring the transformer to know the
syntactic roles of the substituted input subforms.

identifier? object [procedure]
Returns #t if object is an identifier, otherwise returns #f. Examples:
(identifier? ’a) = #t
(identifier? (make-syntactic-closure env ’() ’a))
= #t
(identifier? "a" = #f
(identifier? #\a) = #f
(identifier? 97) = #f
(identifier? #f) = #f
(identifier? ’(a)) = #f
(identifier? ’#(a)) = #f

The predicate eq? is used to determine if two identifers are “the same”. Thus eq? can
be used to compare identifiers exactly as it would be used to compare symbols. Often,
though, it is useful to know whether two identifiers “mean the same thing”. For example,
the cond macro uses the symbol else to identify the final clause in the conditional. A
macro transformer for cond cannot just look for the symbol else, because the cond form
might be the output of another macro transformer that replaced the symbol else with an
alias. Instead the transformer must look for an identifier that “means the same thing” in
the usage environment as the symbol else means in the transformer environment.

identifier=7 environmentl identifierl environment2 identifier2 [procedure]
Environment] and environment2 must be syntactic environments, and identifier] and
identifier2 must be identifiers. identifier=7 returns #t if the meaning of identifierl
in environmentl is the same as that of identifier2 in environment2, otherwise it
returns #f. Examples:

(let-syntax
((foo
(sc-macro-transformer
(lambda (form env)
(capture-syntactic-environment
(lambda (transformer-env)
(identifier=? transformer-env ’x env ’x)))))))
(list (foo)
(let ((x 3))
(f00))))
= (#t #f)
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(let-syntax ((bar foo))
(let-syntax
((foo

(sc-macro-transformer

(lambda (form env)
(capture-syntactic-environment

(lambda (transformer-env)
(identifier=7? transformer-env ’foo
env (cadr form))))))))
(1ist (foo foo)
(foo bar))))
= (#f #t)

Sometimes it is useful to be able to introduce a new identifier that is guaranteed to
be different from any existing identifier, similarly to the way that generate-uninterned-
symbol is used.

make-synthetic-identifier identifier [procedure]
Creates and returns and new synthetic identifier (alias) that is guaranteed to be
different from all existing identifiers. Identifier is any existing identifier, which is
used in deriving the name of the new identifier.

This is implemented by syntactically closing identifier in a special empty environment.

2.11.4 Explicit Renaming

Explicit renaming is an alternative facility for defining macro transformers. In the
MIT/GNU Scheme implementation, explicit-renaming transformers are implemented as an
abstraction layer on top of syntactic closures. An explicit-renaming macro transformer is
defined by an instance of the er-macro-transformer keyword:

er-macro-transformer expression [special form]
The expression is expanded in the syntactic environment of the er-macro-
transformer expression, and the expanded expression is evaluated in the
transformer environment to yield a macro transformer as described below. This
macro transformer is bound to a macro keyword by the special form in which the
transformer expression appears (for example, let-syntax).

In the explicit-renaming facility, a macro transformer is a procedure that takes three
arguments, a form, a renaming procedure, and a comparison predicate, and returns
a new form. The first argument, the input form, is the form in which the macro
keyword occurred.

The second argument to a transformation procedure is a renaming procedure that
takes the representation of an identifier as its argument and returns the representa-
tion of a fresh identifier that occurs nowhere else in the program. For example, the
transformation procedure for a simplified version of the let macro might be written
as
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(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))
(inits (map cadr (cadr exp)))
(body (cddr exp)))
‘((lambda ,vars ,@body)
,0inits)))
This would not be hygienic, however. A hygienic let macro must rename the identifier
lambda to protect it from being captured by a local binding. The renaming effectively
creates an fresh alias for lambda, one that cannot be captured by any subsequent
binding:
(lambda (exp rename compare)
(let ((vars (map car (cadr exp)))
(inits (map cadr (cadr exp)))
(body (cddr exp)))
“((,(rename ’lambda) ,vars ,@body)
,0inits)))

The expression returned by the transformation procedure will be expanded in the
syntactic environment obtained from the syntactic environment of the macro appli-
cation by binding any fresh identifiers generated by the renaming procedure to the
denotations of the original identifiers in the syntactic environment in which the macro
was defined. This means that a renamed identifier will denote the same thing as the
original identifier unless the transformation procedure that renamed the identifier
placed an occurrence of it in a binding position.

The renaming procedure acts as a mathematical function in the sense that the identi-
fiers obtained from any two calls with the same argument will be the same in the sense
of eqv?. It is an error if the renaming procedure is called after the transformation
procedure has returned.

The third argument to a transformation procedure is a comparison predicate that
takes the representations of two identifiers as its arguments and returns true if and
only if they denote the same thing in the syntactic environment that will be used to
expand the transformed macro application. For example, the transformation proce-
dure for a simplified version of the cond macro can be written as

(lambda (exp rename compare)
(let ((clauses (cdr exp)))
(if (null? clauses)
¢(, (rename ’quote) unspecified)
(let*x ((first (car clauses))
(rest (cdr clauses))
(test (car first)))
(cond ((and (identifier? test)
(compare test (rename ’else)))
‘(, (rename ’begin) ,Q@(cdr first)))
(else ‘(,(rename ’if)
,test
(, (rename ’begin) ,@(cdr first))

(cond ,Q@rest))))))))))
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In this example the identifier else is renamed before being passed to the comparison
predicate, so the comparison will be true if and only if the test expression is an
identifier that denotes the same thing in the syntactic environment of the expression
being transformed as else denotes in the syntactic environment in which the cond
macro was defined. If else were not renamed before being passed to the comparison
predicate, then it would match a local variable that happened to be named else, and
the macro would not be hygienic.

Some macros are non-hygienic by design. For example, the following defines a loop
macro that implicitly binds exit to an escape procedure. The binding of exit is
intended to capture free references to exit in the body of the loop, so exit is not
renamed.

(define-syntax loop
(er-macro-transformer
(lambda (x r c)
(let ((body (cdr x)))
‘(,(r ’call-with-current-continuation)
(,(r ’lambda) (exit)
(,(r ’let) ,(r ’£) O ,@body (,(r ’£)))))))))

Suppose a while macro is implemented using loop, with the intent that exit may
be used to escape from the while loop. The while macro cannot be written as

(define-syntax while
(syntax-rules ()
((while test body ...)
(loop (if (not test) (exit #f))
body ...))))

because the reference to exit that is inserted by the while macro is intended to be
captured by the binding of exit that will be inserted by the loop macro. In other
words, this while macro is not hygienic. Like loop, it must be written using the
er-macro-transformer syntax:

(define-syntax while
(er-macro-transformer
(lambda (x r c)
(let ((test (cadr x))
(body (cddr x)))
“(,(r ’loop)
(,(r ’if) (,(r ’not) ,test) (exit #f))
,@body)))))

2.12 SRFI syntax

Several special forms have been introduced to support some of the Scheme Requests for
Implementation (SRFI). Note that MIT/GNU Scheme has for some time supported SRFI 23
(error-reporting mechanism) and SRFI 30 (nested multi-line comments), since these SRFIs
reflect existing practice rather than introducing new functionality.


http://srfi.schemers.org/
http://srfi.schemers.org/
http://srfi.schemers.org/srfi-23/srfi-23.html
http://srfi.schemers.org/srfi-30/srfi-30.html
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2.12.1 cond-expand (SRFI 0)

SRFI 0 is a mechanism for portably determining the availability of SRFI features. The
cond-expand special form conditionally expands according to the features available.

cond-expand clause clause dots [special form]

Each clause has the form
(feature-requirement expression ...)
where feature-requirement can have one of the following forms:

feature-identifier

(and feature-requirement ...)
(or feature-requirement ...)
(not feature-requirement)
else

ote that at most one else clause may be present, and it must always be the las
Note that at most 1se cl v be present, and it must always be the last
clause.)

The cond-expand special form tests for the existence of features at macro-expansion
time. It either expands into the body of one of its clauses or signals an error during
syntactic processing. cond-expand expands into the body of the first clause whose
feature-requirement is currently satisfied (an else clause, if present, is selected if
none of the previous clauses is selected).

A feature-requirement has an obvious interpretation as a logical formula, where the
feature-identifier variables have meaning true if the feature corresponding to the
feature-identifier, as specified in the SRFI registry, is in effect at the location of
the cond-expand form, and false otherwise. A feature-requirement is satisfied if its
formula is true under this interpretation.

(cond-expand
((and srfi-1 srfi-10)
(write 1))
((or srfi-1 srfi-10)
(write 2))
(else))

(cond-expand
(command-line
(define (program-name) (car (argv)))))

The second example assumes that command-line is an alias for some feature which
gives access to command line arguments. Note that an error will be signaled at
macro-expansion time if this feature is not present.

Note that MIT/GNU Scheme allows cond-expand in any context where a special
form is allowed. This is an extension of the semantics defined by SRFI 0, which only
allows cond-expand at top level.


http://srfi.schemers.org/srfi-0/srfi-0.html
http://srfi.schemers.org/
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2.12.2 receive (SRFI 8)

SRFI 8 defines a convenient syntax to bind an identifier to each of the values of a multiple-
valued expression and then evaluate an expression in the scope of the bindings. As an
instance of this pattern, consider the following excerpt from a ‘quicksort’ procedure:

(call-with-values
(lambda O
(partition (precedes pivot) others))
(lambda (fore aft)
(append (gsort fore) (cons pivot (gsort aft)))))

Here ‘partition’ is a multiple-valued procedure that takes two arguments, a predicate
and a list, and returns two lists, one comprising the list elements that satisfy the predicate,
the other those that do not. The purpose of the expression shown is to partition the list
‘others’, sort each of the sublists, and recombine the results into a sorted list.

For our purposes, the important step is the binding of the identifiers ‘fore’ and ‘aft’ to
the values returned by ‘partition’. Expressing the construction and use of these bindings
with the call-by-values primitive is cumbersome: One must explicitly embed the expres-
sion that provides the values for the bindings in a parameterless procedure, and one must
explicitly embed the expression to be evaluated in the scope of those bindings in another
procedure, writing as its parameters the identifiers that are to be bound to the values
received.

These embeddings are boilerplate, exposing the underlying binding mechanism but not
revealing anything relevant to the particular program in which it occurs. So the use of a syn-
tactic abstraction that exposes only the interesting parts — the identifiers to be bound, the
multiple-valued expression that supplies the values, and the body of the receiving procedure
— makes the code more concise and more readable:

(receive (fore aft) (partition (precedes pivot) others)
(append (gsort fore) (comns pivot (gsort aft))))

The advantages are similar to those of a ‘let’ expression over a procedure call with a
‘lambda’ expression as its operator. In both cases, cleanly separating a “header” in which
the bindings are established from a “body” in which they are used makes it easier to follow
the code.

receive formals expression body [special form)]
Formals and body are defined as for ‘lambda’ (see Section 2.1 [Lambda Expressions],
page 15). Specifically, formals can have the following forms (the use of ‘#!optional’
and ‘#!rest’ is also allowed in formals but is omitted for brevity):

‘(ident1 ... identN)’
The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding identl, ..., identN to fresh locations. The expression

is evaluated, and its values are stored into those locations. (It is an error
if expression does not have exactly N values.)

‘ident’ The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding ident to a fresh location. The expression is evaluated,
its values are converted into a newly allocated list, and the list is stored
in the location bound to ident.
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‘(ident1 ... identN . identN+1)’
The environment in which the ‘receive’ expression is evaluated is ex-
tended by binding identl, ..., identN+1 to fresh locations. The expres-
sion is evaluated. Its first N values are stored into the locations bound
to identl ... identN. Any remaining values are converted into a newly
allocated list, which is stored into the location bound to identN+1. (It is
an error if expression does not have at least N values.)

In any case, the expressions in body are evaluated sequentially in the extended envi-
ronment. The results of the last expression in the body are the values of the ‘receive’
expression.

2.12.3 and-let* (SRFI 2)

SRFI 2 provides a form that combines ‘and’ and ‘let*’ for a logically short-circuiting se-
quential binding operator.

and-let* (clause ...) body [special form]

Runs through each of the clauses left-to-right, short-circuiting like ‘and’ in that the
first false clause will result in the whole ‘and-1et*’ form returning false. If a body is
supplied, and all of the clauses evaluate true, then the body is evaluated sequentially
as if in a ‘begin’ form, and the value of the ‘and-let*’ expression is the value of the
last body form, evaluated in a tail position with respect to the ‘and-let*’ expression.
If no body is supplied, the value of the last clause, also evaluated in a tail position
with respect to the ‘and-let*’ expression, is used instead.

Each clause should have one of the following forms:
‘identifier’
in which case identifier’s value is tested.

‘(expression)’
in which case the value of expression is tested.

‘(identifier expression)’
in which case expression is evaluated, and, if its value is not false, identifier
is bound to that value for the remainder of the clauses and the optional
body.

Example:

(and-let* ((list (compute-list))
((pair? 1list))
(item (car list))
((integer? item)))
(sqrt item))

2.12.4 define-record-type (SRFI 9)

The ‘define-record-type’ syntax described in SRFI 9 is a slight simplification of one
written for Scheme 48 by Jonathan Rees. Unlike many record-defining special forms, it does
not create any new identifiers. Instead, the names of the record type, predicate, constructor,
and so on are all listed explicitly in the source. This has the following advantages:
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e It can be defined using a simple macro in Scheme implementations that provide a
procedural interface for creating record types.

e It does not restrict users to a particular naming convention.

e Tools like grep and the GNU Emacs tag facility will see the defining occurance of each
identifier.

define-record-type type-name (constructor-name field-tag . . .) [special form]
predicate-name field-spec . . .
Type-name, contructor-name, field-tag, and predicate-name are identifiers. Field-
spec has one of these two forms:

(field-tag accessor-name)
(field-tag accessor-name modifier-name)

where field-tag, accessor-name, and modifier-name are each identifiers.

define-record-type is generative: each use creates a new record type that is distinct
from all existing types, including other record types and Scheme’s predefined types.
Record-type definitions may only occur at top-level (there are two possible semantics
for “internal” record-type definitions, generative and nongenerative, and no consensus
as to which is better).

An instance of define-record-type is equivalent to the following definitions:

e Type-name is bound to a representation of the record type itself. Operations
on record types, such as defining print methods, reflection, etc. are left to other

SRFIs.
e constructor-name is bound to a procedure that takes as many arguments as
there are field-tags in the (constructor-name ...) subform and returns a new

type-name record. Fields whose tags are listed with constructor-name have the
corresponding argument as their initial value. The initial values of all other fields
are unspecified.

e predicate-name is a predicate that returns #t when given a value returned by
constructor-name and #f for everything else.

e KEach accessor-name is a procedure that takes a record of type type-name and
returns the current value of the corresponding field. It is an error to pass an
accessor a value which is not a record of the appropriate type.

e FEach modifier-name is a procedure that takes a record of type type-name and
a value which becomes the new value of the corresponding field; an unspecified
value is returned. It is an error to pass a modifier a first argument which is not
a record of the appropriate type.

Assigning the value of any of these identifiers has no effect on the behavior of any of
their original values.

The following

(define-record-type :pare
(kons x y)
pare?
(x kar set-kar!)
(y kdr))
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defines ‘kons’ to be a constructor, ‘kar’ and ‘kdr’ to be accessors, ‘set-kar!’ to be a
modifier, and ‘pare?’ to be a predicate for objects of type ‘:pare’.

(pare? (kons 1 2)) = #t
(pare? (cons 1 2)) = #f
(kar (kons 1 2)) =1
(kdr (kons 1 2)) =

(let ((k (kons 1 2)))
(set-kar! k 3)
(kar k))

4
w
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3 Equivalence Predicates

A predicate is a procedure that always returns a boolean value (#t or #£). An equivalence
predicate is the computational analogue of a mathematical equivalence relation (it is sym-
metric, reflexive, and transitive). Of the equivalence predicates described in this section,

eq? is the finest or most discriminating, and equal? is the coarsest. eqv? is slightly less

discriminating than eq?.

eqv? objl obj2 [procedure]
The eqv? procedure defines a useful equivalence relation on objects. Briefly, it returns

#t if objl and obj2 should normally be regarded as the same object.

The
[}

eqv? procedure returns #t if:
objl and obj2 are both #t or both #f£.
objl and obj2 are both interned symbols and
(string=7 (symbol->string obj1)
(symbol->string obj2))
= #t
objl and obj2 are both numbers, are numerically equal according to the = pro-
cedure, and are either both exact or both inexact (see Chapter 4 [Numbers]
page 61).

9

obj1 and obj2 are both characters and are the same character according to the
char=7 procedure (see Chapter 5 [Characters|, page 79).

both objl and obj2 are the empty list.
objl and obj2 are procedures whose location tags are equal.
objl and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote the same locations in the store.
eqv? procedure returns #f if:
objl and obj2 are of different types.
one of objl and obj2 is #t but the other is #£.
objl and obj2 are symbols but
(string=7 (symbol->string objl1)
(symbol->string obj2))
= #f

one of objl and obj2 is an exact number but the other is an inexact number.
obj1 and obj2 are numbers for which the = procedure returns #f£.

obj1 and obj2 are characters for which the char=? procedure returns #f.
one of objl and obj2 is the empty list but the other is not.

objl and obj2 are procedures that would behave differently (return a different
value or have different side effects) for some arguments.

objl and obj2 are pairs, vectors, strings, bit strings, records, cells, or weak pairs
that denote distinct locations.

Some examples:
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(eqv? ’a ’a) = #t
(eqv? ’a ’b) = #f
(eqv? 2 2) = #t
(eqv? 70 7)) = #t
(eqv? 100000000 100000000) = #t
(eqv? (cons 1 2) (cons 1 2)) = #f
(eqv? (lambda () 1)
(lambda () 2)) = #f
(eqv? #f ’nil) = #f
(let ((p (lambda (x) x)))
(eqv? p p)) = #t

The following examples illustrate cases in which the above rules do not fully specify
the behavior of eqv?. All that can be said about such cases is that the value returned
by eqv? must be a boolean.

(equ? "™ ") = unspecified
(eqv? ’#0) #0)) = unspecified
(eqv? (lambda (x) x)

(lambda (x) x)) = unspecified
(eqv? (lambda (x) x)

(lambda (y) y)) = unspecified

The next set of examples shows the use of eqv? with procedures that have local state.
gen-counter must return a distinct procedure every time, since each procedure has
its own internal counter. gen-loser, however, returns equivalent procedures each
time, since the local state does not affect the value or side effects of the procedures.

(define gen-counter
(lambda (O
(let ((n 0))
(lambda () (set! m (+ n 1)) n))))
(let ((g (gen-counter)))

(eqv? g g)) = #t
(eqv? (gen-counter) (gen-counter))
= #f

(define gen-loser

(lambda ()

(let ((n 0))
(lambda () (set! n (+ n 1)) 27))))

(let ((g (gen-loser)))

(eqv? g g)) = #t
(eqv? (gen-loser) (gen-loser))

= unspecified
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(letrec ((f (lambda () (if (eqv? f g) ’both ’£)))
(g (lambda () (if (eqv? f g) ’both ’g)))
(eqv? f g))
= unspecified

(letrec ((f (lambda () (if (eqv? f g) ’f ’both)))
(g (lambda () (if (eqv? f g) ’g ’both)))
(eqv? f g))
= #f
Objects of distinct types must never be regarded as the same object.

Since it is an error to modify constant objects (those returned by literal expressions),
the implementation may share structure between constants where appropriate. Thus
the value of eqv? on constants is sometimes unspecified.

(let ((x ’(a)))

(eqv? x x)) = #t
(eqv? ’(a) ’(a)) = unspecified
(eqv? "a" "a") = unspecified
(eqv? ’(b) (cdr ’(a b))) = unspecified

Rationale: The above definition of eqv? allows implementations latitude in their
treatment of procedures and literals: implementations are free either to detect or to
fail to detect that two procedures or two literals are equivalent to each other, and
can decide whether or not to merge representations of equivalent objects by using the
same pointer or bit pattern to represent both.
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eq? objl obj2 [procedure]
eq? is similar to eqv? except that in some cases it is capable of discerning distinctions
finer than those detectable by eqv?.

eq? and eqv? are guaranteed to have the same behavior on symbols, booleans, the
empty list, pairs, records, and non-empty strings and vectors. eq?’s behavior on
numbers and characters is implementation-dependent, but it will always return either
true or false, and will return true only when eqv? would also return true. eq? may
also behave differently from eqv? on empty vectors and empty strings.

(eq? ’a ’a) = #t
(eq? ’(a) ’(a)) = unspecified
(eq? (list ’a) (1list ’a)) = #f
(eq? "a" "a") = unspecified
(eq? "™ "™M) = unspecified
(eq? 0O 70 = #t
(eq? 2 2) = unspecified
(eq? #\A #\A) = unspecified
(eq? car car) = #t
(let ((n (+ 2 3)))

(eq? n n)) = unspecified
(let ((x ’(a)))

(eq? x x)) = #t
(let ((x *#0))

(eq? x x)) = #t
(let ((p (lambda (x) x)))

(eq? p p)) = #t

Rationale: It will usually be possible to implement eq? much more efficiently than
eqv?, for example, as a simple pointer comparison instead of as some more compli-
cated operation. One reason is that it may not be possible to compute eqv? of two
numbers in constant time, whereas eq? implemented as pointer comparison will always
finish in constant time. eq? may be used like eqv? in applications using procedures
to implement objects with state since it obeys the same constraints as eqv?.
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equal? objl obj2 [procedure]
equal? recursively compares the contents of pairs, vectors, and strings, applying
eqv? on other objects such as numbers, symbols, and records. A rule of thumb is
that objects are generally equal? if they print the same. equal? may fail to terminate
if its arguments are circular data structures.
(equal? ’a ’a) = #t
(equal? ’(a) ’(a)) = #t
(equal? ’(a (b) c)
’(a (b) ©)) = #t
(equal? "abc" "abc") #t
(equal? 2 2) #t
(equal? (make-vector 5 ’a)
(make-vector 5 ’a)) = #t
(equal? (lambda (x) x)
(lambda (y) y)) = unspecified

4
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4 Numbers

(This section is largely taken from the Revised~4 Report on the Algorithmic Language
Scheme.)

Numerical computation has traditionally been neglected by the Lisp community. Until
Common Lisp there was no carefully thought out strategy for organizing numerical com-
putation, and with the exception of the MacLisp system little effort was made to execute
numerical code efficiently. This report recognizes the excellent work of the Common Lisp
committee and accepts many of their recommendations. In some ways this report simplifies
and generalizes their proposals in a manner consistent with the purposes of Scheme.

It is important to distinguish between the mathematical numbers, the Scheme numbers
that attempt to model them, the machine representations used to implement the Scheme
numbers, and notations used to write numbers. This report uses the types number, complex,
real, rational, and integer to refer to both mathematical numbers and Scheme numbers.
Machine representations such as fixed point and floating point are referred to by names
such as firnum and flonum.

4.1 Numerical types

Mathematically, numbers may be arranged into a tower of subtypes in which each level is
a subset of the level above it:

number
complex
real
rational
integer

For example, 3 is an integer. Therefore 3 is also a rational, a real, and a complex. The
same is true of the Scheme numbers that model 3. For Scheme numbers, these types are
defined by the predicates number?, complex?, real?, rational?, and integer?.

There is no simple relationship between a number’s type and its representation inside
a computer. Although most implementations of Scheme will offer at least two different
representations of 3, these different representations denote the same integer.

Scheme’s numerical operations treat numbers as abstract data, as independent of their
representation as possible. Although an implementation of Scheme may use fixnum, flonum,
and perhaps other representations for numbers, this should not be apparent to a casual
programmer writing simple programs.

It is necessary, however, to distinguish between numbers that are represented exactly
and those that may not be. For example, indexes into data structures must be known
exactly, as must some polynomial coefficients in a symbolic algebra system. On the other
hand, the results of measurements are inherently inexact, and irrational numbers may be
approximated by rational and therefore inexact approximations. In order to catch uses of
inexact numbers where exact numbers are required, Scheme explicitly distinguishes exact
from inexact numbers. This distinction is orthogonal to the dimension of type.
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4.2 Exactness

Scheme numbers are either exact or inexact. A number is exact if it was written as an
exact constant or was derived from exact numbers using only exact operations. A number
is inexact if it was written as an inexact constant, if it was derived using inexact ingredients,
or if it was derived using inexact operations. Thus inexactness is a contagious property of
a number.

If two implementations produce exact results for a computation that did not involve in-
exact intermediate results, the two ultimate results will be mathematically equivalent. This
is generally not true of computations involving inexact numbers since approximate methods
such as floating point arithmetic may be used, but it is the duty of each implementation to
make the result as close as practical to the mathematically ideal result.

Rational operations such as + should always produce exact results when given exact
arguments. If the operation is unable to produce an exact result, then it may either report
the violation of an implementation restriction or it may silently coerce its result to an
inexact value. See Section 4.3 [Implementation restrictions], page 62.

With the exception of inexact->exact, the operations described in this section must
generally return inexact results when given any inexact arguments. An operation may,
however, return an exact result if it can prove that the value of the result is unaffected by
the inexactness of its arguments. For example, multiplication of any number by an exact
zero may produce an exact zero result, even if the other argument is inexact.

4.3 Implementation restrictions

Implementations of Scheme are not required to implement the whole tower of subtypes
(see Section 4.1 [Numerical types|, page 61), but they must implement a coherent subset
consistent with both the purposes of the implementation and the spirit of the Scheme
language. For example, an implementation in which all numbers are real may still be quite
useful.!

Implementations may also support only a limited range of numbers of any type, subject
to the requirements of this section. The supported range for exact numbers of any type
may be different from the supported range for inexact numbers of that type. For example,
an implementation that uses flonums to represent all its inexact real numbers may support
a practically unbounded range of exact integers and rationals while limiting the range of
inexact reals (and therefore the range of inexact integers and rationals) to the dynamic range
of the flonum format. Furthermore the gaps between the representable inexact integers and
rationals are likely to be very large in such an implementation as the limits of this range
are approached.

An implementation of Scheme must support exact integers throughout the range of
numbers that may be used for indexes of lists, vectors, and strings or that may result from
computing the length of a list, vector, or string. The length, vector-length, and string-
length procedures must return an exact integer, and it is an error to use anything but an
exact integer as an index. Furthermore any integer constant within the index range, if

1 MIT/GNU Scheme implements the whole tower of numerical types. It has unlimited-precision exact
integers and exact rationals. Flonums are used to implement all inexact reals; on machines that support
IEEE floating-point arithmetic these are double-precision floating-point numbers.
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expressed by an exact integer syntax, will indeed be read as an exact integer, regardless of
any implementation restrictions that may apply outside this range. Finally, the procedures
listed below will always return an exact integer result provided all their arguments are exact
integers and the mathematically expected result is representable as an exact integer within
the implementation:

* ged modulo
imag-part numerator

- inexact—->exact quotient

abs lcm rationalize

angle magnitude real-part

ceiling make-polar remainder

denominator make-rectangular round

expt max truncate

floor min

Implementations are encouraged, but not required, to support exact integers and exact
rationals of practically unlimited size and precision, and to implement the above procedures
and the / procedure in such a way that they always return exact results when given exact
arguments. If one of these procedures is unable to deliver an exact result when given exact
arguments, then it may either report a violation of an implementation restriction or it may
silently coerce its result to an inexact number. Such a coercion may cause an error later.

An implementation may use floating point and other approximate representation strate-
gies for inexact numbers. This report recommends, but does not require, that the IEEE
32-bit and 64-bit floating point standards be followed by implementations that use flonum
representations, and that implementations using other representations should match or ex-
ceed the precision achievable using these floating point standards.

In particular, implementations that use flonum representations must follow these rules:
A flonum result must be represented with at least as much precision as is used to express any
of the inexact arguments to that operation. It is desirable (but not required) for potentially
inexact operations such as sqrt, when applied to exact arguments, to produce exact answers
whenever possible (for example the square root of an exact 4 ought to be an exact 2). If,
however, an exact number is operated upon so as to produce an inexact result (as by sqrt),
and if the result is represented as a flonum, then the most precise flonum format available
must be used; but if the result is represented in some other way then the representation
must have at least as much precision as the most precise flonum format available.

Although Scheme allows a variety of written notations for numbers, any particular im-
plementation may support only some of them.? For example, an implementation in which
all numbers are real need not support the rectangular and polar notations for complex num-
bers. If an implementation encounters an exact numerical constant that it cannot represent
as an exact number, then it may either report a violation of an implementation restriction
or it may silently represent the constant by an inexact number.

2 MIT/GNU Scheme implements all of the written notations for numbers.
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4.4 Syntax of numerical constants

A number may be written in binary, octal, decimal, or hexadecimal by the use of a radix
prefix. The radix prefixes are #b (binary), #o (octal), #d (decimal), and #x (hexadecimal).
With no radix prefix, a number is assumed to be expressed in decimal.

A numerical constant may be specified to be either exact or inexact by a prefix. The
prefixes are #e for exact, and #i for inexact. An exactness prefix may appear before or after
any radix prefix that is used. If the written representation of a number has no exactness
prefix, the constant may be either inexact or exact. It is inexact if it contains a decimal
point, an exponent, or a # character in the place of a digit, otherwise it is exact.

In systems with inexact numbers of varying precisions it may be useful to specify the
precision of a constant. For this purpose, numerical constants may be written with an
exponent marker that indicates the desired precision of the inexact representation. The
letters s, £, d, and 1 specify the use of short, single, double, and long precision, respectively.
(When fewer than four internal inexact representations exist, the four size specifications
are mapped onto those available. For example, an implementation with two internal repre-
sentations may map short and single together and long and double together.) In addition,
the exponent marker e specifies the default precision for the implementation. The default
precision has at least as much precision as double, but implementations may wish to allow
this default to be set by the user.

3.14159265358979F0
Round to single — 3.141593
0.6L0
Extend to long — .600000000000000

4.5 Numerical operations

See Section 1.1.3 [Entry Format], page 5, for a summary of the naming conventions used
to specify restrictions on the types of arguments to numerical routines. The examples
used in this section assume that any numerical constant written using an exact notation is
indeed represented as an exact number. Some examples also assume that certain numerical
constants written using an inexact notation can be represented without loss of accuracy;
the inexact constants were chosen so that this is likely to be true in implementations that
use flonums to represent inexact numbers.

number? object [procedure]

complex? object [procedure]

real? object [procedure]

rational? object [procedure]

integer? object [procedure]
These numerical type predicates can be applied to any kind of argument, including
non-numbers. They return #t if the object is of the named type, and otherwise they
return #f. In general, if a type predicate is true of a number then all higher type
predicates are also true of that number. Consequently, if a type predicate is false of
a number, then all lower type predicates are also false of that number.?

3 In MIT/GNU Scheme the rational? procedure is the same as real?, and the complex? procedure is
the same as number?.
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If z is an inexact complex number, then (real? z) is true if and only if (zero?
(imag-part z)) is true. If x is an inexact real number, then (integer? x) is true if
and only if (= x (round x)).

(complex? 3+41i) = #t
(complex? 3) = #t
(real? 3) = #t
(real? -2.5+0.01) = #t
(real? #elel0) = #t
(rational? 6/10) = #t
(rational? 6/3) = #t
(integer? 3+0i) = #t
(integer? 3.0) = #t
(integer? 8/4) = #t

Note: The behavior of these type predicates on inexact numbers is unreliable, since
any inaccuracy may affect the result.

exact? z [procedure]

inexact? z [procedure]
These numerical predicates provide tests for the exactness of a quantity. For any
Scheme number, precisely one of these predicates is true.

exact-integer? object [procedure]
exact-nonnegative-integer? object [procedure]
exact-rational? object [procedure]

These procedures test for some very common types of numbers. These tests could be
written in terms of simpler predicates, but are more efficient.

=z12223... [procedure]
< x1x2x3... [procedure]
> x1x2x3 ... [procedure]
<= x1x2x3 ... [procedure]
>= x1x2x3 ... [procedure]

These procedures return #t if their arguments are (respectively): equal, monotonically
increasing, monotonically decreasing, monotonically nondecreasing, or monotonically
nonincreasing.

These predicates are transitive. Note that the traditional implementations of these
predicates in Lisp-like languages are not transitive.

Note: While it is not an error to compare inexact numbers using these predicates,
the results may be unreliable because a small inaccuracy may affect the result; this
is especially true of = and zero?. When in doubt, consult a numerical analyst.

zero? z [procedure]
positive? x [procedure]
negative? x [procedure]
0odd? x [procedure]
even? x [procedure]

These numerical predicates test a number for a particular property, returning #t or
#f. See note above regarding inexact numbers.



66 MIT/GNU Scheme 7.7.90+

max xI x2 ... [procedure]
min xI x2 ... [procedure]
These procedures return the maximum or minimum of their arguments.
(max 3 4) = 4 ; exact
(max 3.9 4) = 4.0 ;inexact

Note: If any argument is inexact, then the result will also be inexact (unless the
procedure can prove that the inaccuracy is not large enough to affect the result, which
is possible only in unusual implementations). If min or max is used to compare numbers
of mixed exactness, and the numerical value of the result cannot be represented as an
inexact number without loss of accuracy, then the procedure may report a violation
of an implementation restriction.*

+z1 ... [procedure]
*x z1 ... [procedure]
These procedures return the sum or product of their arguments.

(+ 3 4) = 7

(+ 3) = 3

(+) = 0

(x 4) = 4

€)) = 1
-z1z2 ... [procedure]
/ z122 ... [procedure]

With two or more arguments, these procedures return the difference or quotient of
their arguments, associating to the left. With one argument, however, they return
the additive or multiplicative inverse of their argument.

(- 34 = -1

(- 345) = -6

(- 3) = -3

(/ 34 5) = 3/20

/ 3 = 1/3
1+ z [procedure]
1+ 4 [procedure]

(1+ z) is equivalent to (+ z 1); (-1+ z) is equivalent to (- z 1).

abs x [procedure]
abs returns the magnitude of its argument.
(abs -7) = 7
quotient nl n2 [procedure]
remainder nl n2 [procedure]
modulo nl n2 [procedure]

These procedures implement number-theoretic (integer) division: for positive integers
nl and n2, if n3 and n4 are integers such that

Ny = NNz + Ny

4 MIT/GNU Scheme signals an error of type condition-type:bad-range-argument in this case.
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0 <ny <ng
then
(quotient n1 n2) = 13
(remainder nl1 n2) = n4
(modulo n1 n2) = n4
For integers nl1 and n2 with n2 not equal to 0,

(= n1
(+ (* n2 (quotient nl1 n2))
(remainder nl1 n2)))
= #t
provided all numbers involved in that computation are exact.

The value returned by quotient always has the sign of the product of its arguments.

remainder and modulo differ on negative arguments — the remainder always has
the sign of the dividend, the modulo always has the sign of the divisor:

(modulo 13 4) = 1

(remainder 13 4) = 1

(modulo -13 4) = 3

(remainder -13 4) = -1

(modulo 13 -4) = -3

(remainder 13 -4) = 1

(modulo -13 -4) = -1

(remainder -13 -4) = -1

(remainder -13 -4.0) = -1.0 ;inexact

Note that quotient is the same as integer-truncate.

integer-floor nl n2 [procedure]
integer-ceiling nl n2 [procedure]
integer-truncate nl n2 [procedure]
integer-round nl n2 [procedure]

These procedures combine integer division with rounding. For example, the following
are equivalent:

(integer-floor n1 n2)
(floor (/ n1 n2))

However, the former is faster and does not produce an intermediate result.

Note that integer-truncate is the same as quotient.

integer-divide nl n2 [procedure]
integer-divide-quotient qr [procedure]
integer-divide-remainder qr [procedure]

integer-divide is equivalent to performing both quotient and remainder at
once. The result of integer-divide is an object with two components; the
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procedures integer-divide-quotient and integer-divide-remainder select
those components. These procedures are useful when both the quotient and
remainder are needed; often computing both of these numbers simultaneously is
much faster than computing them separately.

For example, the following are equivalent:

(lambda (n 4d)
(cons (quotient n d)
(remainder n d)))

(lambda (n d)
(let ((qr (integer-divide n d)))
(cons (integer-divide-quotient qr)
(integer-divide-remainder qr))))

gcd nl ... [procedure]

lcm nl ... [procedure]
These procedures return the greatest common divisor or least common multiple of
their arguments. The result is always non-negative.

(gcd 32 -36) = 4

(gecd) = 0

(1cm 32 -36) = 288

(1cm 32.0 -36) = 288.0 ;inexact

(1cm) = 1
numerator g [procedure]
denominator q [procedure]

These procedures return the numerator or denominator of their argument; the result
is computed as if the argument was represented as a fraction in lowest terms. The
denominator is always positive. The denominator of 0 is defined to be 1.

(numerator (/ 6 4)) = 3
(denominator (/ 6 4)) = 2
(denominator (exact->inexact (/ 6 4))) = 2.0

floor x [procedure]
ceiling x [procedure]
truncate x [procedure]
round x [procedure]

These procedures return integers. floor returns the largest integer not larger than
x. ceiling returns the smallest integer not smaller than x. truncate returns the
integer closest to x whose absolute value is not larger than the absolute value of x.
round returns the closest integer to x, rounding to even when x is halfway between
two integers.

Rationale: round rounds to even for consistency with the rounding modes required
by the IEEE floating point standard.
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Note: If the argument to one of these procedures is inexact, then the result will also
be inexact. If an exact value is needed, the result should be passed to the inexact-
>exact procedure (or use one of the procedures below).

(floor -4.3) -5.0
(ceiling -4.3) -4.0
(truncate -4.3)
(round -4.3)

R A
A
o

(floor 3.5)
(ceiling 3.5)
(truncate 3.5)
(round 3.5)

R A

; inexact

(round 7/2)
(round 7)

4 ; exact

44

floor->exact x [procedure

ceiling->exact x [procedure

truncate->exact x [procedure

round->exact x [procedure
These procedures are similar to the preceding procedures except that they always
return an exact result. For example, the following are equivalent

[l AL AL AL

(floor->exact x)
(inexact->exact (floor x))

except that the former is faster and has fewer range restrictions.

rationalize xy [procedure]

rationalize->exact xy [procedure]
rationalize returns the simplest rational number differing from x by no more than
v. A rational number r1 is simpler than another rational number r2 if r1=p1/q1 and
r2=p2/q2 (both in lowest terms) and |p1|<=|p2| and |q1l<=[g2|. Thus 3/5 is
simpler than 4/7. Although not all rationals are comparable in this ordering (consider
2/7 and 3/5) any interval contains a rational number that is simpler than every other
rational number in that interval (the simpler 2/5 lies between 2/7 and 3/5). Note
that 0=0/1 is the simplest rational of all.

(rationalize (inexact->exact .3) 1/10) = 1/3 ; exact
(rationalize .3 1/10) = #i1/3 ; inexact
rationalize->exact is similar to rationalize except that it always returns an exact
result.
simplest-rational xy [procedure]
simplest-exact-rational xy [procedure]

simplest-rational returns the simplest rational number between x and y inclusive;
simplest-exact-rational is similar except that it always returns an exact result.

These procedures implement the same functionality as rationalize and

rationalize->exact, except that they specify the input range by its endpoints;
rationalize specifies the range by its center point and its (half-) width.
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exp z [procedure]
log z [procedure]
sin z [procedure]
cos z [procedure]
tan z [procedure]
asin z [procedure]
acos z [procedure]
atan z [procedure]
atan y x [procedure]
These procedures compute the usual transcendental functions. log computes the
natural logarithm of z (not the base ten logarithm). asin, acos, and atan compute
arcsine, arccosine, and arctangent, respectively. The two-argument variant of atan
computes (angle (make-rectangular x y)) (see below).
In general, the mathematical functions log, arcsine, arccosine, and arctangent are
multiply defined. For nonzero real x, the value of log x is defined to be the one
whose imaginary part lies in the range minus pi (exclusive) to pi (inclusive). log 0 is
undefined. The value of log z when z is complex is defined according to the formula
log z = log magnitude(z) + iangle(z)
With log defined this way, the values of arcsine, arccosine, and arctangent are accord-
ing to the following formulae:
sin™' z = —ilog(iz + V1 — 22)
cos tz=m/2—sin""z
tan~" z = (log(1 + iz) — log(1 —iz))/(2i)
The above specification follows Common Lisp: the Language, which in turn cites
Principal Values and Branch Cuts in Complex APL; refer to these sources for more
detailed discussion of branch cuts, boundary conditions, and implementation of these
functions. When it is possible these procedures produce a real result from a real
argument.
sqrt z [procedure]
Returns the principal square root of z. The result will have either positive real part,
or zero real part and non-negative imaginary part.
expt zl z2 [procedure]

make-rectangular xI x2 [ ]
make-polar x3 x4 [procedure]
real-part z [ ]
imag-part z [ ]

Returns z1 raised to the power z2:
2122 — €Z2 log z1

0% is defined to be equal to 1.

procedure

procedure
procedure
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magnitude z [procedure]
angle z [procedure]
conjugate z [procedure]

Suppose x1, x2, x3, and x4 are real numbers and z is a complex number such that

2=y 4 2yi = w5 - €74

Then make-rectangular and make-polar return z, real-part returns xI1, imag-
part returns x2, magnitude returns x3, and angle returns x4. In the case of angle,
whose value is not uniquely determined by the preceding rule, the value returned will
be the one in the range minus pi (exclusive) to pi (inclusive).

conjugate returns the complex conjugate of z.

exact->inexact z [procedure]

inexact->exact z [procedure]
exact->inexact returns an inexact representation of z. The value returned is the
inexact number that is numerically closest to the argument. If an exact argument
has no reasonably close inexact equivalent, then a violation of an implementation
restriction may be reported; MIT/GNU Scheme signals an error of type condition-
type:bad-range-argument in this case.

inexact->exact returns an exact representation of z. The value returned is the exact
number that is numerically closest to the argument. If an inexact argument has no
reasonably close exact equivalent, then a violation of an implementation restriction
may be reported; in MIT/GNU Scheme this case does not occur because all inexact
numbers are representable as exact numbers.

These procedures implement the natural one-to-one correspondence between exact
and inexact integers throughout an implementation-dependent range. See Section 4.3
[Implementation restrictions|, page 62.

4.6 Numerical input and output

number->string number [radix] [procedure]
Radix must be an exact integer, either 2, 8, 10, or 16. If omitted, radix defaults to
10. The procedure number->string takes a number and a radix and returns as a
string an external representation of the given number in the given radix such that

(let ((number number)
(radix radix))
(eqv? number
(string->number (number->string number radix)
radix)))

is true. It is an error if no possible result makes this expression true.

If number is inexact, the radix is 10, and the above expression can be satisfied by
a result that contains a decimal point, then the result contains a decimal point and
is expressed using the minimum number of digits (exclusive of exponent and trailing
zeroes) needed to make the above expression true; otherwise the format of the result
is unspecified.
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The result returned by number->string never contains an explicit radix prefix.

Note: The error case can occur only when number is not a complex number or is a
complex number with an non-rational real or imaginary part.

Rationale: If number is an inexact number represented using flonums, and the radix
is 10, then the above expression is normally satisfied by a result containing a decimal
point. The unspecified case allows for infinities, NaNs, and non-flonum representa-
tions.

flonum-parser-fast? [variable]

This variable controls the behavior of string->number when parsing inexact numbers.
Specifically, it allows the user to trade off accuracy against speed.

When set to its default value, #£, the parser provides maximal accuracy, as required
by the Scheme standard. If set to #t, the parser uses faster algorithms that will
sometimes introduce small errors in the result. The errors affect a few of the least-
significant bits of the result, and consequently can be tolerated by many applications.

flonum-unparser-cutoff [variable]

This variable controls the action of number->string when number is a flonum (and
consequently controls all printing of flonums). The value of this variable is normally
a list of three items:

rounding-type
One of the following symbols: normal, relative, or absolute. The sym-
bol normal means that the number should be printed with full precision.
The symbol relative means that the number should be rounded to a
specific number of digits. The symbol absolute means that the number
should be rounded so that there are a specific number of digits to the
right of the decimal point.

precision  An exact integer. If rounding-type is normal, precision is ignored. If
rounding-type is relative, precision must be positive, and it specifies
the number of digits to which the printed representation will be rounded.
If rounding-type is absolute, the printed representation will be rounded
precision digits to the right of the decimal point; if precision is negative,
the representation is rounded (- precision) digits to the left of the
decimal point.

format-type

One of the symbols: normal, scientific, or engineering. This speci-
fies the format in which the number will be printed.

scientific specifies that the number will be printed using scientific no-
tation: x.xxxeyyy. In other words, the number is printed as a mantissa
between zero inclusive and ten exclusive, and an exponent. engineering
is like scientific, except that the exponent is always a power of three,
and the mantissa is constrained to be between zero inclusive and 1000
exclusive. If normal is specified, the number will be printed in positional
notation if it is “small enough”, otherwise it is printed in scientific nota-
tion. A number is “small enough” when the number of digits that would
be printed using positional notation does not exceed the number of digits



Chapter 4: Numbers

Some

73

of precision in the underlying floating-point number representation; IEEE

double-precision floating-point numbers have 17 digits of precision.

This three-element list may be abbreviated in two ways. First, the symbol normal
may be used, which is equivalent to the list (normal O normal). Second, the third
element of the list, format-type, may be omitted, in which case it defaults to normal.

The default value for flonum-unparser-cutoff is normal. If it is bound to a value
different from those described here, number->string issues a warning and acts as

though the value had been normal.

examples of flonum-unparser-cutoff:

(number->string (* 4 (atan 1 1)))
= "3.141592653589793"
(fluid-let ((flonum-unparser-cutoff ’(relative 5)))
(number->string (* 4 (atan 1 1))))
= "3.1416"
(fluid-let ((flonum-unparser-cutoff ’(relative 5)))
(number->string (* 4000 (atan 1 1))))
= "3141.6"
(fluid-let ((flonum-unparser-cutoff ’(relative 5 scientific)))
(number->string (* 4000 (atan 1 1))))
= "3.1416e3"
(fluid-let ((flonum-unparser-cutoff ’(relative 5 scientific)))
(number->string (* 40000 (atan 1 1))))
= "3.1416e4"
(fluid-let ((flonum-unparser-cutoff ’(relative 5 engineering)))
(number->string (* 40000 (atan 1 1))))
= "31.416e3"
(fluid-let ((flonum-unparser-cutoff ’(absolute 5)))
(number->string (* 4 (atan 1 1))))
= "3.14159"
(fluid-let ((flonum-unparser-cutoff ’(absolute 5)))
(number->string (* 4000 (atan 1 1))))
= "3141.59265"
(fluid-let ((flonum-unparser-cutoff ’(absolute -4)))
(number->string (* 4el0 (atan 1 1))))
= "31415930000."
(fluid-let ((flonum-unparser-cutoff ’(absolute -4 scientific)))
(number->string (* 4el0 (atan 1 1))))
= "3.141593e10"
(fluid-let ((flonum-unparser-cutoff ’(absolute -4 engineering)))
(number->string (* 4e10 (atan 1 1))))
= "31.41593e9"
(fluid-let ((flonum-unparser-cutoff ’(absolute -5)))
(number->string (* 4e10 (atan 1 1))))
= "31415900000."
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string->number string [radix] [procedure]
Returns a number of the maximally precise representation expressed by the given
string. Radix must be an exact integer, either 2, 8 10, or 16. If supplied, radix
is a default radix that may be overridden by an explicit radix prefix in string (e.g.
"#0177"). If radix is not supplied, then the default radix is 10. If string is not a
syntactically valid notation for a number, then string->number returns #f.

(string->number "100") = 100
(string->number "100" 16) = 256
(string->number "1e2") = 100.0
(string->number "15##") = 1500.0

Note that a numeric representation using a decimal point or an exponent marker is
not recognized unless radix is 10.

4.7 Fixnum and Flonum Operations

This section describes numerical operations that are restricted forms of the operations
described above. These operations are useful because they compile very efficiently. However,
care should be exercised: if used improperly, these operations can return incorrect answers,
or even malformed objects that confuse the garbage collector.

4.7.1 Fixnum Operations

A fixnum is an exact integer that is small enough to fit in a machine word. In MIT/GNU
Scheme, fixnums are typically 24 or 26 bits, depending on the machine; it is reasonable to
assume that fixnums are at least 24 bits. Fixnums are signed; they are encoded using 2’s
complement.

All exact integers that are small enough to be encoded as fixnums are always encoded as
fixnums — in other words, any exact integer that is not a fixnum is too big to be encoded
as such. For this reason, small constants such as 0 or 1 are guaranteed to be fixnums.

fix:fixnum? object [procedure]
Returns #t if object is a fixnum; otherwise returns #£.

Here is an expression that determines the largest fixnum:

(let loop ((n 1))
(if (fix:fixnum? n)
(loop (* n 2))
(- n 1))

A similar expression determines the smallest fixnum.

fix:= fixnum fixnum [procedure]
fix:< fixnum fixnum [procedure]
fix:> fixnum fixnum [procedure]
fix:<= fixnum fixnum [procedure]
fix:>= fixnum fixnum [procedure]

These are the standard order and equality predicates on fixnums. When compiled,
they do not check the types of their arguments.
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fix:zero? fixnum [procedure]
fix:positive? fixnum [procedure]
fix:negative? fixnum [procedure]

These procedures compare their argument to zero. When compiled, they do not
check the type of their argument. The code produced by the following expressions is
identical:

(fix:zero? fixnum)

(fix:= fixnum O)
Similarly, fix:positive? and fix:negative? produce code identical to equivalent
expressions using fix:> and fix:<.

fix:+ fixnum fixnum procedure
fix:- fixnum fixnum procedure
fix:* fixnum fixnum procedure

[

[

[
fix:quotient fixnum fixnum [procedure

[

[

[

fix:remainder fixnum fixnum procedure
fix:gcd fixnum fixnum procedure
fix:1+ fixnum procedure

]
]
|
]
]
]
]
]

fix:-1+ fixnum [procedure
These procedures are the standard arithmetic operations on fixnums. When compiled,
they do not check the types of their arguments. Furthermore, they do not check to
see if the result can be encoded as a fixnum. If the result is too large to be encoded
as a fixnum, a malformed object is returned, with potentially disastrous effect on the
garbage collector.

fix:divide fixnum fixnum [procedure]
This procedure is like integer-divide, except that its arguments and its results must
be fixnums. It should be used in conjunction with integer-divide-quotient and
integer-divide-remainder.

The following are bitwise-logical operations on fixnums.

fix:not fixnum [procedure]
This returns the bitwise-logical inverse of its argument. When compiled, it does not
check the type of its argument.

(fix:not 0) = -1
(fix:not -1) = 0
(fix:not 1) = -2
(fix:not -34) = 33
fix:and fixnum fixnum [procedure]

This returns the bitwise-logical “and” of its arguments. When compiled, it does not
check the types of its arguments.

(fix:and #x43 #x0f) = 3
(fix:and #x43 #xf0) = #x40
fix:andc fixnum fixnum [procedure]

Returns the bitwise-logical “and” of the first argument with the bitwise-logical inverse
of the second argument. When compiled, it does not check the types of its arguments.
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(fix:andc #x43 #x0f) = #x40
(fix:andc #x43 #xf0) = 3
fix:or fixnum fixnum [procedure]

This returns the bitwise-logical “inclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:or #x40 3) = #x43
(fix:or #x41 3) = #x43
fix:xor fixnum fixnum [procedure]

This returns the bitwise-logical “exclusive or” of its arguments. When compiled, it
does not check the types of its arguments.

(fix:xor #x40 3) = #x43
(fix:xor #x41 3) = #x42
fix:1sh fixnuml fixnum?2 [procedure]

This procedure returns the result of logically shifting fixnuml by fixnum2 bits. If
fixnum?2 is positive, fixnuml is shifted left; if negative, it is shifted right. When
compiled, it does not check the types of its arguments, nor the validity of its result.

(fix:1sh 1 10) = #x400
(fix:1sh #x432 -10) = 1
(fix:1sh -1 3) = -8
(fix:1sh -128 -4) = #x3FFFF8

4.7.2 Flonum Operations

A flonum is an inexact real number that is implemented as a floating-point number. In
MIT/GNU Scheme, all inexact real numbers are flonums. For this reason, constants such
as 0. and 2.3 are guaranteed to be flonums.

flo:flonum? object [procedure]
Returns #t if object is a flonum; otherwise returns #f£.

flo:= flonuml flonum?2 [procedure]
flo:< flonuml flonum2 [procedure]
flo:> flonuml flonum2 [procedure]

These procedures are the standard order and equality predicates on flonums. When
compiled, they do not check the types of their arguments.

flo:zero? flonum [procedure]
flo:positive? flonum [procedure]
flo:negative? flonum [procedure]

Each of these procedures compares its argument to zero. When compiled, they do
not check the type of their argument.

flo:+ flonuml flonum?2 [procedure]
flo:- flonuml flonum?2 [procedure]
flo:* flonuml flonum2 [procedure]
flo:/ flonuml flonum?2 [procedure]

These procedures are the standard arithmetic operations on flonums. When compiled,
they do not check the types of their arguments.
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flo:finite? flonum [procedure]
The IEEE floating-point number specification supports three special “numbers”: pos-
itive infinity (+inf), negative infinity (-inf), and not-a-number (NaN). This predicate
returns #f if flonum is one of these objects, and #t if it is any other floating-point
number.

flo:negate flonum [procedure]
This procedure returns the negation of its argument. When compiled, it does not
check the type of its argument. Equivalent to (flo:- 0. flonum).

flo:abs flonum procedure
flo:exp flonum procedure
flo:log flonum procedure
flo:sin flonum procedure
flo:cos flonum procedure
flo:tan flonum procedure
flo:asin flonum procedure
flo:acos flonum procedure

[
[
[
[
[
[
|
flo:atan flonum [procedure
[
[
[
[
[
[
[
[
[

flo:sqrt flonum

flo:expt flonuml flonum?2 procedure
flo:floor flonum procedure
flo:ceiling flonum procedure
flo:truncate flonum procedure
flo:round flonum procedure
flo:floor->exact flonum procedure
flo:ceiling—>exact flonum procedure
flo:truncate->exact flonum procedure

flo:round->exact flonum [procedure
These procedures are flonum versions of the corresponding procedures. When com-
piled, they do not check the types of their arguments.

flo:atan2 flonuml flonum?2 [procedure]
This is the flonum version of atan with two arguments. When compiled, it does not
check the types of its arguments.

4.8 Random Numbers

MIT/GNU Scheme provides a facility for generating pseudo-random numbers. The current
implementation is a “subtract-with-carry” random-number generator, based on the algo-
rithm from A New Class of Random Number Generators, George Marsaglia and Arif Zaman,
The Annals of Applied Probability, Vol. 1, No. 3, 1991. At the time it was implemented,
this was a good algorithm for general purposes, but the state of the art in random-number
generation is constantly changing. If necessary, the implementation will be updated to use
a new algorithm while retaining the same interface.

The interface described here is very similar to that of Common Lisp.
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random modulus [state] [procedure]
Modulus must be a positive real number. random returns a pseudo-random number
between zero (inclusive) and modulus (exclusive). The exactness of the returned
number is the same as the exactness of modulus. Additionally, if modulus is an exact
integer, the returned number will be also. Usually, modulus is either an exact integer
or an inexact real; the current implementation has been tuned to make these two
cases fast.

If state is given and not #f, it must be a random-state object; otherwise, it defaults
to the value of the variable *random-state*. This object is used to maintain the
state of the pseudo-random-number generator and is altered as a side effect of the
random procedure.

(random 1.0) = .32744744667719056

(random 1.0) = .01668326768172354

(random 10) = 3

(random 10) = 8

(random 100) = 38

(random 100) = 63

(random 100/3) = 130501475769920525/6755399441055744
(random 100/3) = 170571694016427575/13510798882111488

flo:random-unit state [procedure]
State must be a random-state object. flo:random-unit returns a pseudo-random
number between zero inclusive and one exclusive; the returned number is always
a flonum and therefore an inexact real number. flo:random-unit is equivalent to
random with a modulus of 1.0, except that it is faster.

The next three definitions concern random-state objects. In addition to these definitions,
it is important to know that random-state objects are specifically designed so that they
can be saved to disk using the fasdump procedure, and later restored using the fasload
procedure. This allows a particular random-state object to be saved in order to replay a
particular pseudo-random sequence.

*random-statex [variable]
This variable holds a data structure, a random-state object, that encodes the internal
state of the random-number generator that random uses by default. A call to random
will perform a side effect on this data structure. This variable may be changed, using
set! or fluid-let, to hold a new random-state object.

make-random-state [state] [procedure]
This procedure returns a new random-state object, suitable for use as the value of the
variable *random-state*, or as the state argument to random. If state is not given
or #f, make-random-state returns a copy of the current random-number state object
(the value of the variable *random-statex). If state is a random-state object, a copy
of that object is returned. If state is #t, then a new random-state object is returned
that has been “randomly” initialized by some means (such as by a time-of-day clock).

random-state? object [procedure]
Returns #t if object is a random-state object, otherwise returns #f.
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5 Characters

Characters are objects that represent printed characters, such as letters and digits.

5.1 External Representation of Characters

Characters are written using the notation #\character or #\character-name. For exam-
ple:

#\a ; lowercase letter

#\A ; uppercase letter

#\ ( : left parenthesis
#\space ; the space character
#\newline : the newline character

Case is significant in #\character, but not in #\character-name. If character in #\char-
acter is a letter, character must be followed by a delimiter character such as a space or
parenthesis. Characters written in the #\ notation are self-evaluating; you don’t need to
quote them.

In addition to the standard character syntax, MIT Scheme also supports a general syntax
that denotes any Unicode character by its scalar value. This notation is #\U+scalar-value,
where scalar-value is a sequence of hexadecimal digits for a valid scalar value. So the above
examples could also be written like this:

#\U+61 ; lowercase letter
#\U+41 ; uppercase letter
#\U+28 ; left parenthesis
#\U+20 ; the space character
#\U+0A ; the newline character

A character name may include one or more bucky bit prefixes to indicate that the
character includes one or more of the keyboard shift keys Control, Meta, Super, or Hyper
(note that the Control bucky bit prefix is not the same as the ASCII control key). The
bucky bit prefixes and their meanings are as follows (case is not significant):

Key Bucky bit prefix Bucky bit
Meta M- or Meta- 1
Control C- or Control- 2
Super S—- or Super- 4
Hyper H- or Hyper- 8

For example,

#\c-a ; Control-a
#\meta-b ; Meta-b
#\c-s-m-h-a ; Control-Meta-Super-Hyper-A

The following character-names are supported, shown here with their ASCII equivalents:
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Character Name ASCII Name
altmode ESC
backnext Us
backspace BS
call SUB
linefeed LF
page FF
return CR
rubout DEL
space

tab HT

In addition, #\newline is the same as #\linefeed (but this may change in the future, so
you should not depend on it). All of the standard ASCII names for non-printing characters
are supported:

NUL SOH STX ETX EOT ENQ ACK BEL
BS HT LF VT FF CR S0 SI
DLE DC1 DC2 DC3 DC4 NAK SYN ETB
CAN EM SUB ESC FS GS RS Us
DEL
char->name char [slashify?] [procedure]

Returns a string corresponding to the printed representation of char. This is the
character or character-name component of the external representation, combined with
the appropriate bucky bit prefixes.

(char->name #\a) = "a"
(char->name #\space) = "Space"
(char->name #\c-a) = "C-a"
(char->name #\control-a) = "C-a"

Slashify?, if specified and true, says to insert the necessary backslash characters in
the result so that read will parse it correctly. In other words, the following generates
the external representation of char:

(string-append "#\\" (char->name char #t))
If slashify? is not specified, it defaults to #f.

name->char string [procedure]
Converts a string that names a character into the character specified. If string does
not name any character, name->char signals an error.

(name->char "a" = #\a
(name->char "space") = #\Space
(name->char "c-a") = #\C-a
(name->char "control-a") = #\C-a
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5.2 Comparison of Characters

char=7? charl char2 [procedure]
char<? charl char2 [procedure]
char>? charl char2 [procedure]
char<=? charl char2 [procedure]
char>=7 charl char2 [procedure]
char-ci=? charl char2 [procedure]
char-ci<? charl char2 [procedure]
char-ci>? charl char2 [procedure]
char-ci<=? charl char2 [procedure]
char-ci>=? charl char2 [procedure]

Returns #t if the specified characters are have the appropriate order relationship to
one another; otherwise returns #f. The -ci procedures don’t distinguish uppercase
and lowercase letters.

Character ordering follows these portability rules:
e The digits are in order; for example, (char<? #\0 #\9) returns #t.
e The uppercase characters are in order; for example, (char<? #\A #\B) returns
#t.

e The lowercase characters are in order; for example, (char<? #\a #\b) returns
#t.

MIT/GNU Scheme uses a specific character ordering, in which characters have the
same order as their corresponding integers. See the documentation for char->integer
for further details.

Note: Although character objects can represent all of Unicode, the model of alpha-
betic case used covers only ASCII letters, which means that case-insensitive compar-
isons and case conversions are incorrect for non-ASCII letters. This will eventually be
fixed.

5.3 Miscellaneous Character Operations

char? object [procedure]

Returns #t if object is a character; otherwise returns #f.

char-upcase char [procedure]
char-downcase char [procedure]

Returns the uppercase or lowercase equivalent of char if char is a letter; otherwise
returns char. These procedures return a character char2 such that (char-ci=? char
char2).

Note: Although character objects can represent all of Unicode, the model of alpha-
betic case used covers only ASCII letters, which means that case-insensitive compar-
isons and case conversions are incorrect for non-ASCII letters. This will eventually be
fixed.

char->digit char [radix] [procedure]

If char is a character representing a digit in the given radix, returns the corresponding
integer value. If you specify radix (which must be an exact integer between 2 and 36
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inclusive), the conversion is done in that base, otherwise it is done in base 10. If char
doesn’t represent a digit in base radix, char->digit returns #f.

Note that this procedure is insensitive to the alphabetic case of char.

(char->digit #\8) = 8
(char->digit #\e 16) = 14
(char->digit #\e) = #f
digit->char digit [radix]| [procedure]

Returns a character that represents digit in the radix given by radix. Radix must be
an exact integer between 2 and 36 (inclusive), and defaults to 10. Digit, which must
be an exact non-negative integer, should be less than radix; if digit is greater than or
equal to radix, digit->char returns #f.

(digit->char 8) = #\8

(digit->char 14 16) = #\E

5.4 Internal Representation of Characters

An MIT/GNU Scheme character consists of a code part and a bucky bits part. The
MIT/GNU Scheme set of characters can represent more characters than ASCII can; it
includes characters with Super and Hyper bucky bits, as well as Control and Meta. Every
ASCII character corresponds to some MIT/GNU Scheme character, but not vice versa.!

MIT/GNU Scheme uses a 21-bit character code with 4 bucky bits. The character code
contains the Unicode scalar value for the character. This is a change from earlier versions
of the system, which used the ISO-8859-1 scalar value, but it is upwards compatible with
previous usage, since ISO-8859-1 is a proper subset of Unicode.

make-char code bucky-bits [procedure]
Builds a character from code and bucky-bits. Both code and bucky-bits must be
exact non-negative integers in the appropriate range. Use char-code and char-bits
to extract the code and bucky bits from the character. If 0 is specified for bucky-bits,
make-char produces an ordinary character; otherwise, the appropriate bits are turned
on as follows:

1 Meta

2 Control
4 Super

8 Hyper

For example,

(make-char 97 0)
(make-char 97 1)
(make-char 97 2)
(make-char 97 3)

#\a
#\M-a
#\C-a
#\C-M-a

P44

char-bits char [procedure]
Returns the exact integer representation of char’s bucky bits. For example,

! Note that the Control bucky bit is different from the ASCII control key. This means that #\S0H (AScCIL
ctrl-A) is different from #\C-A. In fact, the Control bucky bit is completely orthogonal to the ASCII
control key, making possible such characters as #\C-SOH.
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(char-bits #\a) = 0
(char-bits #\m-a) = 1
(char-bits #\c-a) = 2
(char-bits #\c-m-a) = 3
char-code char [procedure]
Returns the character code of char, an exact integer. For example,
(char-code #\a) = 97
(char-code #\c-a) = 97
Note that in MIT/GNU Scheme, the value of char-code is the Unicode scalar value
for char.
char-code-limit [variable]
char-bits-limit [variable]

These variables define the (exclusive) upper limits for the character code and bucky
bits (respectively). The character code and bucky bits are always exact non-negative
integers, and are strictly less than the value of their respective limit variable.

char->integer char [procedure]

integer->char k [procedure]
char->integer returns the character code representation for char. integer->char
returns the character whose character code representation is k.

In MIT/GNU Scheme, if (char-ascii? char) is true, then
(eqv? (char->ascii char) (char->integer char))

However, this behavior is not required by the Scheme standard, and code that depends
on it is not portable to other implementations.

These procedures implement order isomorphisms between the set of characters under
the char<=?7 ordering and some subset of the integers under the <= ordering. That
is, if

(char<=7 a b) = #t and k=xy) = #t
and x and y are in the range of char->integer, then

(<= (char->integer a)

(char->integer b)) = #t
(char<=7 (integer->char x)
(integer->char y)) = #t

In MIT/GNU Scheme, the specific relationship implemented by these procedures is
as follows:

(define (char->integer c)
(+ (* (char-bits c) #x200000)
(char-code c)))

(define (integer->char n)
(make-char (remainder n #x200000)
(quotient n #x200000)))
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This implies that char->integer and char-code produce identical results for char-
acters that have no bucky bits set, and that characters are ordered according to their
Unicode scalar values.

Note: If the argument to char->integer or integer->char is a constant, the com-
piler will constant-fold the call, replacing it with the corresponding result. This is a
very useful way to denote unusual character constants or ASCII codes.

char-integer-limit [variable]
The range of char->integer is defined to be the exact non-negative integers that are
less than the value of this variable (exclusive). Note, however, that there are some
holes in this range, because the character code must be a valid Unicode scalar value.

5.5 ISO-8859-1 Characters

MIT/GNU Scheme internally uses ISO-8859-1 codes for 1/0O, and stores character objects in a
fashion that makes it convenient to convert between ISO-8859-1 codes and characters. Also,
character strings are implemented as byte vectors whose elements are ISO-8859-1 codes; these
codes are converted to character objects when accessed. For these reasons it is sometimes
desirable to be able to convert between ISO-8859-1 codes and characters.

Not all characters can be represented as ISO-8859-1 codes. A character that has an
equivalent ISO-8859-1 representation is called an ISO-8859-1 character.

For historical reasons, the procedures that manipulate ISO-8859-1 characters use the word
“ASCII” rather than “ISO-8859-1".

char-ascii? char [procedure]
Returns the 1SO-8859-1 code for char if char has an 1SO-8859-1 representation; other-
wise returns #f.

In the current implementation, the characters that satisfy this predicate are those in
which the bucky bits are turned off, and for which the character code is less than 256.

char->ascii char [procedure]
Returns the ISO-8859-1 code for char. An error condition-type:bad-range-
argument is signalled if char doesn’t have an ISO-8859-1 representation.

ascii->char code [procedure]
Code must be the exact integer representation of an ISO-8859-1 code. This procedure
returns the character corresponding to code.

5.6 Character Sets

MIT/GNU Scheme’s character-set abstraction is used to represent groups of characters,
such as the letters or digits. Character sets may contain only ISO-8859-1 characters; use
the alphabet abstraction (see Section 5.7 [Unicode], page 86 if you need to cover the entire
Unicode range.

char-set? object [procedure]
Returns #t if object is a character set; otherwise returns #f.
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char-set:upper-case variable
char-set:lower-case variable
char-set:alphabetic variable
char-set:numeric variable

[ ]
[ ]
[ ]
[ ]
char-set:alphanumeric [variable]
[ ]
[ ]
[ ]
[ ]
[ ]

char-set:whitespace variable
char-set:not-whitespace variable
char-set:graphic variable
char-set:not-graphic variable
char-set:standard variable

These variables contain predefined character sets. To see the contents of one of these
sets, use char-set-members.

Alphabetic characters are the 52 upper and lower case letters. Numeric characters
are the 10 decimal digits. Alphanumeric characters are those in the union of these two
sets. Whitespace characters are #\space, #\tab, #\page, #\linefeed, and #\return.
Graphic characters are the printing characters and #\space. Standard characters are
the printing characters, #\space, and #\newline. These are the printing characters:

L RS E () R, -/

0123456789

: ;< =>70

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

LN] = _ ¢

abcdefghijklmnopgrstuvwxyz

{1}~
char-upper-case? char procedure
char-lower-case? char procedure
char-alphabetic? char procedure

char-alphanumeric? char procedure
char-whitespace? char procedure
char-graphic? char procedure

[ ]

[ ]

[ ]

char-numeric? char [procedure]
[ ]

[ ]

[ ]

]

char-standard? object [procedure
These predicates are defined in terms of the respective character sets defined above.

char-set-members char-set [procedure]
Returns a newly allocated list of the characters in char-set.

char-set-member? char-set char [procedure]
Returns #t if char is in char-set; otherwise returns #f.

char-set=7 char-set-1 char-set-2 [procedure]
Returns #t if char-set-1 and char-set-2 contain exactly the same characters; otherwise
returns #f.

char-set char ... [procedure]

Returns a character set consisting of the specified ISO-8859-1 characters. With no
arguments, char-set returns an empty character set.
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chars->char-set chars [procedure]
Returns a character set consisting of chars, which must be a list of ISO-8859-1 char-
acters. This is equivalent to (apply char-set chars).

string->char-set string [procedure]
Returns a character set consisting of all the characters that occur in string.

ascii-range->char-set lower upper [procedure]
Lower and upper must be exact non-negative integers representing ISO-8859-1 char-
acter codes, and lower must be less than or equal to upper. This procedure creates
and returns a new character set consisting of the characters whose ISO-8859-1 codes
are between lower (inclusive) and upper (exclusive).

For historical reasons, the name of this procedure refers to “ASCII” rather than “ISO-
8859-1".

predicate->char-set predicate [procedure]
Predicate must be a procedure of one argument. predicate->char-set creates and
returns a character set consisting of the ISO-8859-1 characters for which predicate is
true.

char-set-difference char-setl char-set2 [procedure]
Returns a character set consisting of the characters that are in char-setl but aren’t
in char-set2.

char-set-intersection char-set ... [procedure]
Returns a character set consisting of the characters that are in all of the char-sets.

char-set-union char-set . .. [procedure]
Returns a character set consisting of the characters that are in at least one o the
char-sets.

char-set-invert char-set [procedure]

Returns a character set consisting of the ISO-8859-1 characters that are not in char-set.

5.7 Unicode

MIT/GNU Scheme provides rudimentary support for Unicode characters. In an ideal world,
Unicode would be the base character set for MIT/GNU Scheme. But MIT/GNU Scheme
predates the invention of Unicode, and converting an application of this size is a considerable
undertaking. So for the time being, the base character set for I/O and strings is ISO-8859-1,
and Unicode support is grafted on.

This Unicode support was implemented as a part of the XML parser (see Section 14.12
[XML Support|, page 219) implementation. XML uses Unicode as its base character set,
and any XML implementation must support Unicode.

The basic unit in a Unicode implementation is the scalar value. The character equivalent
of a scalar value is a Unicode character.

unicode-scalar-value? object [procedure]
Returns #t if object is a Unicode scalar value. Scalar values are implemented as
exact non-negative integers. They are further limited, by the Unicode standard, to
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be strictly less than #x110000, with the values #xD800 through #xDFFF, #xFFFE, and
#xFFFF excluded.

unicode-char? object [procedure]
Returns #t if object is a Unicode character, specifically if object is a character with
no bucky bits and whose code satisfies unicode-scalar-value?.

The Unicode implementation consists of three parts:

e An implementation of wide strings, which are character strings that support the full
Unicode character set with constant-time access.

e 1/0 procedures that read and write Unicode characters in several external representa-
tions, specifically UTF-8, UTF-16, and UTF-32.

e An alphabet abstraction, which is an efficient implementation of sets of Unicode scalar
values (similar to the char-set abstraction).

5.7.1 Wide Strings

Wide characters can be combined into wide strings, which are similar to strings but can
contain any Unicode character sequence. The implementation used for wide strings is
guaranteed to provide constant-time access to each character in the string.

wide-string? object [procedure]
Returns #t if object is a wide string.

make-wide-string k [unicode-char] [procedure]
Returns a newly allocated wide string of length k. If char is specified, all elements
of the returned string are initialized to char; otherwise the contents of the string are
unspecified.

wide-string unicode-char . .. [procedure]
Returns a newly allocated wide string consisting of the specified characters.

wide-string-length wide-string [procedure]
Returns the length of wide-string as an exact non-negative integer.

wide-string-ref wide-string k [procedure]
Returns character k of wide-string. K must be a valid index of string.

wide-string-set! wide-string k unicode-char [procedure]
Stores char in element k of wide-string and returns an unspecified value. K must be
a valid index of wide-string.

string->wide-string string [start [end]] [procedure]
Returns a newly allocated wide string with the same contents as string. If start and
end are supplied, they specify a substring of string that is to be converted. Start
defaults to ‘0’, and end defaults to ‘(string-length string)’.

wide-string->string wide-string [start [end]] [procedure]
Returns a newly allocated string with the same contents as wide-string. The argument
wide-string must satisfy wide-string?. If start and end are supplied, they specify a
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substring of wide-string that is to be converted. Start defaults to ‘0’, and end defaults
to ‘(wide-string-length wide-string)’.

It is an error if any character in wide-string fails to satisfy char-ascii?.

open-wide-input-string wide-string [start [end]] [procedure]
Returns a new input port that sources the characters of wide-string. The optional
arguments start and end may be used to specify that the port delivers characters
from a substring of wide-string; if not given, start defaults to ‘0’ and end defaults to
‘(wide-string-length wide-string)’.

open-wide-output-string [procedure]
Returns an output port that accepts Unicode characters and strings and accumulates
them in a buffer. Call get-output-string on the returned port to get a wide string
containing the accumulated characters.

call-with-wide-output-string procedure [procedure]
Creates a wide-string output port and calls procedure on that port. The value re-
turned by procedure is ignored, and the accumulated output is returned as a wide
string. This is equivalent to:

(define (call-with-wide-output-string procedure)
(let ((port (open-wide-output-string)))
(procedure port)
(get-output-string port)))

5.7.2 Unicode Representations

The procedures in this section implement transformations that convert between the internal
representation of Unicode characters and several standard external representations. These
external representations are all implemented as sequences of bytes, but they differ in their
intended usage.

UTF-8 Each character is written as a sequence of one to four bytes.
UTF-16 Fach character is written as a sequence of one or two 16-bit integers.
UTF-32 Each character is written as a single 32-bit integer.

The UTF-16 and UTF-32 representations may be serialized to and from a byte stream in
either big-endian or little-endian order. In big-endian order, the most significant byte is first,
the next most significant byte is second, etc. In little-endian order, the least significant byte
is first, etc. All of the UTF-16 and UTF-32 representation procedures are available in both
orders, which are indicated by names containing ‘utfNN-be’ and ‘utfNN-1le’, respectively.
There are also procedures that implement host-endian order, which is either big-endian or
little-endian depending on the underlying computer architecture.

utf8-string->wide-string string [start [end]] [ ]
utf16-be-string->wide-string string [start [end]] [ ]
utf16-le-string->wide-string string [start [end]] [procedure]
[ ]
[ ]
[ ]

utf16-string->wide-string string [start [end]] procedure
utf32-be-string->wide-string string [start [end]] procedure
utf32-le-string->wide-string string [start [end]] procedure
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utf32-string->wide-string string [start [end]] [procedure]
Each of these procedures converts a byte vector to a wide string, treating string as a
stream of bytes encoded in the corresponding ‘utfNN’ representation. The arguments
start and end allow specification of a substring; they default to zero and string’s
length, respectively.

utf8-string-length string [start [end]] procedure
utf16-be-string-length string [start [end]] procedure
utf16-le-string-length string [start [end]] procedure

[ ]
rocedune
utf16-string-length string [start [end]] [procedure]
[ ]
[ ]
[ ]

utf32-be-string-length string [start [end]] procedure
utf32-le-string-length string [start [end]] procedure
utf32-string-length string [start [end]] procedure

Each of these procedures counts the number of Unicode characters in a byte vector,
treating string as a stream of bytes encoded in the corresponding ‘utfNN’ representa-
tion. The arguments start and end allow specification of a substring; they default to
zero and string’s length, respectively.

wide-string->utf8-string string [start [end]]
wide-string->utf16-be-string string [start [end]] procedure
wide-string->utf16-le-string string [start [end]] procedure

[procedure]
[ ]
[ ]
wide-string->utf16-string string [start [end]] [procedure]
[ ]
[ ]
[ ]

wide-string->utf32-be-string string [start [end]] procedure
wide-string->utf32-le-string string [start [end]] procedure
wide-string->utf32-string string [start [end]] procedure

Each of these procedures converts a wide string to a stream of bytes encoded in the
corresponding ‘utfNN’ representation, and returns that stream as a byte vector. The
arguments start and end allow specification of a substring; they default to zero and
string’s length, respectively.

5.7.3 Alphabets

Applications often need to manipulate sets of characters, such as the set of alphabetic
characters or the set of whitespace characters. The alphabet abstraction provides an efficient
implementation of sets of Unicode scalar values.

alphabet? object [procedure]
Returns #t if object is a Unicode alphabet, otherwise returns #f.

alphabet unicode-char . .. [procedure]
Returns a Unicode alphabet containing the Unicode characters passed as arguments.

scalar-values->alphabet items [procedure]
Returns a Unicode alphabet containing the scalar values described by items. Items
must satisfy well-formed-scalar-values-1list?.

alphabet->scalar-values alphabet [procedure]
Returns a well-formed scalar-values list that describes the scalar values represented
by alphabet.
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well-formed-scalar-values-1ist? object [procedure]
Returns #t if object is a well-formed scalar-values list, otherwise returns #f. A well-
formed scalar-values list is a proper list, each element of which is either a unicode
scalar value or a pair of unicode scalar values. A pair of scalar values represents a
contiguous range of scalar values. The CAR of the pair is the lower limit, and the CDR
is the upper limit. Both limits are inclusive, and the lower limit must be less than or
equal to the upper limit.

char-in-alphabet? char alphabet [procedure]
Returns #t if char is a member of alphabet, otherwise returns #f£.

Character sets and alphabets can be converted to one another, provided that the alphabet
contains only 8-bit scalar values. This is true because 8-bit scalar values in Unicode map
directly to ISO-8859-1 characters, which is what character sets contain.

char-set->alphabet char-set [procedure]
Returns a Unicode alphabet containing the scalar values that correspond to characters
that are members of char-set.

alphabet->char-set alphabet [procedure]
Returns a character set containing the characters that correspond to 8-bit scalar values
that are members of alphabet. (Scalar values outside the 8-bit range are ignored.)

string->alphabet string [procedure]
Returns a Unicode alphabet containing the scalar values corresponding to the char-
acters in string. Equivalent to

(char-set->alphabet (string->char-set string))

alphabet->string alphabet [procedure]
Returns a newly-allocated string containing the characters corresponding to the 8-bit
scalar values in alphabet. (Scalar values outside the 8-bit range are ignored.)

8-bit-alphabet? alphabet [procedure]
Returns #t if alphabet contains only 8-bit scalar values, otherwise returns #f.

alphabet+ alphabet . .. [procedure]
Returns a Unicode alphabet that contains each scalar value that is a member of any
of the alphabet arguments.

alphabet- alphabetl alphabet2 [procedure]
Returns a Unicode alphabet that contains each scalar value that is a member of
alphabetl and is not a member of alphabet2.
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6 Strings

A string is a mutable sequence of characters. In the current implementation of MIT/GNU
Scheme, the elements of a string must all satisfy the predicate char-ascii?; if someone
ports MIT/GNU Scheme to a non-ASCII operating system this requirement will change.

A string is written as a sequence of characters enclosed within double quotes " ". To
include a double quote inside a string, precede the double quote with a backslash \ (escape
it), as in

"The word \"recursion\" has many meanings."
The printed representation of this string is
The word "recursion" has many meanings.
To include a backslash inside a string, precede it with another backslash; for example,
"Use #\\Control-q to quit."
The printed representation of this string is
Use #\Control-q to quit.

The effect of a backslash that doesn’t precede a double quote or backslash is unspecified in
standard Scheme, but MIT/GNU Scheme specifies the effect for three other characters: \t,
\n, and \f. These escape sequences are respectively translated into the following characters:
#\tab, #\newline, and #\page. Finally, a backslash followed by exactly three octal digits
is translated into the character whose ISO-8859-1 code is those digits.

If a string literal is continued from one line to another, the string will contain the newline
character (#\newline) at the line break. Standard Scheme does not specify what appears
in a string literal at a line break.

The length of a string is the number of characters that it contains. This number is an
exact non-negative integer that is established when the string is created (but see Section 6.10
[Variable-Length Strings|, page 106). Each character in a string has an index, which is a
number that indicates the character’s position in the string. The index of the first (leftmost)
character in a string is 0, and the index of the last character is one less than the length of
the string. The valid indexes of a string are the exact non-negative integers less than the
length of the string.

A number of the string procedures operate on substrings. A substring is a segment of a
string, which is specified by two integers start and end satisfying these relationships:

0 <= start <= end <= (string-length string)

Start is the index of the first character in the substring, and end is one greater than the
index of the last character in the substring. Thus if start and end are equal, they refer to
an empty substring, and if start is zero and end is the length of string, they refer to all of
string.

Some of the procedures that operate on strings ignore the difference between uppercase
and lowercase. The versions that ignore case include ‘~ci’ (for “case insensitive”) in their
names.
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6.1 Construction of Strings

make-string k [char] [procedure]
Returns a newly allocated string of length k. If you specify char, all elements of
the string are initialized to char, otherwise the contents of the string are unspecified.
Char must satisfy the predicate char-ascii?.

(make-string 10 #\x) = "XXXXXXXXXX"

string char ... [procedure]
Returns a newly allocated string consisting of the specified characters. The arguments
must all satisfy char-ascii?.

(String #\a) = ngn
(string #\a #\b #\c) = "abc"
(string #\a #\space #\b #\space #\c) = "abc"
(string) = nn
list->string char-list [procedure]

Char-list must be a list of ISO-8859-1 characters. list->string returns a newly
allocated string formed from the elements of char-list. This is equivalent to (apply
string char-list). The inverse of this operation is string->list.

(list->string ’> (#\a #\b)) = "ab"
(string->list "Hello") = (#\H #\e #\1 #\1 #\o)
string-copy string [procedure]

Returns a newly allocated copy of string.

Note regarding variable-length strings: the maximum length of the result depends
only on the length of string, not its maximum length. If you wish to copy a string
and preserve its maximum length, do the following:

(define (string-copy-preserving-max-length string)
(let ((length))
(dynamic-wind
(lambda ()
(set! length (string-length string))
(set-string-length! string
(string-maximum-length string)))
(lambda ()
(string-copy string))
(lambda ()
(set-string-length! string length)))))

6.2 Selecting String Components

string? object [procedure]
Returns #t if object is a string; otherwise returns #f£.
(string? "Hi") = #t
(string? ’Hi) = #f
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string-length string [procedure]
Returns the length of string as an exact non-negative integer.
(string-length "") = 0
(string-length "The length") = 10
string-null? string [procedure]
Returns #t if string has zero length; otherwise returns #£.
(string-null? "") = #t
(string-null? "Hi") = #f
string-ref string k [procedure]
Returns character k of string. K must be a valid index of string.
(string-ref "Hello" 1) = #\e
(string-ref "Hello" 5) 5 not in correct range
string-set! string k char [procedure]

Stores char in element k of string and returns an unspecified value. K must be a

valid index of string, and char must satisfy the predicate char-ascii?.

(define str "Dog") = unspecified
(string-set! str 0 #\L) = unspecified
str = "Log"

(string-set! str 3 #\t) 3 not in correct range

6.3 Comparison of Strings

string=7 stringl string2 [procedure]
substring=7 stringl start end string2 start end [procedure]
string-ci=7 stringl string?2 [procedure]
substring-ci=7 stringl start end string2 start end [procedure]

Returns #t if the two strings (substrings) are the same length and contain the same
characters in the same (relative) positions; otherwise returns #f. string-ci=? and
substring-ci=7 don’t distinguish uppercase and lowercase letters, but string=7 and
substring=7 do.

(string=7 "PIE" "PIE") = #t

(string=7 "PIE" "pie") = #f

(string-ci=? "PIE" "pie") = #t

(substring=7 "Alamo" 1 3 "cola" 2 4) = #t ; compares "la"
string<? stringl string?2 procedure
substring<? stringl startl endl string2 start2 end2 procedure
string>? stringl string?2 procedure
string<=? stringl string2 procedure

string-ci<? stringl string2
substring-ci<? stringl startl endl string2 start2 end?2
string-ci>? stringl string2

[ ]
[ ]
[ ]
[ |
string>=7 stringl string2 [procedure]
[ ]
[ ]
[ ]
string-ci<=7 stringl string2 [ ]



94 MIT/GNU Scheme 7.7.90+

string-ci>=7? stringl string2 [procedure]
These procedures compare strings (substrings) according to the order of the charac-
ters they contain (also see Section 5.2 [Comparison of Characters|, page 81). The
arguments are compared using a lexicographic (or dictionary) order. If two strings
differ in length but are the same up to the length of the shorter string, the shorter
string is considered to be less than the longer string.

(string<? "cat" "dog") = #t

(string<? "cat" "DOG") = #f

(string-ci<? "cat" "DOG") = #t

(string>? "catkin" "cat") = #t ; shorter is lesser
string-compare stringl string?2 if-eq if-It if-gt [procedure]
string-compare-ci stringl string?2 if-eq if-It if-gt [procedure]

If-eq, if-It, and if-gt are procedures of no arguments (thunks). The two strings are
compared; if they are equal, if-eq is applied, if stringl is less than string2, if-It is
applied, else if stringl is greater than string2, if-gt is applied. The value of the
procedure is the value of the thunk that is applied.

string-compare distinguishes uppercase and lowercase letters;
string-compare-ci does not.

(define (cheer) (display "Hooray!"))

(define (boo)  (display "Boo-hiss!"))

(string-compare "a" "b" cheer (lambda() ’ignore) boo)
- Hooray!
= unspecified

string-hash string [procedure]

string-hash-mod string k [procedure]
string-hash returns an exact non-negative integer that can be used for storing the
specified string in a hash table. Equal strings (in the sense of string=7) return equal
(=) hash codes, and non-equal but similar strings are usually mapped to distinct hash
codes.

string-hash-mod is like string-hash, except that it limits the result to a particular
range based on the exact non-negative integer k. The following are equivalent:
(string-hash-mod string k)
(modulo (string-hash string) k)

6.4 Alphabetic Case in Strings

string-capitalized? string [procedure]
substring-capitalized? string start end [procedure]
These procedures return #t if the first word in the string (substring) is capitalized,
and any subsequent words are either lower case or capitalized. Otherwise, they return
#f. A word is defined as a non-null contiguous sequence of alphabetic characters,
delimited by non-alphabetic characters or the limits of the string (substring). A word
is capitalized if its first letter is upper case and all its remaining letters are lower case.

(map string-capitalized? > ("" "A" "art" "Art" "ART"))
= (#f #t #£f #t #£)
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string-upper-case? string [procedure]

substring-upper-case? string start end [procedure]

string-lower-case? string [procedure]

substring-lower-case? string start end [procedure]
These procedures return #t if all the letters in the string (substring) are of the correct
case, otherwise they return #f. The string (substring) must contain at least one letter
or the procedures return #f£.

(map string-upper-case? ’("" "A" "art" "Art" "ART"))
= (#f #t #f #f #t)
string-capitalize string [procedure]
string-capitalize! string [procedure]
substring-capitalize! string start end [procedure]

string-capitalize returns a newly allocated copy of string in which the first alpha-
betic character is uppercase and the remaining alphabetic characters are lowercase.
For example, "abcDEF" becomes "Abcdef". string-capitalize! is the destructive
version of string-capitalize: it alters string and returns an unspecified value.
substring-capitalize! destructively capitalizes the specified part of string.

string-downcase string [procedure]
string-downcase! string [procedure]
substring-downcase! string start end [procedure]

string-downcase returns a newly allocated copy of string in which all uppercase
letters are changed to lowercase. string-downcase! is the destructive version of
string-downcase: it alters string and returns an unspecified value. substring-
downcase! destructively changes the case of the specified part of string.

(define str "ABCDEFG") = unspecified

(substring-downcase! str 3 5) = unspecified

str = "ABCdeFG"
string-upcase string [procedure]
string-upcase! string [procedure]
substring-upcase! string start end [procedure]

string-upcase returns a newly allocated copy of string in which all lowercase letters
are changed to uppercase. string-upcase! is the destructive version of string-
upcase: it alters string and returns an unspecified value. substring-upcase! de-
structively changes the case of the specified part of string.

6.5 Cutting and Pasting Strings

string-append string . .. [procedure]
Returns a newly allocated string made from the concatenation of the given strings.
With no arguments, string-append returns the empty string ("").

(string-append)
(string-append "x" "ace" "*'")
(string—append LT LD
(eq? str (string-append str))

n *ace* n
nn

L4y

#f ; newly allocated
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substring string start end [procedure]
Returns a newly allocated string formed from the characters of string beginning with
index start (inclusive) and ending with end (exclusive).

(substring "" 0 0) = "
(substring "arduous" 2 5) = "duo"
(substring "arduous" 2 8) 8 not in correct range

(define (string-copy s)
(substring s O (string-length s)))

string-head string end [procedure]
Returns a newly allocated copy of the initial substring of string, up to but excluding
end. It could have been defined by:

(define (string-head string end)
(substring string O end))

string-tail string start [procedure]
Returns a newly allocated copy of the final substring of string, starting at index start
and going to the end of string. It could have been defined by:

(define (string-tail string start)
(substring string start (string-length string)))

(string-tail "uncommon" 2) = "common"
string-pad-left string k [char] [procedure]
string-pad-right string k [char] [procedure]

These procedures return a newly allocated string created by padding string out to
length k, using char. If char is not given, it defaults to #\space. If k is less than the
length of string, the resulting string is a truncated form of string. string-pad-left
adds padding characters or truncates from the beginning of the string (lowest indices),
while string-pad-right does so at the end of the string (highest indices).

(string-pad-left "hello" 4) = "ello"
(string-pad-left "hello" 8) = " hello"
(string-pad-left "hello" 8 #\*) = "*xxhello"
(string-pad-right "hello" 4) = "hell"
(string-pad-right "hello" 8) = '"hello "
string-trim string [char-set] [procedure]
string-trim-left string [char-set] [procedure]
string-trim-right string [char-set] [procedure]

Returns a newly allocated string created by removing all characters that are not
in char-set from: (string-trim) both ends of string; (string-trim-left) the be-
ginning of string; or (string-trim-right) the end of string. Char-set defaults to
char-set:not-whitespace.
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(string-trim " in the end ") = "in the end"
(string-trim " ") =
(string-trim "100th" char-set:numeric) = "100"
(string-trim-left "-.-+-=-" (char-set #\+))

= Np_=_n

(string-trim "but (+ x y) is" (char-set #\( #\)))
: n (+ X y) n

6.6 Searching Strings

The first few procedures in this section perform string search, in which a given string (the
text) is searched to see if it contains another given string (the pattern) as a proper substring.
At present these procedures are implemented using a hybrid strategy. For short patterns of
less than 4 characters, the naive string-search algorithm is used. For longer patterns, the
Boyer-Moore string-search algorithm is used.

string-search-forward pattern string [procedure]

substring-search-forward pattern string start end [procedure]
Pattern must be a string. Searches string for the leftmost occurrence of the substring
pattern. If successful, the index of the first character of the matched substring is
returned; otherwise, #f is returned.

substring-search-forward limits its search to the specified substring of string;
string-search-forward searches all of string.

(string-search-forward "rat" "pirate")

= 2
(string-search-forward "rat" "pirate rating")
= 2
(substring-search-forward "rat" "pirate rating" 4 13)
= 7
(substring-search-forward "rat" "pirate rating" 9 13)
= #f
string-search-backward pattern string [procedure]
substring-search-backward pattern string start end [procedure]

Pattern must be a string. Searches string for the rightmost occurrence of the substring
pattern. If successful, the index to the right of the last character of the matched
substring is returned; otherwise, #f is returned.

substring-search-backward limits its search to the specified substring of string;
string-search-backward searches all of string.

(string-search-backward "rat" "pirate")

= 5

(string-search-backward "rat" "pirate rating")
= 10

(substring-search-backward "rat" "pirate rating" 1 8)
= b

(substring-search-backward "rat" "pirate rating" 9 13)
= #f
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string-search-all pattern string [procedure]

substring-search-all pattern string start end [procedure]
Pattern must be a string. Searches string to find all occurrences of the substring
pattern. Returns a list of the occurrences; each element of the list is an index pointing
to the first character of an occurrence.

substring-search-all limits its search to the specified substring of string; string-
search-all searches all of string.

(string-search-all "rat" "pirate")
= (2)

(string-search-all "rat" "pirate rating")
= (27

(substring-search-all "rat" "pirate rating" 4 13)
= (7

(substring-search-all "rat" "pirate rating" 9 13)
= 0O

substring? pattern string [procedure]
Pattern must be a string. Searches string to see if it contains the substring pattern.
Returns #t if pattern is a substring of string, otherwise returns #£.

(substring? "rat" "pirate") = #t
(substring? "rat" "outrage") = #f
(substring? "" any-string) = #t

(if (substring? "moon" text)
(process-lunar text)
’no-moon)

string-find-next-char string char [procedure]
substring-find-next-char string start end char [procedure]
string-find-next-char-ci string char [procedure]
substring-find-next-char-ci string start end char [procedure]

Returns the index of the first occurrence of char in the string (substring); returns
#f if char does not appear in the string. For the substring procedures, the index
returned is relative to the entire string, not just the substring. The -ci procedures
don’t distinguish uppercase and lowercase letters.

(string-find-next-char "Adam" #\A) = 0

(substring-find-next-char "Adam" 1 4 #\A) = #f

(substring-find-next-char-ci "Adam" 1 4 #\A) = 2
string-find-next-char-in-set string char-set [procedure]
substring-find-next-char-in-set string start end char-set [procedure]

Returns the index of the first character in the string (or substring) that is also in
char-set, or returns #£f if none of the characters in char-set occur in string. For the
substring procedure, only the substring is searched, but the index returned is relative
to the entire string, not just the substring.



Chapter 6: Strings 99

(string-find-next-char-in-set my-string char-set:alphabetic)
= start position of the first word in my-string
; Can be used as a predicate:
(if (string-find-next-char-in-set my-string
(char-set #\( #\) ))
’contains—-parentheses
‘no-parentheses)

string-find-previous-char string char [procedure]
substring-find-previous-char string start end char [procedure]
string-find-previous-char-ci string char [procedure]
substring-find-previous-char-ci string start end char [procedure]

Returns the index of the last occurrence of char in the string (substring); returns #£
if char doesn’t appear in the string. For the substring procedures, the index returned
is relative to the entire string, not just the substring. The -ci procedures don’t
distinguish uppercase and lowercase letters.

string-find-previous-char-in-set string char-set [procedure]

substring-find-previous-char-in-set string start end char-set [procedure]
Returns the index of the last character in the string (substring) that is also in char-
set. For the substring procedure, the index returned is relative to the entire string,
not just the substring.

6.7 Matching Strings

string-match-forward stringl string2 [procedure]
substring-match-forward stringl start end string2 start end [procedure]
string-match-forward-ci stringl string2 [procedure]
substring-match-forward-ci stringl start end string2 start end [procedure]

Compares the two strings (substrings), starting from the beginning, and returns the
number of characters that are the same. If the two strings (substrings) start dif-
ferently, returns 0. The -ci procedures don’t distinguish uppercase and lowercase
letters.

(string-match-forward "mirror" "micro") = 2 ; matches "mi"

(string-match-forward "a" "b") = 0 ; no match
string-match-backward stringl string?2 procedure
substring-match-backward stringl start end string2 start end procedure

[ |

[ |

string-match-backward-ci stringl string2 [procedure]

substring-match-backward-ci stringl start end string2 start end [procedure]
Compares the two strings (substrings), starting from the end and matching toward the
front, returning the number of characters that are the same. If the two strings (sub-
strings) end differently, returns 0. The -ci procedures don’t distinguish uppercase
and lowercase letters.

(string-match-backward-ci "BULBOUS" "fractious")
= 3 ; matches "ous"



100 MIT/GNU Scheme 7.7.90+

string-prefix? stringl string?2 [procedure]
substring-prefix? stringl startl endl string2 start2 end2 [procedure]
string-prefix-ci? stringl string2 [procedure]
substring-prefix-ci? stringl startl endl string2 start2 end2 [procedure]

These procedures return #t if the first string (substring) forms the prefix of the second;
otherwise returns #f. The -ci procedures don’t distinguish uppercase and lowercase

letters.
(string-prefix? "abc" "abcdef") = #t
(string-prefix? "" any-string) = #t
string-suffix? stringl string?2 [procedure]
substring-suffix? stringl startl endl string2 start2 end2 [procedure]
string-suffix-ci? stringl string2 [procedure]
substring-suffix-ci? stringl startl endl string2 start2 end?2 [procedure]

These procedures return #t if the first string (substring) forms the suffix of the second;
otherwise returns #f. The -ci procedures don’t distinguish uppercase and lowercase
letters.

(string-suffix? "ous" "bulbous") = #t
(string-suffix? "" any-string) = #t

6.8 Regular Expressions

MIT/GNU Scheme provides support for using regular expressions to search and match
strings. This manual does not define regular expressions; instead see Section “Syntax of
Regular Expressions” in The Emacs Editor.

In addition to providing standard regular-expression support, MIT/GNU Scheme also
provides the REXP abstraction. This is an alternative way to write regular expressions that
is easier to read and understand than the standard notation. Regular expressions written
in this notation can be translated into the standard notation.

The regular-expression support is a run-time-loadable option. To use it, execute
(load-option ’regular-expression)

once before calling any of the procedures defined here.

6.8.1 Regular-expression procedures

Procedures that perform regular-expression match and search accept standardized argu-
ments. Regexp is the regular expression; it is a string. String is the string being matched
or searched. Procedures that operate on substrings also accept start and end index ar-
guments with the usual meaning. The optional argument case-fold? says whether the
match/search is case-sensitive; if case-fold? is #£, it is case-sensitive, otherwise it is case-
insensitive. The optional argument syntax-table is a character syntax table that defines
the character syntax, such as which characters are legal word constituents. This feature is
primarily for Edwin, so character syntax tables will not be documented here. Supplying #f
for (or omitting) syntax-table will select the default character syntax, equivalent to Edwin’s
fundamental mode.
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re-string-match regexp string [case-fold? [syntax-table|] [procedure]

re-substring-match regexp string start end [case-fold? [syntax-table]] [procedure]
These procedures match regexp against the respective string or substring, returning
#f for no match, or a set of match registers (see below) if the match succeeds. Here
is an example showing how to extract the matched substring:

(let ((r (re-substring-match regexp string start end)))
(and r
(substring string start (re-match-end-index 0 r))))

re-string-search-forward regexp string [case-fold? [syntax-table|| [procedure]
re-substring-search-forward regexp string start end [case-fold? [procedure]
[syntax-table|]
Searches string for the leftmost substring matching regexp. Returns a set of match
registers (see below) if the search is successful, or #f if it is unsuccessful.

re-substring-search-forward limits its search to the specified substring of string;
re-string-search-forward searches all of string.

re-string-search-backward regexp string [case-fold? [syntax-table]| [procedure]
re-substring-search-backward regexp string start end [case-fold? [procedure]
[syntax-table||
Searches string for the rightmost substring matching regexp. Returns a set of match
registers (see below) if the search is successful, or #£ if it is unsuccessful.

re-substring-search-backward limits its search to the specified substring of string;
re-string-search-backward searches all of string.

When a successful match or search occurs, the above procedures return a set of match
registers. The match registers are a set of index registers that record indexes into the
matched string. Each index register corresponds to an instance of the regular-expression
grouping operator ‘\ (’, and records the start index (inclusive) and end index (exclusive) of
the matched group. These registers are numbered from 1 to 9, corresponding left-to-right to
the grouping operators in the expression. Additionally, register 0 corresponds to the entire
substring matching the regular expression.

re-match-start-index n registers [procedure]

re-match-end-index n registers [procedure]
N must be an exact integer between 0 and 9 inclusive. Registers must be a match-
registers object as returned by one of the regular-expression match or search proce-
dures above. re-match-start-index returns the start index of the corresponding
regular-expression register, and re-match-end-index returns the corresponding end
index.

re-match-extract string registers n [procedure]
Registers must be a match-registers object as returned by one of the regular-expression
match or search procedures above. String must be the string that was passed as an
argument to the procedure that returned registers. N must be an exact integer
between 0 and 9 inclusive. If the matched regular expression contained m grouping
operators, then the value of this procedure is undefined for n strictly greater than m.
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This procedure extracts the substring corresponding to the match register specified
by registers and n. This is equivalent to the following expression:

(substring string
(re-match-start-index n registers)
(re-match-end-index n registers))

regexp-group alternative . . . [procedure]
Each alternative must be a regular expression. The returned value is a new regular
expression that consists of the alternatives combined by a grouping operator. For
example:

(regexp-group "foo" "bar" "baz")

= "\\(foo\\|bar\\|baz\\)"

6.8.2 REXP abstraction

In addition to providing standard regular-expression support, MIT/GNU Scheme also pro-
vides the REXP abstraction. This is an alternative way to write regular expressions that is
easier to read and understand than the standard notation. Regular expressions written in
this notation can be translated into the standard notation.

The REXP abstraction is a set of combinators that are composed into a complete regular
expression. Each combinator directly corresponds to a particular piece of regular-expression
notation. For example, the expression (rexp-any-char) corresponds to the . character in
standard regular-expression notation, while (rexp* rexp) corresponds to the * character.

The primary advantages of REXP are that it makes the nesting structure of regular
expressions explicit, and that it simplifies the description of complex regular expressions by
allowing them to be built up using straightforward combinators.

rexp? object [procedure]
Returns #t if object is a REXP expression, or #f otherwise. A REXP is one of: a string,
which represents the pattern matching that string; a character set, which represents
the pattern matching a character in that set; or an object returned by calling one of
the procedures defined here.

rexp->regexp rexp [procedure]
Converts rexp to standard regular-expression notation, returning a newly-allocated
string.

rexp-compile rexp [procedure]

Converts rexp to standard regular-expression notation, then compiles it and returns
the compiled result. Equivalent to

(re-compile-pattern (rexp->regexp rexp) #f)

rexp-any-char [procedure]
Returns a REXP that matches any single character except a newline. This is equivalent
to the . construct.

rexp-line-start [procedure]
Returns a REXP that matches the start of a line. This is equivalent to the ~ construct.
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rexp-line-end [procedure]
Returns a REXP that matches the end of a line. This is equivalent to the $ construct.

rexp-string-start [procedure]
Returns a REXP that matches the start of the text being matched. This is equivalent
to the \ ¢ construct.

rexp-string-end [procedure]
Returns a REXP that matches the end of the text being matched. This is equivalent
to the \’ construct.

rexp-word-edge [procedure]
Returns a REXP that matches the start or end of a word. This is equivalent to the
\b construct.

rexp-not-word-edge [procedure]
Returns a REXP that matches anywhere that is not the start or end of a word. This
is equivalent to the \B construct.

rexp-word-start [procedure]
Returns a REXP that matches the start of a word. This is equivalent to the \<
construct.

rexp-word-end [procedure]
Returns a REXP that matches the end of a word. This is equivalent to the \> con-
struct.

rexp-word-char [procedure]

Returns a REXP that matches any word-constituent character. This is equivalent to
the \w construct.

rexp-not-word-char [procedure]
Returns a REXP that matches any character that isn’t a word constituent. This is
equivalent to the \W construct.

The next two procedures accept a syntax-type argument specifying the syntax class
to be matched against. This argument is a symbol selected from the following list. Each
symbol is followed by the equivalent character used in standard regular-expression notation.
whitespace (space character), punctuation (.), word (w), symbol (_), open ((), close
()), quote (’), string-delimiter ("), math-delimiter ($), escape (\), char-quote (/),
comment-start (<), comment-end (>).

rexp-syntax-char syntax-type [procedure]
Returns a REXP that matches any character of type syntax-type. This is equivalent
to the \s construct.

rexp-not-syntax-char syntax-type [procedure]
Returns a REXP that matches any character not of type syntax-type. This is equiv-
alent to the \S construct.
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rexp-sequence rexp ... [procedure]
Returns a REXP that matches each rexp argument in sequence. If no rexp argument
is supplied, the result matches the null string. This is equivalent to concatenating the
regular expressions corresponding to each rexp argument.

rexp-alternatives rexp ... [procedure]
Returns a REXP that matches any of the rexp arguments. This is equivalent to con-
catenating the regular expressions corresponding to each rexp argument, separating
them by the \| construct.

rexp-group rexp ... [procedure]
rexp-group is like rexp-sequence, except that the result is marked as a match group.
This is equivalent to the \( ... \) construct.

The next three procedures in principal accept a single REXP argument. For convenience,
they accept multiple arguments, which are converted into a single argument by rexp-group.
Note, however, that if only one REXP argument is supplied, and it’s very simple, no grouping
occurs.

rexp* rexp ... [procedure]
Returns a REXP that matches zero or more instances of the pattern matched by the
rexp arguments. This is equivalent to the * construct.

rexp+ rexp . .. [procedure]
Returns a REXP that matches one or more instances of the pattern matched by the
rexp arguments. This is equivalent to the + construct.

rexp-optional rexp ... [procedure]
Returns a REXP that matches zero or one instances of the pattern matched by the
rexp arguments. This is equivalent to the ? construct.

rexp-case-fold rexp [procedure]
Returns a REXP that matches the same pattern as rexp, but is insensitive to character
case. This has no equivalent in standard regular-expression notation.

6.9 Modification of Strings

string-replace string charl char2 [procedure]
substring-replace string start end charl char2 [procedure]
string-replace! string charl char2 [procedure]
substring-replace! string start end charl char2 [procedure]

These procedures replace all occurrences of charl with char2 in the original string
(substring). string-replace and substring-replace return a newly allocated
string containing the result. string-replace! and substring-replace! destruc-
tively modify string and return an unspecified value.

unspecified
"a-few-words"

"a few-words"

"a few words"
unspecified
"a-few-words"

(define str "a few words")
(string-replace str #\space #\-)
(substring-replace str 2 9 #\space #\-)
str

(string-replace! str #\space #\-)

str

L4y
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string-fill! string char [procedure]
Stores char in every element of string and returns an unspecified value.

substring-fill! string start end char [procedure]
Stores char in elements start (inclusive) to end (exclusive) of string and returns an
unspecified value.

(define s (make-string 10 #\space)) = unspecified

(substring-fill! s 2 8 #\x) = unspecified

S = " kkkkkk !
substring-move-left! stringl startl endl string2 start2 [procedure]
substring-move-right! stringl startl endl string2 start2 [procedure]

Copies the characters from startl to endl of stringl into string2 at the start2-th
position. The characters are copied as follows (note that this is only important when
stringl and string2 are eqv?):

substring-move-left!
The copy starts at the left end and moves toward the right (from smaller
indices to larger). Thus if stringl and string2 are the same, this procedure
moves the characters toward the left inside the string.

substring-move-right!
The copy starts at the right end and moves toward the left (from larger
indices to smaller). Thus if stringl and string2 are the same, this proce-
dure moves the characters toward the right inside the string.

The following example shows how these procedures can be used to build up a string
(it would have been easier to use string-append):

(define answer (make-string 9 #\x)) = unspecified

answer = "skskokokokokokokk !

(substring-move-left! "start" 0 5 answer 0) = unspecified

answer = "startxxkx"

(substring-move-left! "-end" 0 4 answer 5) = unspecified

answer = '"start-end"
reverse-string string procedure

reverse-string! string procedure

reverse-substring! string start end procedure
Reverses the order of the characters in the given string or substring. reverse-
string and reverse-substring return newly allocated strings; reverse-string!
and reverse-substring! modify their argument strings and return an unspecified
value.

[ ]
reverse-substring string start end [procedure]
[ ]
[ ]
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"zab rab oof"
“rab"

(reverse-string "foo bar baz")
(reverse-substring "foo bar baz" 4 7)
(let ((foo "foo bar baz"))

(reverse-string! foo)

foo) = "zab rab oof"
(let ((foo "foo bar baz"))

(reverse-substring! foo 4 7)

foo) = "foo rab baz"

S

6.10 Variable-Length Strings

MIT/GNU Scheme allows the length of a string to be dynamically adjusted in a limited
way. When a new string is allocated, by whatever method, it has a specific length. At the
time of allocation, it is also given a maximum length, which is guaranteed to be at least as
large as the string’s length. (Sometimes the maximum length will be slightly larger than the
length, but it is a bad idea to count on this. Programs should assume that the maximum
length is the same as the length at the time of the string’s allocation.) After the string is
allocated, the operation set-string-length! can be used to alter the string’s length to
any value between 0 and the string’s maximum length, inclusive.

string-maximum-length string [procedure]
Returns the maximum length of string. The following is guaranteed:
(<= (string-length string)
(string-maximum-length string)) = #t

The maximum length of a string never changes.

set-string-length! string k [procedure]
Alters the length of string to be k, and returns an unspecified value. K must be
less than or equal to the maximum length of string. set-string-length! does not
change the maximum length of string.

6.11 Byte Vectors

MIT/GNU Scheme implements strings as packed vectors of 8-bit 1SO-8859-1 bytes. Most of
the string operations, such as string-ref, coerce these 8-bit codes into character objects.
However, some lower-level operations are made available for use.

vector-8b-ref string k [procedure]
Returns character k of string as an ISO-8859-1 code. K must be a valid index of
string.
(vector-8b-ref "abcde" 2) = 99 :c
vector-8b-set! string k code [procedure]

Stores code in element k of string and returns an unspecified value. K must be a
valid index of string, and code must be a valid ISO-8859-1 code.

vector-8b-fill! string start end code [procedure]
Stores code in elements start (inclusive) to end (exclusive) of string and returns an
unspecified value. Code must be a valid ISO-8859-1 code.
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vector-8b-find-next-char string start end code [procedure]

vector-8b-find-next-char-ci string start end code [procedure]
Returns the index of the first occurrence of code in the given substring; returns #f
if code does not appear. The index returned is relative to the entire string, not just
the substring. Code must be a valid ISO-8859-1 code.

vector-8b-find-next-char-ci doesn’t distinguish uppercase and lowercase letters.

vector-8b-find-previous-char string start end code [procedure]

vector-8b-find-previous-char-ci string start end code [procedure]
Returns the index of the last occurrence of code in the given substring; returns #f if
code does not appear. The index returned is relative to the entire string, not just the
substring. Code must be a valid ISO-8859-1 code.

vector-8b-find-previous-char-ci doesn’t distinguish uppercase and lowercase let-
ters.
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7 Lists

A pair (sometimes called a dotted pair) is a data structure with two fields called the car
and cdr fields (for historical reasons). Pairs are created by the procedure cons. The car and
cdr fields are accessed by the procedures car and cdr. The car and cdr fields are assigned
by the procedures set-car! and set-cdr!.

Pairs are used primarily to represent lists. A list can be defined recursively as either
the empty list or a pair whose cdr is a list. More precisely, the set of lists is defined as the
smallest set X such that

e The empty list is in X.

e If list is in X, then any pair whose cdr field contains list is also in X.

The objects in the car fields of successive pairs of a list are the elements of the list. For
example, a two-element list is a pair whose car is the first element and whose cdr is a pair
whose car is the second element and whose cdr is the empty list. The length of a list is the
number of elements, which is the same as the number of pairs. The empty list is a special
object of its own type (it is not a pair); it has no elements and its length is zero.!

The most general notation (external representation) for Scheme pairs is the “dotted”
notation (c1 . c2) where cl is the value of the car field and ¢2 is the value of the cdr field.
For example, (4 . 5) is a pair whose car is 4 and whose cdr is 5. Note that (4 . 5) is the
external representation of a pair, not an expression that evaluates to a pair.

A more streamlined notation can be used for lists: the elements of the list are simply
enclosed in parentheses and separated by spaces. The empty list is written (). For example,
the following are equivalent notations for a list of symbols:

(abcd e
(a. M. (. @. C.OMN

Whether a given pair is a list depends upon what is stored in the cdr field. When the
set-cdr! procedure is used, an object can be a list one moment and not the next:

(define x (list ’a ’b ’c))
(define y x)

y = (a b <)
(1ist? y) = #t
(set-cdr! x 4) = unspecified
X = (a . 4)
(eqv? x v) = #t

y = (a . 4)
(1ist? y) = #f
(set-cdr! x x) = unspecified
(1ist? y) = #f

A chain of pairs that doesn’t end in the empty list is called an improper list. Note that
an improper list is not a list. The list and dotted notations can be combined to represent
improper lists, as the following equivalent notations show:

! The above definitions imply that all lists have finite length and are terminated by the empty list.
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(abc . d
(a. (. (c. DN

Within literal expressions and representations of objects read by the read procedure, the
forms ’datum, ‘datum, ,datum, and ,@datum denote two-element lists whose first elements
are the symbols quote, quasiquote, unquote, and unquote-splicing, respectively. The
second element in each case is datum. This convention is supported so that arbitrary Scheme
programs may be represented as lists. Among other things, this permits the use of the read
procedure to parse Scheme programs.

7.1 Pairs

This section describes the simple operations that are available for constructing and manip-
ulating arbitrary graphs constructed from pairs.

pair? object [procedure]
Returns #t if object is a pair; otherwise returns #f.

(pair? ’(a . b)) = #t
(pair? ’(a b c)) = #t
(pair? > 0)) = #f
(pair? ’#(a b)) = #f
cons objl obj2 [procedure]

Returns a newly allocated pair whose car is objl and whose cdr is obj2. The pair
is guaranteed to be different (in the sense of eqv?) from every previously existing

object.
(cons ’a () = (a)
(cons ’(a) (b c 4)) = ((@) bcd
(cons "a" (b ¢)) = ("a" b ¢)
(cons ’a 3) = (a . 3)
(cons ’(a b) ’c) = ((ab) . c)
xcons objl obj2 [procedure]
(SRFI 1) Returns a newly allocated pair whose car is obj2 and whose cdr is objI.
(xcons ’(b c) ’a) = (a b c)
car pair [procedure]

Returns the contents of the car field of pair. Note that it is an error to take the car
of the empty list.

(car ’(a b c)) = a
(car ’((a) b c d)) = (a)
(car (1 . 2)) = 1
(car > ()) Illegal datum
cdr pair [procedure]

Returns the contents of the cdr field of pair. Note that it is an error to take the cdr
of the empty list.

(cdr ’((a) b c d)) = (b cd

(cdr (1 . 2)) = 92

(cdr 7 0)) Illegal datum
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car+cdr pair [procedure]
(SRFI 1) The fundamental pair deconstructor:

(lambda (p) (values (car p) (cdr p)))

(receive (a b) (car+cdr (cons 1 2))
(write-line a)
(write-line b))

41

-4 2

set-car! pair object [procedure]
Stores object in the car field of pair. The value returned by set-car! is unspecified.

(define (f) (list ’not-a-constant-list))
(define (g) ’(constant-list))

(set-car! (£f) 3) = unspecified
(set-car! (g) 3) Illegal datum
set-cdr! pair object [procedure]

Stores object in the cdr field of pair. The value returned by set-cdr! is unspecified.

caar pair [procedure]
cadr pair [procedure]
cdar pair [procedure]
cddr pair [procedure]
caaar pair [procedure]
caadr pair [procedure]
cadar pair [procedure]
caddr pair [procedure]
cdaar pair [procedure]
cdadr pair [procedure]
cddar pair [procedure]
cdddr pair [procedure]
caaaar pair [procedure]
caaadr pair [procedure]
caadar pair [procedure]
caaddr pair [procedure]
cadaar pair [procedure]
cadadr pair [procedure]
caddar pair [procedure]
cadddr pair [procedure]
cdaaar pair [procedure]
cdaadr pair [procedure]
cdadar pair [procedure]
cdaddr pair [procedure]
cddaar pair [procedure]
cddadr pair [procedure]
cdddar pair [procedure]
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cddddr pair [procedure]
These procedures are compositions of car and cdr; for example, caddr could be
defined by

(define caddr (lambda (x) (car (cdr (cdr x)))))

general-car-cdr object path [procedure]
This procedure is a generalization of car and cdr. Path encodes a particular sequence
of car and cdr operations, which general-car-cdr executes on object. Path is an
exact non-negative integer that encodes the operations in a bitwise fashion: a zero
bit represents a cdr operation, and a one bit represents a car. The bits are executed
LSB to MSB, and the most significant one bit, rather than being interpreted as an
operation, signals the end of the sequence.?

For example, the following are equivalent:

(general-car-cdr object #b1011)
(cdr (car (car object)))

Here is a partial table of path/operation equivalents:

#b10 cdr
#b11 car
#0100 cddr

#b101 cdar
#b110 cadr
#b111 caar
#1000 cdddr

tree-copy tree [procedure]
(SRFI 1) This copies an arbitrary tree constructed from pairs, copying both the car
and cdr elements of every pair. This could have been defined by

(define (tree-copy tree)
(let loop ((tree tree))
(if (pair? tree)
(cons (loop (car tree)) (loop (cdr tree)))
tree)))

7.2 Construction of Lists

list object ... [procedure]
Returns a list of its arguments.
(1ist ’a (+ 3 4) ’c) = (a7 o0
(list) = 0O
These expressions are equivalent:
(1ist obj1 obj2 ... objN)
(cons objl (cons obj2 ... (comns objN () ...))

2 Note that path is restricted to a machine-dependent range, usually the size of a machine word. On many
machines, this means that the maximum length of path will be 30 operations (32 bits, less the sign bit
and the “end-of-sequence” bit).
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make-list k [element] [procedure]
(SRFI 1) This procedure returns a newly allocated list of length k, whose elements
are all element. If element is not supplied, it defaults to the empty list.

(make-list 4 ’c) = (c cc c)

cons* object object . . . [procedure]
(SRFI 1) cons* is similar to list, except that cons* conses together the last two
arguments rather than consing the last argument with the empty list. If the last
argument is not a list the result is an improper list. If the last argument is a list,
the result is a list consisting of the initial arguments and all of the items in the final
argument. If there is only one argument, the result is the argument.

(cons* ’a ’b ’c) = (ab . c)
(cons* ’a ’b ’(c d)) = (abcd
(cons* ’a) = a

These expressions are equivalent:

(cons* objl obj2 ... objN-1 objN)

(cons obj1 (cons obj2 ... (cons objN-1 objN) ...))
list-tabulate k init-proc [procedure]
make-initialized-1ist k init-proc [procedure]

Returns a k-element list. Element i of the list, where 0 <= i < k, is produced by
(init-proc i). No guarantee is made about the dynamic order in which init-proc is
applied to these indices.

(list-tabulate 4 values) => (0 1 2 3)
list-tabulate is defined by SRFT 1.

list-copy list [procedure]
(SRFI 1) Returns a newly allocated copy of list. This copies each of the pairs com-
prising list. This could have been defined by
(define (list-copy list)
(if (null? 1list)
0]
(cons (car list)
(list-copy (cdr list)))))

iota count [start [stepl] [procedure]
(SRFI 1) Returns a list containing the elements

(start start+step ... start+(count-1)*step)
Count must be an exact non-negative integer, while start and step can be any num-
bers. The start and step parameters default to 0 and 1, respectively.

(iota 5) = (01 2 3 4)

(iota 5 0 -0.1) = (0 -0.1 -0.2 -0.3 -0.4)

vector->list vector [procedure]

subvector->1ist vector start end [procedure]
vector->1list returns a newly allocated list of the elements of vector.
subvector->list returns a newly allocated list of the elements of the given subvector.
The inverse of vector->1list is 1list->vector.
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(vector->list ’#(dah dah didah)) = (dah dah didah)
string->list string [procedure]
substring->1ist string start end [procedure]

string->list returns a newly allocated list of the character elements of string.
substring->1list returns a newly allocated list of the character elements of the given
substring. The inverse of string->1list is list->string.

(string->list "abcd") = (#\a #\b #\c #\d)
(substring->list "abcdef" 1 3) = (#\b #\c)

7.3 Selecting List Components

1list? object [procedure]
Returns #t if object is a list, otherwise returns #f. By definition, all lists have finite
length and are terminated by the empty list. This procedure returns an answer even
for circular structures.

Any object satisfying this predicate will also satisfy exactly one of pair? or null?.

(list? ’(a b ¢)) = #t
(1ist? () = #t
(1ist? ’(a . b)) = #f

(let ((x (1list ’a)))
(set-cdr! x x)

(1ist? x)) = #f
circular-1list? object [procedure]
(SRFI 1) Returns #t if object is a circular list, otherwise returns #£.
(dotted-1ist? (list ’a ’b ’c)) = #f
(dotted-1ist? (cons* ’a ’b ’c)) = #t

(dotted-1ist? (circular-list ’a ’b ’c)) = #f

dotted-1ist? object [procedure]
(SRFI 1) Returns #t if object is an improper list, otherwise returns #£.
(circular-1ist? (list ’a ’b ’c)) = #f
(circular-1ist? (comns* ’a ’b ’c)) = #f

(circular-1list? (circular-list ’a ’b ’c)) = #t

length Iist [procedure]
Returns the length of list. Signals an error if list isn’t a proper list.
(length ’(a b c)) = 3
(length ’(a (b) (c d e))) = 3
(length > ()) =0
(length (circular-list ’a ’b ’c))
length+ clist [procedure]

(SRFI 1) Returns the length of clist, if it is a proper list. Returns #f if clist is a
circular list. Otherwise signals an error.
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(length+ (list ’a ’b ’c)) = 3
(length+ (cons* ’a ’b ’c))
(length+ (circular-list ’a ’b ’c)) = #f
null? object [procedure]
Returns #t if object is the empty list; otherwise returns #£.
(null? ’(a . b)) = #f
(null? ’(a b c)) = #f
(null? ) = #t
list-ref list k [procedure]

Returns the kth element of list, using zero-origin indexing. The valid indexes of a list
are the exact non-negative integers less than the length of the list. The first element
of a list has index 0, the second has index 1, and so on.
(list-ref ’(a b c d) 2) = c
(list-ref ’(a b c d)
(inexact->exact (round 1.8)))
= C

(list-ref list k) is equivalent to (car (list-tail list k)).

first list [procedure]
second list [procedure]
third list [procedure]
fourth Iist [procedure]
fifth Iist [procedure]
sixth Ilist [procedure]
seventh list [procedure]
eighth Iist [procedure]
ninth list [procedure]
tenth list [procedure]

Returns the specified element of list. It is an error if Iist is not long enough to contain
the specified element (for example, if the argument to seventh is a list that contains
only six elements).

7.4 Cutting and Pasting Lists

sublist list start end [procedure]
Start and end must be exact integers satisfying
0 <= start <= end <= (length list)
sublist returns a newly allocated list formed from the elements of list beginning at
index start (inclusive) and ending at end (exclusive).

list-head list k [procedure]
Returns a newly allocated list consisting of the first k elements of list. K must not
be greater than the length of list.
We could have defined 1ist-head this way:
(define (list-head list k)
(sublist list 0 k))
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list-tail list k [procedure]
Returns the sublist of list obtained by omitting the first k elements. The result, if
it is not the empty list, shares structure with list. K must not be greater than the
length of list.

append Iist ... [procedure]
Returns a list consisting of the elements of the first list followed by the elements of
the other lists.

(append ’(x) ’(y)) = (xy)
(append ’(a) ’(b c 4)) = (abcd
(append ’(a (b)) ’((c))) = (a (b) (c))
(append) = O

The resulting list is always newly allocated, except that it shares structure with the
last list argument. The last argument may actually be any object; an improper list
results if the last argument is not a proper list.

(append ’(a b) ’(c . d)) = (abc . d
(append () ’a) = a
append! Iist ... [procedure]

Returns a list that is the argument lists concatenated together. The arguments are
changed rather than copied. (Compare this with append, which copies arguments
rather than destroying them.) For example:

(define x ’(a b ¢))

(define y ’(d e £))
(define z ’(g h))

(append! x y z) = (abcdefgh)
X = (abcdefgh)
y = (def gh)
z = (g h)
last-pair list [procedure]

Returns the last pair in list, which may be an improper list. last-pair could have
been defined this way:

(define last-pair
(lambda (x)
(if (pair? (cdr x))
(last-pair (cdr x))

x)))
except-last-pair Ilist [procedure]
except-last-pair! Iist [procedure]

These procedures remove the last pair from list. List may be an improper list, except
that it must consist of at least one pair. except-last-pair returns a newly allocated
copy of list that omits the last pair. except-last-pair! destructively removes the
last pair from list and returns list. If the cdr of list is not a pair, the empty list is
returned by either procedure.
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7.5 Filtering Lists

filter predicate list [procedure]
(SRFI 1) Returns a newly allocated copy of list containing only the elements satisfying
predicate. Predicate must be a procedure of one argument.

(filter odd? (1 23 4 5)) = (1 35)

The non-standard procedure keep-matching-items (and its alias list-transform-
positive) are the same except that its arguments are reversed.

remove predicate list [procedure]
(SRFI 1) Like filter, except that the returned list contains only those elements not
satisfying predicate.

(remove odd? ’(1 2 3 4 5)) = (2 4)

The non-standard procedure delete-matching-items (and its alias list-
transform-negative) are the same except that its arguments are reversed.

partition predicate list [procedure]
(SRFI 1) Partitions the elements of list with predicate, and returns two values: the list
of in-elements and the list of out-elements. The list is not disordered—elements occur
in the result lists in the same order as they occur in the argument list. The dynamic
order in which the various applications of predicate are made is not specified. One
of the returned lists may share a common tail with the argument list.

(partition symbol? ’(one 2 3 four five 6)) =>
(one four five)

(2 36)
filter! predicate list [procedure]
remove! predicate list [procedure]
partition! predicate list [procedure]

(SRFI 1) Linear-update variants of filter, remove and partition. These procedures
are allowed, but not required, to alter the cons cells in the argument 1ist to construct
the result lists.

The non-standard procedures keep-matching-items! and delete-matching-
items! bear a similar relationship to keep-matching-items and delete-matching-
items, respectively.

delq element list [procedure]
delv element list [procedure]
delete element list [procedure]

Returns a newly allocated copy of list with all entries equal to element removed. delq
uses eq? to compare element with the entries in list, delv uses eqv?, and delete uses

equal?.
delq! element list [procedure]
delv! element list [procedure]
delete! element list [procedure]

Returns a list consisting of the top-level elements of list with all entries equal to
element removed. These procedures are like delq, delv, and delete except that
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they destructively modify list. delq! uses eq? to compare element with the entries
in list, delv! uses eqv?, and delete! uses equal?. Because the result may not be
eq? to list, it is desirable to do something like (set! x (delete! x)).

(define x ’(a b ¢ b))

(delete ’b x) = (a ¢)

X = (a bcb)

(define x ’(a b ¢ b))

(delete! ’b x) = (a c)

b = (a ¢)

;; Returns correct result:

(delete! ’a x) = (c)

;; Didn’t modify what x points to:

X = (a ¢)

delete-member-procedure deletor predicate [procedure]

Returns a deletion procedure similar to delv or delete!. Deletor should be one of
the procedures list-deletor or list-deletor!. Predicate must be an equivalence
predicate. The returned procedure accepts exactly two arguments: first, an object to
be deleted, and second, a list of objects from which it is to be deleted. If deletor is
list-deletor, the procedure returns a newly allocated copy of the given list in which
all entries equal to the given object have been removed. If deletor is 1ist-deletor!,
the procedure returns a list consisting of the top-level elements of the given list with
all entries equal to the given object removed; the given list is destructively modified
to produce the result. In either case predicate is used to compare the given object to
the elements of the given list.
Here are some examples that demonstrate how delete-member-procedure could have
been used to implement delv and delete!:

(define delv

(delete-member-procedure list-deletor eqv?))
(define delete!
(delete-member-procedure list-deletor! equal?))

list-deletor predicate [procedure]

list-deletor! predicate [procedure]

These procedures each return a procedure that deletes elements from lists. Predicate
must be a procedure of one argument. The returned procedure accepts exactly one
argument, which must be a proper list, and applies predicate to each of the elements
of the argument, deleting those for which it is true.

The procedure returned by list-deletor deletes elements non-destructively, by re-
turning a newly allocated copy of the argument with the appropriate elements re-
moved. The procedure returned by list-deletor! performs a destructive deletion.
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7.6 Searching Lists

find predicate list [procedure]
(SRFI 1) Returns the first element in list for which predicate is true; returns #f if it
doesn’t find such an element. Predicate must be a procedure of one argument.

(find even? (31415 9)) =>4

Note that find has an ambiguity in its lookup semantics—if find returns #f, you
cannot tell (in general) if it found a #f element that satisfied predicate, or if it did not
find any element at all. In many situations, this ambiguity cannot arise—either the
list being searched is known not to contain any #f elements, or the list is guaranteed
to have an element satisfying predicate. However, in cases where this ambiguity can
arise, you should use find-tail instead of find—find-tail has no such ambiguity:

(cond ((find-tail pred lis)
=> (lambda (pair) ...)) ; Handle (CAR PAIR)
(else ...)) ; Search failed.

The non-standard find-matching-item procedure (and its alias list-search-
positive) works identically except that its argument order is reversed.
list-search-negative is similar to list-search-positive but the sense of the
predicate is reversed.

find-tail predicate list [procedure]
(SRFI 1) Returns the first pair of list whose car satisfies predicate; returns #£ if there’s
no such pair. find-tail can be viewed as a general-predicate variant of memv.

memq object list [procedure]
memv object list [procedure]
member object list [procedure]

These procedures return the first pair of list whose car is object; the returned pair
is always one from which list is composed. If object does not occur in Iist, #f (n.b.:
not the empty list) is returned. memq uses eq? to compare object with the elements
of list, while memv uses eqv? and member uses equal?.?

(memq ’a ’(a b ¢)) = (a b c)

(memq ’b ’(a b c)) = (b ¢)

(memg ’a ’(b ¢ d)) = #f

(memq (list ’a) ’(b (a) c)) = #f

(member (list ’a) ’(b (a) c)) = ((a) ©)

(memg 101 °(100 101 102)) = unspecified

(memv 101 ’ (100 101 102)) = (101 102)
member-procedure predicate [procedure]

Returns a procedure similar to memq, except that predicate, which must be an equiv-
alence predicate, is used instead of eq?. This could be used to define memv as follows:

(define memv (member-procedure eqv?))

3 Although they are often used as predicates, memqg, memv, and member do not have question marks in their
names because they return useful values rather than just #t or #f£.



120 MIT/GNU Scheme 7.7.90+

7.7 Mapping of Lists

map procedure list list . . . [procedure]
Procedure must be a procedure taking as many arguments as there are lists. If more
than one list is given, then they must all be the same length. map applies procedure
element-wise to the elements of the lists and returns a list of the results, in order from
left to right. The dynamic order in which procedure is applied to the elements of the
lists is unspecified; use for-each to sequence side effects.

(map cadr ’((a b) (d e) (g h))) = (b e h)
(map (lambda (n) (expt n n)) (1 2 3 4)) = (1 4 27 256)
(map + (1 2 3) ’(4 5 6)) = (679

(let ((count 0))
(map (lambda (ignored)
(set! count (+ count 1))
count)
’(a b c))) = unspecified

map* initial-value procedure list1 list2 . . . [procedure]
Similar to map, except that the resulting list is terminated by initial-value rather than
the empty list. The following are equivalent:

(map procedure list list ...)

(map* ’() procedure list list ...)
append-map procedure list list . . . [procedure]
append-map#* initial-value procedure list list . . . [procedure]

Similar to map and map*, respectively, except that the results of applying procedure
to the elements of lists are concatenated together by append rather than by cons.
The following are equivalent, except that the former is more efficient:

(append-map procedure list list ...)
(apply append (map procedure list list ...))

append-map! procedure list list . . . [procedure]

append-map*! initial-value procedure list list . . . [procedure]
Similar to map and map*, respectively, except that the results of applying procedure
to the elements of lists are concatenated together by append! rather than by cons.
The following are equivalent, except that the former is more efficient:

(append-map! procedure list 1list ...)
(apply append! (map procedure list list ...))

for-each procedure list list . . . [procedure]
The arguments to for-each are like the arguments to map, but for-each calls proce-
dure for its side effects rather than for its values. Unlike map, for-each is guaranteed
to call procedure on the elements of the lists in order from the first element to the
last, and the value returned by for-each is unspecified.
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(let ((v (make-vector 5)))
(for-each (lambda (i)
(vector-set! v i (x i 1i)))
(01 2 3 4))
V) = #(0 1 4 9 16)

7.8 Reduction of Lists

reduce-left procedure initial list [procedure]
Combines all the elements of list using the binary operation procedure. For example,
using + one can add up all the elements:

(reduce-left + 0 list-of-numbers)
The argument initial is used only if list is empty; in this case initial is the result of

the call to reduce-left. If list has a single argument, it is returned. Otherwise, the
arguments are reduced in a left-associative fashion. For example:

(reduce-left + 0 (1 2 3 4)) = 10
(reduce-left + 0 ’(1 2)) = 3
(reduce-left + 0 ’(1)) =1
(reduce-left + 0 *()) = 0
(reduce-left + 0 ’(fo00)) = foo
(reduce-left list ’() (1 2 3 4)) = (((1 2) 3) 4

reduce-right procedure initial list [procedure]
Like reduce-left except that it is right-associative.

(reduce-right list () (1 2 3 4)) = 12 GcGH)N

fold-right procedure initial list [procedure]
Combines all of the elements of list using the binary operation procedure. Unlike
reduce-left and reduce-right, initial is always used:

(fold-right + 0 ’(1 2 3 4)) = 10
(fold-right + 0 ’(foo0)) Illegal datum
(fold-right list () ’(1 2 3 4)) = (12 G @&ONN

Fold-right has interesting properties because it establishes a homomorphism be-
tween (cons, ()) and (procedure, initial). It can be thought of as replacing the
pairs in the spine of the list with procedure and replacing the () at the end with
initial. Many of the classical list-processing procedures can be expressed in terms of
fold-right, at least for the simple versions that take a fixed number of arguments:
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(define (copy-list list)
(fold-right cons ’() list))
(define (append listl 1ist2)
(fold-right comns list2 list1))
(define (map p list)
(fold-right (lambda (x r) (coms (p x) r)) ’() list))
(define (reverse items)
(fold-right (lambda (x r) (append r (list x))) ’() items))
fold-left procedure initial list [procedure]
Combines all the elements of list using the binary operation procedure. Elements are
combined starting with initial and then the elements of list from left to right. Whereas
fold-right is recursive in nature, capturing the essence of cdr-ing down a list and
then computing a result, fold-left is iterative in nature, combining the elements as
the list is traversed.
(fold-left 1list () ’(1 2 3 4)) = (((CO 1) 2) 3) 4
(define (length list)
(fold-left (lambda (sum element) (+ sum 1)) O list))
(define (reverse items)
(fold-left (lambda (x y) (cons y x)) () items))
any predicate list list . . . [procedure]

(SRFI 1) Applies predicate across the lists, returning true if predicate returns true on
any application.
If there are n list arguments list1 . .. listn, then predicate must be a procedure taking
n arguments and returning a boolean result.
any applies predicate to the first elements of the list parameters. If this application
returns a true value, any immediately returns that value. Otherwise, it iterates,
applying predicate to the second elements of the list parameters, then the third, and
so forth. The iteration stops when a true value is produced or one of the lists runs
out of values; in the latter case, any returns #f£. The application of predicate to the
last element of the Iists is a tail call.
Note the difference between find and any—find returns the element that satisfied
the predicate; any returns the true value that the predicate produced.
Like every, any’s name does not end with a question mark—this is to indicate that
it does not return a simple boolean (#t or #f), but a general value.

(any integer? ’(a 3 b 2.7)) => #t

(any integer? ’(a 3.1 b 2.7)) => #f

(any < (3141 5)

(27 18 2)) => #t

The non-standard procedure there-exists? is similar, except that it takes a single
list and a predicate argument, in that order.
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every predicate list list . . . [procedure]
(SRFI 1) Applies predicate across the lists, returning true if predicate returns true on
every application.

If there are n list arguments list1 . .. listn, then predicate must be a procedure taking
n arguments and returning a boolean result.

every applies predicate to the first elements of the list parameters. If this application
returns false, every immediately returns false. Otherwise, it iterates, applying pred-
icate to the second elements of the list parameters, then the third, and so forth. The
iteration stops when a false value is produced or one of the lists runs out of values.
In the latter case, every returns the true value produced by its final application of
predicate. The application of predicate to the last element of the lists is a tail call.

If one of the clisti has no elements, every simply returns #t.

Like any, every’s name does not end with a question mark—this is to indicate that
it does not return a simple boolean (#t or #f), but a general value.

The non-standard procedure for-all? is similar, except that it takes a single list and
a predicate argument, in that order.

7.9 Miscellaneous List Operations

circular-list object . .. [procedure]

make-circular-1list k [element] [procedure]
These procedures are like 1ist and make-1ist, respectively, except that the returned
lists are circular. circular-1list could have been defined like this:

(define (circular-list . objects)
(append! objects objects))

circular-1list is compatible with SRFT 1, but extended so that it can be called with
no arguments.

reverse list [procedure]
Returns a newly allocated list consisting of the top-level elements of list in reverse
order.
(reverse ’(a b ¢)) = (c b a)
(reverse ’(a (b c) d (e (£)))) = ((e (£)) d (b c) a)
reverse! list [procedure]

Returns a list consisting of the top-level elements of list in reverse order. reverse!
is like reverse, except that it destructively modifies list. Because the result may not
be eqv? to list, it is desirable to do something like (set! x (reverse! x)).

sort sequence procedure [procedure]
merge-sort sequence procedure [procedure]
quick-sort sequence procedure [procedure]

Sequence must be either a list or a vector. Procedure must be a procedure of two
arguments that defines a total ordering on the elements of sequence. In other words,
if x and y are two distinct elements of sequence, then it must be the case that
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(and (procedure x y)
(procedure y x))
= #f

If sequence is a list (vector), sort returns a newly allocated list (vector) whose ele-
ments are those of sequence, except that they are rearranged to be sorted in the order
defined by procedure. So, for example, if the elements of sequence are numbers, and
procedure is <, then the resulting elements are sorted in monotonically nondecreasing
order. Likewise, if procedure is >, the resulting elements are sorted in monotonically
nonincreasing order. To be precise, if x and y are any two adjacent elements in the
result, where x precedes y, it is the case that

(procedure y x)
= #f

Two sorting algorithms are implemented: merge-sort and quick-sort. The proce-
dure sort is an alias for merge-sort.

See also the definition of sort!.
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8 Vectors

Vectors are heterogenous structures whose elements are indexed by exact non-negative
integers. A vector typically occupies less space than a list of the same length, and the
average time required to access a randomly chosen element is typically less for the vector
than for the list.

The length of a vector is the number of elements that it contains. This number is an
exact non-negative integer that is fixed when the vector is created. The valid indexes of
a vector are the exact non-negative integers less than the length of the vector. The first
element in a vector is indexed by zero, and the last element is indexed by one less than the
length of the vector.

Vectors are written using the notation #(object ...). For example, a vector of length
3 containing the number zero in element 0, the list (2 2 2 2) in element 1, and the string
"Anna" in element 2 can be written as

#(0 (2 2 2 2) "Anna")

Note that this is the external representation of a vector, not an expression evaluating to a
vector. Like list constants, vector constants must be quoted:

*#(0 (2 2 2 2) "Anna") = #(0 (2 2 2 2) "Anna")

A number of the vector procedures operate on subvectors. A subvector is a segment of a
vector that is specified by two exact non-negative integers, start and end. Start is the index
of the first element that is included in the subvector, and end is one greater than the index
of the last element that is included in the subvector. Thus if start and end are the same,
they refer to a null subvector, and if start is zero and end is the length of the vector, they
refer to the entire vector. The valid indexes of a subvector are the exact integers between
start inclusive and end exclusive.

8.1 Construction of Vectors

make-vector k [object] [procedure]
Returns a newly allocated vector of k elements. If object is specified, make-vector
initializes each element of the vector to object. Otherwise the initial elements of the
result are unspecified.

vector object . .. [procedure]
Returns a newly allocated vector whose elements are the given arguments. vector is
analogous to list.

(vector ’a ’b ’c) = #(a b c)

vector-copy vector [procedure]
Returns a newly allocated vector that is a copy of vector.

list->vector Iist [procedure]
Returns a newly allocated vector initialized to the elements of list. The inverse of
list->vector is vector->1list.

(list->vector ’(dididit dah)) = #(dididit dah)
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make-initialized-vector k initialization [procedure]
Similar to make-vector, except that the elements of the result are determined by
calling the procedure initialization on the indices. For example:

(make-initialized-vector 5 (lambda (x) (* x x)))
= #(0 1 4 9 16)

vector-grow vector k [procedure]
K must be greater than or equal to the length of vector. Returns a newly allocated
vector of length k. The first (vector-length vector) elements of the result are
initialized from the corresponding elements of vector. The remaining elements of the
result are unspecified.

vector-map procedure vector [procedure]
Procedure must be a procedure of one argument. vector-map applies procedure
element-wise to the elements of vector and returns a newly allocated vector of the
results, in order from left to right. The dynamic order in which procedure is applied
to the elements of vector is unspecified.

(vector-map cadr ’#((a b) (d e) (g h))) = #(b e h)
(vector-map (lambda (n) (expt n n)) ’#(1 2 3 4))

= #(1 4 27 256)
(vector-map + ’#(5 7 9)) = #(57 9)

8.2 Selecting Vector Components

vector? object [procedure]
Returns #t if object is a vector; otherwise returns #f.

vector-length vector [procedure]
Returns the number of elements in vector.

vector-ref vector k [procedure]
Returns the contents of element k of vector. K must be a valid index of vector.

(vector-ref ’#(1 1 2 3 5 8 13 21) 5) = 8

vector-set! vector k object [procedure]
Stores object in element k of vector and returns an unspecified value. K must be a
valid index of vector.

(let ((vec (vector 0 ’(2 2 2 2) "Anna")))
(vector-set! vec 1 ’("Sue" "Sue"))
vec)
= #(0 ("Sue" "Sue") "Anna")

vector-first vector procedure
vector-second vector procedure
vector-third vector procedure

vector-fifth vector procedure

[ ]
[ |
[ |
vector-fourth vector [procedure]
[ ]
vector-sixth vector [procedure]
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vector-seventh vector [procedure]
vector-eighth vector [procedure]
These procedures access the first several elements of vector in the obvious way. It is
an error if the implicit index of one of these procedurs is not a valid index of vector.

vector-binary-search vector key<? unwrap-key key [procedure]
Searches vector for an element with a key matching key, returning the element if one
is found or #f if none. The search operation takes time proportional to the logarithm
of the length of vector. Unwrap-key must be a procedure that maps each element of
vector to a key. Key<? must be a procedure that implements a total ordering on the
keys of the elements.

(define (translate number)
(vector-binary-search *#((1 . i)

(2 . ii)
(3 . iii)
(6 . vi))

< car number))
(translate 2) = (2 . ii)
(translate 4) = #F

8.3 Cutting Vectors

subvector vector start end [procedure]

Returns a newly allocated vector that contains the elements of vector between index
start (inclusive) and end (exclusive).

vector-head vector end [procedure]
Equivalent to
(subvector vector 0 end)
vector-tail vector start [procedure]
Equivalent to

(subvector vector start (vector-length vector))

8.4 Modifying Vectors

vector-fill! vector object [procedure]

subvector-fill! vector start end object [procedure]
Stores object in every element of the vector (subvector) and returns an unspecified
value.

subvector-move-left! vectorl startl endl vector2 start2 [procedure]

subvector-move-right! vectorl startl endl vector2 start2 [procedure]

Destructively copies the elements of vectorl, starting with index startl (inclusive)
and ending with endl (exclusive), into vector2 starting at index start2 (inclusive).
Vectorl, startl, and endl must specify a valid subvector, and start2 must be a valid
index for vector2. The length of the source subvector must not exceed the length of
vector2 minus the index start2.
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The elements are copied as follows (note that this is only important when vectorl
and vector2 are eqv?):

subvector-move-left!
The copy starts at the left end and moves toward the right (from smaller
indices to larger). Thus if vectorl and vector2 are the same, this proce-
dure moves the elements toward the left inside the vector.

subvector-move-right!
The copy starts at the right end and moves toward the left (from larger
indices to smaller). Thus if vectorl and vector2 are the same, this pro-
cedure moves the elements toward the right inside the vector.

sort! vector procedure [procedure]
merge-sort! vector procedure [procedure]
quick-sort! vector procedure [procedure]

Procedure must be a procedure of two arguments that defines a total ordering on the
elements of vector. The elements of vector are rearranged so that they are sorted in
the order defined by procedure. The elements are rearranged in place, that is, vector
is destructively modified so that its elements are in the new order.

sort! returns vector as its value.

Two sorting algorithms are implemented: merge-sort! and quick-sort!. The pro-
cedure sort! is an alias for merge-sort!.

See also the definition of sort.
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9 Bit Strings

A bit string is a sequence of bits. Bit strings can be used to represent sets or to manipulate
binary data. The elements of a bit string are numbered from zero up to the number of bits
in the string less one, in right to left order, (the rightmost bit is numbered zero). When you
convert from a bit string to an integer, the zero-th bit is associated with the zero-th power
of two, the first bit is associated with the first power, and so on.

Bit strings are encoded very densely in memory. Each bit occupies exactly one bit of
storage, and the overhead for the entire bit string is bounded by a small constant. However,
accessing a bit in a bit string is slow compared to accessing an element of a vector or
character string. If performance is of overriding concern, it is better to use character strings
to store sets of boolean values even though they occupy more space.

The length of a bit string is the number of bits that it contains. This number is an exact
non-negative integer that is fixed when the bit string is created. The valid indexes of a bit
string are the exact non-negative integers less than the length of the bit string.

Bit strings may contain zero or more bits. They are not limited by the length of a
machine word. In the printed representation of a bit string, the contents of the bit string
are preceded by ‘#*’. The contents are printed starting with the most significant bit (highest
index).

Note that the external representation of bit strings uses a bit ordering that is the reverse
of the representation for bit strings in Common Lisp. It is likely that MIT/GNU Scheme’s
representation will be changed in the future, to be compatible with Common Lisp. For the
time being this representation should be considered a convenience for viewing bit strings
rather than a means of entering them as data.

#x11111
#x1010
#%00000000
#*

All of the bit-string procedures are MIT/GNU Scheme extensions.

9.1 Construction of Bit Strings

make-bit-string k initialization [procedure]
Returns a newly allocated bit string of length k. If initialization is #f, the bit string
is filled with O bits; otherwise, the bit string is filled with 1 bits.

(make-bit-string 7 #f) = #*0000000

bit-string-allocate k [procedure]
Returns a newly allocated bit string of length k, but does not initialize it.

bit-string-copy bit-string [procedure]
Returns a newly allocated copy of bit-string.
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9.2 Selecting Bit String Components

bit-string? object [procedure]
Returns #t if object is a bit string; otherwise returns #f.

bit-string-length bit-string [procedure]
Returns the length of bit-string.

bit-string-ref bit-string k [procedure]
Returns #t if the kth bit is 1; otherwise returns #f. K must be a valid index of
bit-string.

bit-string-set! bit-string k [procedure]

Sets the kth bit in bit-string to 1 and returns an unspecified value. K must be a valid
index of bit-string.

bit-string-clear! bit-string k [procedure]
Sets the kth bit in bit-string to 0 and returns an unspecified value. K must be a valid
index of bit-string.

bit-substring-find-next-set-bit bit-string start end [procedure]
Returns the index of the first occurrence of a set bit in the substring of bit-string
from start (inclusive) to end (exclusive). If none of the bits in the substring are set
#f is returned. The index returned is relative to the whole bit string, not substring.

The following procedure uses bit-substring-find-next-set-bit to find all the set
bits and display their indexes:

(define (scan-bitstring bs)
(let ((end (bit-string-length bs)))
(let loop ((start 0))
(let ((next
(bit-substring-find-next-set-bit bs start end)))
(if next
(begin
(write-line next)
(if (< next end)
(loop (+ next 1)))))))))

9.3 Cutting and Pasting Bit Strings

bit-string-append bit-string-1 bit-string-2 [procedure]
Appends the two bit string arguments, returning a newly allocated bit string as its
result. In the result, the bits copied from bit-string-1 are less significant (smaller
indices) than those copied from bit-string-2.

bit-substring bit-string start end [procedure]
Returns a newly allocated bit string whose bits are copied from bit-string, starting
at index start (inclusive) and ending at end (exclusive).
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9.4 Bitwise Operations on Bit Strings

bit-string-zero? bit-string [procedure]
Returns #t if bit-string contains only 0 bits; otherwise returns #f.

bit-string=7? bit-string-1 bit-string-2 [procedure]
Compares the two bit string arguments and returns #t if they are the same length
and contain the same bits; otherwise returns #f.

bit-string-not bit-string [procedure]
Returns a newly allocated bit string that is the bitwise-logical negation of bit-string.

bit-string-movec! target-bit-string bit-string [procedure]
The destructive version of bit-string-not. The arguments target-bit-string and
bit-string must be bit strings of the same length. The bitwise-logical negation of
bit-string is computed and the result placed in target-bit-string. The value of this
procedure is unspecified.

bit-string-and bit-string-1 bit-string-2 [procedure]
Returns a newly allocated bit string that is the bitwise-logical “and” of the arguments.
The arguments must be bit strings of identical length.

bit-string-andc bit-string-1 bit-string-2 [procedure]
Returns a newly allocated bit string that is the bitwise-logical “and” of bit-string-1
with the bitwise-logical negation of bit-string-2. The arguments must be bit strings
of identical length.

bit-string-or bit-string-1 bit-string-2 [procedure]
Returns a newly allocated bit string that is the bitwise-logical “inclusive or” of the
arguments. The arguments must be bit strings of identical length.

bit-string-xor bit-string-1 bit-string-2 [procedure]
Returns a newly allocated bit string that is the bitwise-logical “exclusive or” of the
arguments. The arguments must be bit strings of identical length.

bit-string-and! target-bit-string bit-string [procedure]

bit-string-or! target-bit-string bit-string [procedure]

bit-string-xor! target-bit-string bit-string [procedure]

bit-string-andc! target-bit-string bit-string [procedure]
These are destructive versions of the above operations. The arguments target-bit-
string and bit-string must be bit strings of the same length. Each of these procedures
performs the corresponding bitwise-logical operation on its arguments, places the
result into target-bit-string, and returns an unspecified result.

9.5 Modification of Bit Strings

bit-string-fill! bit-string initialization [procedure]
Fills bit-string with zeroes if initialization is #£; otherwise fills bit-string with ones.
Returns an unspecified value.
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bit-string-move! target-bit-string bit-string [procedure]
Moves the contents of bit-string into target-bit-string. Both arguments must be bit
strings of the same length. The results of the operation are undefined if the arguments
are the same bit string.

bit-substring-move-right! bit-string-1 startl endl bit-string-2 start2  [procedure]
Destructively copies the bits of bit-string-1, starting at index startl (inclusive) and
ending at endl (exclusive), into bit-string-2 starting at index start2 (inclusive). Startl
and endl must be valid substring indices for bit-string-1, and start2 must be a valid
index for bit-string-2. The length of the source substring must not exceed the length
of bit-string-2 minus the index start2.

The bits are copied starting from the MSB and working towards the LSB; the direction
of copying only matters when bit-string-1 and bit-string-2 are eqv?.

9.6 Integer Conversions of Bit Strings

unsigned-integer->bit-string length integer [procedure]
Both length and integer must be exact non-negative integers. Converts integer into
a newly allocated bit string of length bits. Signals an error of type condition-
type:bad-range-argument if integer is too large to be represented in length bits.

signed-integer->bit-string length integer [procedure]
Length must be an exact non-negative integer, and integer may be any exact inte-
ger. Converts integer into a newly allocated bit string of length bits, using two’s
complement encoding for negative numbers. Signals an error of type condition-
type:bad-range-argument if integer is too large to be represented in length bits.

bit-string->unsigned-integer bit-string [procedure]

bit-string->signed-integer bit-string [procedure]
Converts bit-string into an exact integer. bit-string->signed-integer regards
bit-string as a two’s complement representation of a signed integer, and produces
an integer of like sign and absolute value. bit-string->unsigned-integer regards
bit-string as an unsigned quantity and converts to an integer accordingly.
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10 Miscellaneous Datatypes

10.1 Booleans

The boolean objects are true and false. The boolean constant true is written as ‘#t’, and
the boolean constant false is written as ‘#f’.

The primary use for boolean objects is in the conditional expressions if, cond, and, and
or; the behavior of these expressions is determined by whether objects are true or false.
These expressions count only #f as false. They count everything else, including #t, pairs,
symbols, numbers, strings, vectors, and procedures as true (but see Section 1.2.5 [True and
False], page 8).

Programmers accustomed to other dialects of Lisp should note that Scheme distinguishes
#f and the empty list from the symbol nil. Similarly, #t is distinguished from the symbol
t. In fact, the boolean objects (and the empty list) are not symbols at all.

Boolean constants evaluate to themselves, so you don’t need to quote them.

#t = #t

#f = #f

H#E = #f

t Unbound variable
false [variable]
true [variable]

These variables are bound to the objects #f and #t respectively. The compiler, given
the usual-integrations declaration, replaces references to these variables with their
respective values.

Note that the symbol true is not equivalent to #t, and the symbol false is not
equivalent to #f.

boolean? object [procedure]
Returns #t if object is either #t or #f; otherwise returns #£.
(boolean? #f) = #t
(boolean? 0) = #f

not object [procedure]

false? object [procedure]

These procedures return #t if object is false; otherwise they return #f. In other
words they invert boolean values. These two procedures have identical semantics;
their names are different to give different connotations to the test.

(not #t) = #f
(not 3) = #f
(not (1list 3)) = #f
(not #f) = #t
boolean=7 objl obj2 [procedure]

This predicate is true iff objl and obj2 are either both true or both false.
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boolean/and object . .. [procedure]
This procedure returns #t if none of its arguments are #f. Otherwise it returns #f.

boolean/or object . .. [procedure]
This procedure returns #£ if all of its arguments are #f. Otherwise it returns #t.

10.2 Symbols

MIT/GNU Scheme provides two types of symbols: interned and uninterned. Interned
symbols are far more common than uninterned symbols, and there are more ways to create
them. Interned symbols have an external representation that is recognized by the procedure
read; uninterned symbols do not.!

Interned symbols have an extremely useful property: any two interned symbols whose
names are the same, in the sense of string=?, are the same object (i.e. they are eq? to one
another). The term interned refers to the process of interning by which this is accomplished.
Uninterned symbols do not share this property.

The names of interned symbols are not distinguished by their alphabetic case. Because
of this, MIT/GNU Scheme converts all alphabetic characters in the name of an interned
symbol to a specific case (lower case) when the symbol is created. When the name of an
interned symbol is referenced (using symbol->string) or written (using write) it appears
in this case. It is a bad idea to depend on the name being lower case. In fact, it is preferable
to take this one step further: don’t depend on the name of a symbol being in a uniform
case.

The rules for writing an interned symbol are the same as the rules for writing an identifier
(see Section 1.3.3 [Identifiers|, page 10). Any interned symbol that has been returned as
part of a literal expression, or read using the read procedure and subsequently written out
using the write procedure, will read back in as the identical symbol (in the sense of eq?).

Usually it is also true that reading in an interned symbol that was previously written out
produces the same symbol. An exception are symbols created by the procedures string-
>symbol and intern; they can create symbols for which this write/read invariance may not
hold because the symbols’ names contain special characters or letters in the non-standard
case.?

The external representation for uninterned symbols is special, to distinguish them from
interned symbols and prevent them from being recognized by the read procedure:

1 Tn older dialects of Lisp, uninterned symbols were fairly important. This was true because symbols were
complicated data structures: in addition to having value cells (and sometimes, function cells), these
structures contained property lists. Because of this, uninterned symbols were often used merely for
their property lists — sometimes an uninterned symbol used this way was referred to as a disembodied
property list. In MIT/GNU Scheme, symbols do not have property lists, or any other components besides
their names. There is a different data structure similar to disembodied property lists: one-dimensional
tables (see Section 11.2 [1D Tables|, page 147). For these reasons, uninterned symbols are not very useful
in MIT/GNU Scheme. In fact, their primary purpose is to simplify the generation of unique variable
names in programs that generate Scheme code.

MIT/GNU Scheme reserves a specific set of interned symbols for its own use. If you use these reserved
symbols it is possible that you could break specific pieces of software that depend on them. The reserved
symbols all have names beginning with the characters ‘#[’ and ending with the character ‘]’; thus none
of these symbols can be read by the procedure read and hence are not likely to be used by accident. For
example, (intern "#[unnamed-procedure]") produces a reserved symbol.
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(string->uninterned-symbol "foo")
= #[uninterned-symbol 30 foo]

In this section, the procedures that return symbols as values will either always return
interned symbols, or always return uninterned symbols. The procedures that accept sym-
bols as arguments will always accept either interned or uninterned symbols, and do not
distinguish the two.

symbol? object [procedure]
Returns #t if object is a symbol, otherwise returns #£.
(symbol? ’foo) = #t
(symbol? (car ’(a b))) = #t
(symbol? "bar") = #f
symbol->string symbol [procedure]

Returns the name of symbol as a string. If symbol was returned by string->symbol,
the value of this procedure will be identical (in the sense of string=7) to the string
that was passed to string->symbol. It is an error to apply mutation procedures such
as string-set! to strings returned by this procedure.

(symbol->string ’flying-fish) = "flying-fish"

(symbol->string ’Martin) = '"martin"

(symbol->string (string->symbol "Malvina"))

= "Malvina"

Note that two distinct uninterned symbols can have the same name.

intern string [procedure]
Returns the interned symbol whose name is string. Converts string to the standard
alphabetic case before generating the symbol. This is the preferred way to create
interned symbols, as it guarantees the following independent of which case the imple-
mentation uses for symbols’ names:

(eq? ’bitBlt (intern "bitBlt")) = #t

The user should take care that string obeys the rules for identifiers (see Section 1.3.3
[Identifiers], page 10), otherwise the resulting symbol cannot be read as itself.

intern-soft string [procedure]
Returns the interned symbol whose name is string. Converts string to the standard
alphabetic case before generating the symbol. If no such interned symbol exists,
returns #f.

This is exactly like intern, except that it will not create an interned symbol, but
only returns symbols that already exist.

string->symbol string [procedure]
Returns the interned symbol whose name is string. Although you can use this proce-
dure to create symbols with names containing special characters or lowercase letters,
it’s usually a bad idea to create such symbols because they cannot be read as them-
selves. See symbol->string.
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(eq? ’mISSISSIppi ’mississippi) = #t
(string->symbol "mISSISSIppi")
= the symbol with the name "mISSISSIppi"
(eq? ’bitBlt (string->symbol "bitBlt")) = #f
(eq? ’JollyWog
(string->symbol
(symbol->string ’JollyWog))) = #t
(string=7 "K. Harper, M.D."
(symbol->string
(string->symbol
"K. Harper, M.D."))) = #t

string->uninterned-symbol string
Returns a newly allocated uninterned symbol whose name is string. It is unimportant
what case or characters are used in string.

Note: this is the fastest way to make a symbol.

generate-uninterned-symbol [object]
Returns a newly allocated uninterned symbol that is guaranteed to be different from
any other object. The symbol’s name consists of a prefix string followed by the (exact
non-negative integer) value of an internal counter. The counter is initially zero, and
is incremented after each call to this procedure.

[procedure]

[procedure]

The optional argument object is used to control how the symbol is generated. It may
take one of the following values:

If object is omitted or #f, the prefix is "G".

If object is an exact non-negative integer, the internal counter is set to that
integer prior to generating the result.

If object is a string, it is used as the prefix.
If object is a symbol, its name is used as the prefix.

(generate-uninterned-symbol)

= #[uninterned-symbol 31 GO]
(generate-uninterned-symbol)

= #[uninterned-symbol 32 G1]
(generate-uninterned-symbol ’this)

= #[uninterned-symbol 33 this2]
(generate-uninterned-symbol)

= #[uninterned-symbol 34 G3]
(generate-uninterned-symbol 100)

= #[uninterned-symbol 35 G100]
(generate-uninterned-symbol)

= #[uninterned-symbol 36 G101]

symbol-append symbol . ..
Returns the interned symbol whose name is formed by concatenating the names of
the given symbols. This procedure preserves the case of the names of its arguments,
so if one or more of the arguments’ names has non-standard case, the result will also
have non-standard case.

[procedure]
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(symbol-append ’foo- ’bar) = foo-bar
;; the arguments may be uninterned:
(symbol-append ’foo- (string->uninterned-symbol "baz"))
= foo-baz
;; the result has the same case as the arguments:
(symbol-append ’foo- (string->symbol "BAZ")) = foo-BAZ

symbol-hash symbol [procedure]
Returns a hash number for symbol, which is computed by calling string-hash on
symbol’s name. The hash number is an exact non-negative integer.

symbol-hash-mod symbol modulus [procedure]
Modulus must be an exact positive integer. Equivalent to

(modulo (symbol-hash symbol) modulus)

This procedure is provided for convenience in constructing hash tables. However, it is
normally preferable to use make-strong-eq-hash-table to build hash tables keyed
by symbols, because eq? hash tables are much faster.

symbol<? symboll symbol2 [procedure]
This procedure computes a total order on symbols. It is equivalent to

(string<? (symbol->string symboll)
(symbol->string symbol2))

10.3 Cells

Cells are data structures similar to pairs except that they have only one element. They are
useful for managing state.

cell? object [procedure]
Returns #t if object is a cell; otherwise returns #£.

make-cell object [procedure]
Returns a newly allocated cell whose contents is object.

cell-contents cell [procedure]
Returns the current contents of cell.

set-cell-contents! cell object [procedure]
Alters the contents of cell to be object. Returns an unspecified value.

bind-cell-contents! cell object thunk [procedure]
Alters the contents of cell to be object, calls thunk with no arguments, then re-
stores the original contents of cell and returns the value returned by thunk. This is
completely equivalent to dynamic binding of a variable, including the behavior when
continuations are used (see Section 2.3 [Dynamic Binding|, page 18).
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10.4 Records

MIT/GNU Scheme provides a record abstraction, which is a simple and flexible mecha-
nism for building structures with named components. Records can be defined and accessed
using the procedures defined in this section. A less flexible but more concise way to ma-
nipulate records is to use the define-structure special form (see Section 2.10 [Structure
Definitions], page 29).

make-record-type type-name field-names [procedure]
Returns a record-type descriptor, a value representing a new data type, disjoint from
all others. The type-name argument must be a string, but is only used for debugging
purposes (such as the printed representation of a record of the new type). The field-
names argument is a list of symbols naming the fields of a record of the new type.
It is an error if the list contains any duplicates. It is unspecified how record-type
descriptors are represented.

record-constructor record-type [field-names] [procedure]
Returns a procedure for constructing new members of the type represented by record-
type. The returned procedure accepts exactly as many arguments as there are symbols
in the given list, field-names; these are used, in order, as the initial values of those
fields in a new record, which is returned by the constructor procedure. The values
of any fields not named in the list of field-names are unspecified. The field-names
argument defaults to the list of field-names in the call to make-record-type that
created the type represented by record-type; if the field-names argument is provided,
it is an error if it contains any duplicates or any symbols not in the default list.

record-keyword-constructor record-type [procedure]
Returns a procedure for constructing new members of the type represented by record-
type. The returned procedure accepts arguments in a keyword list, which is an
alternating sequence of names and values. In other words, the number of arguments
must be a multiple of two, and every other argument, starting with the first argument,
must be a symbol that is one of the field names for record-type.

The returned procedure may be called with a keyword list that contains multiple
instances of the same keyword. In this case, the leftmost instance is used and the
other instances are ignored. This allows keyword lists to be accumulated using cons
or cons*, and new bindings added to the front of the list override old bindings at the
end.

record-predicate record-type [procedure]
Returns a procedure for testing membership in the type represented by record-type.
The returned procedure accepts exactly one argument and returns #t if the argument
is a member of the indicated record type; it returns #£f otherwise.

record-accessor record-type field-name [procedure]
Returns a procedure for reading the value of a particular field of a member of the type
represented by record-type. The returned procedure accepts exactly one argument
which must be a record of the appropriate type; it returns the current value of the
field named by the symbol field-name in that record. The symbol field-name must
be a member of the list of field names in the call to make-record-type that created
the type represented by record-type.
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record-modifier record-type field-name [procedure]
Returns a procedure for writing the value of a particular field of a member of the type
represented by record-type. The returned procedure accepts exactly two arguments:
first, a record of the appropriate type, and second, an arbitrary Scheme value; it
modifies the field named by the symbol field-name in that record to contain the given
value. The returned value of the modifier procedure is unspecified. The symbol field-
name must be a member of the list of field names in the call to make-record-type
that created the type represented by record-type.

record? object [procedure]
Returns #t if object is a record of any type and #f otherwise. Note that record?
may be true of any Scheme value; of course, if it returns #t for some particular value,
then record-type-descriptor is applicable to that value and returns an appropriate
descriptor.

record-type-descriptor record [procedure]
Returns the record-type descriptor representing the type of record. That is, for ex-
ample, if the returned descriptor were passed to record-predicate, the resulting
predicate would return #t when passed record. Note that it is not necessarily the
case that the returned descriptor is the one that was passed to record-constructor
in the call that created the constructor procedure that created record.

record-type? object [procedure]
Returns #t if object is a record-type descriptor; otherwise returns #f.

record-type-name record-type [procedure]
Returns the type name associated with the type represented by record-type. The
returned value is eqv? to the type-name argument given in the call to make-record-
type that created the type represented by record-type.

record-type-field-names record-type [procedure]
Returns a list of the symbols naming the fields in members of the type represented
by record-type. The returned value is equal? to the field-names argument given in
the call to make-record-type that created the type represented by record-type.?

10.5 Promises

delay expression [special form]
The delay construct is used together with the procedure force to implement lazy
evaluation or call by need. (delay expression) returns an object called a promise
which at some point in the future may be asked (by the force procedure) to evaluate
expression and deliver the resulting value.

force promise [procedure]
Forces the value of promise. If no value has been computed for the promise, then a
value is computed and returned. The value of the promise is cached (or “memoized”)
so that if it is forced a second time, the previously computed value is returned without
any recomputation.

3 In MIT/GNU Scheme, the returned list is always newly allocated.
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(force (delay (+ 1 2))) = 3

(let ((p (delay (+ 1 2))))
(list (force p) (force p))) = (3 3)

(define head car)
(define tail
(lambda (stream)

(force (cdr stream))))

(define a-stream
(letrec ((next

(lambda (n)
(cons n (delay (mext (+ n 1)))))))
(next 0)))
(head (tail (tail a-stream))) = 2
promise? object [procedure]

Returns #t if object is a promise; otherwise returns #f.

promise-forced? promise [procedure]
Returns #t if promise has been forced and its value cached; otherwise returns #f.

promise-value promise [procedure]
If promise has been forced and its value cached, this procedure returns the cached
value. Otherwise, an error is signalled.

force and delay are mainly intended for programs written in functional style. The
following examples should not be considered to illustrate good programming style, but they
illustrate the property that the value of a promise is computed at most once.

(define count 0)

(define p
(delay
(begin
(set! count (+ count 1))
(x x 3))))

(define x 5)

count = 0
p = #[promise 54]
(force p) = 15
P = #[promise 54]
count = 1
(force p) = 15
count = 1
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Here is a possible implementation of delay and force. We define the expression
(delay expression)
to have the same meaning as the procedure call
(make-promise (lambda () expression))
where make-promise is defined as follows:

(define make-promise
(lambda (proc)
(let ((already-run? #f)
(result #£f))
(lambda (O
(cond ((not already-run?)
(set! result (proc))
(set! already-run? #t)))
result))))

Promises are implemented here as procedures of no arguments, and force simply calls
its argument.

(define force
(lambda (promise)
(promise)))

Various extensions to this semantics of delay and force are supported in some imple-
mentations (none of these are currently supported in MIT/GNU Scheme):

e Calling force on an object that is not a promise may simply return the object.

e It may be the case that there is no means by which a promise can be operationally
distinguished from its forced value. That is, expressions like the following may evaluate
to either #t or #f, depending on the implementation:

(eqv? (delay 1) 1) = unspecified
(pair? (delay (coms 1 2))) = unspecified

e Some implementations will implement “implicit forcing”, where the value of a promise
is forced by primitive procedures like car and +:

(+ (delay (x 3 7)) 13) = 34

10.6 Streams

In addition to promises, MIT/GNU Scheme supports a higher-level abstraction called
streams. Streams are similar to lists, except that the tail of a stream is not computed
until it is referred to. This allows streams to be used to represent infinitely long lists.

stream object . .. [procedure]
Returns a newly allocated stream whose elements are the arguments. Note that the
expression (stream) returns the empty stream, or end-of-stream marker.

list->stream list [procedure]
Returns a newly allocated stream whose elements are the elements of list. Equivalent
to (apply stream list).
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stream->1list stream [procedure]
Returns a newly allocated list whose elements are the elements of stream. If stream

has infinite length this procedure will not terminate. This could have been defined
by

(define (stream->list stream)
(if (stream-null? stream)
> ()
(cons (stream-car stream)
(stream->list (stream-cdr stream)))))

cons-stream object expression [special form)]
Returns a newly allocated stream pair. Equivalent to (cons object (delay expres-
sion)).

stream-pair? object [procedure]
Returns #t if object is a pair whose cdr contains a promise. Otherwise returns #f.
This could have been defined by

(define (stream-pair? object)
(and (pair? object)
(promise? (cdr object))))

stream-car stream [procedure]

stream-first stream [procedure]
Returns the first element in stream. stream-car is equivalent to car. stream-first
is a synonym for stream-car.

stream-cdr stream [procedure]

stream-rest stream [procedure]
Returns the first tail of stream. Equivalent to (force (cdr stream)). stream-rest
is a synonym for stream-cdr.

stream-null? stream [procedure]
Returns #t if stream is the end-of-stream marker; otherwise returns #f. This is
equivalent to null?, but should be used whenever testing for the end of a stream.

stream-length stream [procedure]
Returns the number of elements in stream. If stream has an infinite number of
elements this procedure will not terminate. Note that this procedure forces all of the
promises that comprise stream.

stream-ref stream k [procedure]
Returns the element of stream that is indexed by k; that is, the kth element. K must
be an exact non-negative integer strictly less than the length of stream.

stream-head stream k [procedure]
Returns the first k elements of stream as a list. K must be an exact non-negative
integer strictly less than the length of stream.
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stream-tail stream k [procedure]
Returns the tail of stream that is indexed by k; that is, the kth tail. This is equivalent
to performing stream-cdr k times. K must be an exact non-negative integer strictly
less than the length of stream.

stream-map procedure stream stream . . . [procedure]
Returns a newly allocated stream, each element being the result of invoking procedure
with the corresponding elements of the streams as its arguments.

10.7 Weak Pairs

Weak pairs are a mechanism for building data structures that point at objects without
protecting them from garbage collection. The car of a weak pair holds its pointer weakly,
while the cdr holds its pointer in the normal way. If the object in the car of a weak pair is
not held normally by any other data structure, it will be garbage-collected.

Note: weak pairs are not pairs; that is, they do not satisfy the predicate pair?.

weak-pair? object [procedure]
Returns #t if object is a weak pair; otherwise returns #f.

weak-cons car cdr [procedure]
Allocates and returns a new weak pair, with components car and cdr. The car
component is held weakly.

weak-pair/car? weak-pair [procedure]
This predicate returns #£ if the car of weak-pair has been garbage-collected; otherwise
returns #t. In other words, it is true if weak-pair has a valid car component.

weak-car weak-pair [procedure]
Returns the car component of weak-pair. If the car component has been garbage-
collected, this operation returns #f, but it can also return #f if that is the value that
was stored in the car.

Normally, weak-pair/car? is used to determine if weak-car would return a valid value.
An obvious way of doing this would be:
(if (weak-pair/car? x)
(weak-car x)
)
However, since a garbage collection could occur between the call to weak-pair/car? and
weak-car, this would not always work correctly. Instead, the following should be used,
which always works:
(or (weak-car x)
(and (not (weak-pair/car? x))
L))

The reason that the latter expression works is that weak-car returns #f in just two
instances: when the car component is #f, and when the car component has been garbage-
collected. In the former case, if a garbage collection happens between the two calls, it won’t
matter, because #f will never be garbage-collected. And in the latter case, it also won’t
matter, because the car component no longer exists and cannot be affected by the garbage
collector.
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weak-set-car! weak-pair object [procedure]
Sets the car component of weak-pair to object and returns an unspecified result.

weak-cdr weak-pair [procedure]
Returns the cdr component of weak-cdr.

weak-set-cdr! weak-pair object [procedure]
Sets the cdr component of weak-pair to object and returns an unspecified result.
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11 Associations

MIT/GNU Scheme provides several mechanisms for associating objects with one another.
Each of these mechanisms creates a link between one or more objects, called keys, and some
other object, called a datum. Beyond this common idea, however, each of the mechanisms
has various different properties that make it appropriate in different situations:

e Association lists are one of Lisp’s oldest association mechanisms. Because they are
made from ordinary pairs, they are easy to build and manipulate, and very flexible in
use. However, the average lookup time for an association list is linear in the number
of associations.

e 1D tables have a very simple interface, making them easy to use, and offer the feature
that they do not prevent their keys from being reclaimed by the garbage collector. Like
association lists, their average lookup time is linear in the number of associations; but
1D tables aren’t as flexible.

e The association table is MIT/GNU Scheme’s equivalent to the property lists of Lisp.
It has the advantages that the keys may be any type of object and that it does not
prevent the keys from being reclaimed by the garbage collector. However, two linear-
time lookups must be performed, one for each key, whereas for traditional property
lists only one lookup is required for both keys.

e Hash tables are a powerful mechanism with constant-time access to large amounts of
data. Hash tables are not as flexible as association lists, but because their access times
are independent of the number of associations in the table, for most applications they
are the mechanism of choice.

e Balanced binary trees are another association mechanism that is useful for applications
in which the keys are ordered. Binary trees have access times that are proportional to
the logarithm of the number of associations in the tree. While they aren’t as fast as
hash tables, they offer the advantage that the contents of the tree can be converted to
a sorted alist in linear time. Additionally, two trees can be compared for equality in
worst-case linear time.

e Red-Black trees are a kind of balanced binary tree. The implementation supports
destructive insertion and deletion operations with a good constant factor.

e Weight-Balanced trees are a kind of balanced binary tree. The implementation provides
non-destructive operations. There is a comprehensive set of operations, including: a
constant-time size operation; many high-level operations such as the set operations
union, intersection and difference; and indexing of elements by position.

11.1 Association Lists

An association list, or alist, is a data structure used very frequently in Scheme. An alist is
a list of pairs, each of which is called an association. The car of an association is called the
key.

An advantage of the alist representation is that an alist can be incrementally augmented
simply by adding new entries to the front. Moreover, because the searching procedures
assv et al. search the alist in order, new entries can “shadow” old entries. If an alist is
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viewed as a mapping from keys to data, then the mapping can be not only augmented but
also altered in a non-destructive manner by adding new entries to the front of the alist.’

alist? object [procedure]
Returns #t if object is an association list (including the empty list); otherwise returns
#f. Any object satisfying this predicate also satisfies 1ist?.

assq object alist [procedure]
assv object alist [procedure]
assoc object alist [procedure]

These procedures find the first pair in alist whose car field is object, and return that
pair; the returned pair is always an element of alist, not one of the pairs from which
alist is composed. If no pair in alist has object as its car, #f (n.b.: not the empty
list) is returned. assq uses eq? to compare object with the car fields of the pairs in
alist, while assv uses eqv? and assoc uses equal?.?

(define e ’((a 1) (b 2) (c 3)))

(assq ’a e) = (a 1)

(assq ’b e) = (b 2)

(assq ’d e) = #f

(assq (1list ’a) ’(((a)) ((0)) ((c)))) = #f

(assoc (list ’a) ’(((a)) ((®)) ((c)))) = (((a))

(assq 5 ’((2 3) (6 7) (11 13))) = unspecified

(assv 5 7((2 3) (6 7) (11 13))) = (7

association-procedure predicate selector [procedure]

Returns an association procedure that is similar to assv, except that selector (a pro-
cedure of one argument) is used to select the key from the association, and predicate
(an equivalence predicate) is used to compare the key to the given item. This can be
used to make association lists whose elements are, say, vectors instead of pairs (also
see Section 7.6 [Searching Lists|, page 119).

For example, here is how assv could be implemented:
(define assv (association-procedure eqv? car))
Another example is a “reverse association” procedure:

(define rassv (association-procedure eqv? cdr))

del-assq object alist [procedure]
del-assv object alist [procedure]
del-assoc object alist [procedure]

These procedures return a newly allocated copy of alist in which all associations with
keys equal to object have been removed. Note that while the returned copy is a newly
allocated list, the association pairs that are the elements of the list are shared with
alist, not copied. del-assq uses eq? to compare object with the keys, while del-assv
uses eqv? and del-assoc uses equal?.

! This introduction is taken from Common Lisp, The Language, second edition, p. 431.

2 Although they are often used as predicates, assq, assv, and assoc do not have question marks in their
names because they return useful values rather than just #t or #f£.
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(define a
>((butcher . "231 e22nd St.")
(baker . "515 w23rd St.")
(hardware . "988 Lexington Ave.")))

(del-assq ’baker a)
=
((butcher . "231 e22nd St.")
(hardware . "988 Lexington Ave."))

del-assq! object alist [procedure]
del-assv! object alist [procedure]
del-assoc! object alist [procedure]

These procedures remove from alist all associations with keys equal to object. They
return the resulting list. del-assq! uses eq? to compare object with the keys, while
del-assv! uses eqv? and del-assoc! uses equal?. These procedures are like del-
assq, del-assv, and del-assoc, respectively, except that they destructively modify
alist.

delete-association-procedure deletor predicate selector [procedure]
This returns a deletion procedure similar to del-assv or del-assq!. The predicate
and selector arguments are the same as those for association-procedure, while the
deletor argument should be either the procedure list-deletor (for non-destructive
deletions), or the procedure list-deletor! (for destructive deletions).

For example, here is a possible implementation of del-assv:

(define del-assv
(delete-association-procedure list-deletor eqv? car))

alist-copy alist [procedure]
Returns a newly allocated copy of alist. This is similar to list-copy except that the
“association” pairs, i.e. the elements of the list alist, are also copied. alist-copy
could have been implemented like this:

(define (alist-copy alist)
(if (null? alist)
0]
(cons (cons (car (car alist)) (cdr (car alist)))
(alist-copy (cdr alist)))))

11.2 1D Tables

1D tables (“one-dimensional” tables) are similar to association lists. In a 1D table, unlike
an association list, the keys of the table are held weakly: if a key is garbage-collected, its
associated value in the table is removed. 1D tables compare their keys for equality using
eq”?.

1D tables can often be used as a higher-performance alternative to the two-dimensional
association table (see Section 11.3 [The Association Table|, page 148). If one of the keys
being associated is a compound object such as a vector, a 1D table can be stored in one
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of the vector’s slots. Under these circumstances, accessing items in a 1D table will be
comparable in performance to using a property list in a conventional Lisp.

make-1d-table [procedure]
Returns a newly allocated empty 1D table.

1d-table? object [procedure]
Returns #t if object is a 1D table, otherwise returns #f. Any object that satisfies this
predicate also satisfies 1ist?.

1d-table/put! Id-table key datum [procedure]
Creates an association between key and datum in 1d-table. Returns an unspecified
value.

1d-table/remove! Id-table key [procedure]

Removes any association for key in 1d-table and returns an unspecified value.

1d-table/get I1d-table key default [procedure]
Returns the datum associated with key in 1d-table. If there is no association for key,
default is returned.

1d-table/lookup Id-table key if-found if-not-found [procedure]
If-found must be a procedure of one argument, and if-not-found must be a procedure
of no arguments. If 1d-table contains an association for key, if-found is invoked on
the datum of the association. Otherwise, if-not-found is invoked with no arguments.
In either case, the result of the invoked procedure is returned as the result of 1d-

table/lookup.

1d-table/alist 1d-table [procedure]
Returns a newly allocated association list that contains the same information as 1d-
table.

11.3 The Association Table

MIT/GNU Scheme provides a generalization of the property-list mechanism found in most
other implementations of Lisp: a global two-dimensional association table. This table
is indexed by two keys, called x-key and y-key in the following procedure descriptions.
These keys and the datum associated with them can be arbitrary objects. eq? is used to
discriminate keys.

Think of the association table as a matrix: a single datum can be accessed using both
keys, a column using x-key only, and a row using y-key only.

2d-put! x-key y-key datum [procedure]
Makes an entry in the association table that associates datum with x-key and y-key.
Returns an unspecified result.

2d-remove! x-key y-key [procedure]
If the association table has an entry for x-key and y-key, it is removed. Returns an
unspecified result.
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2d-get x-key y-key [procedure]
Returns the datum associated with x-key and y-key. Returns #£ if no such association
exists.

2d-get-alist-x x-key [procedure]

Returns an association list of all entries in the association table that are associated
with x-key. The result is a list of (y-key . datum) pairs. Returns the empty list if
no entries for x-key exist.

(2d-put! ’foo ’bar 5)
(2d-put! ’foo ’baz 6)
(2d-get-alist-x ’foo) = ((baz . 6) (bar . 5))

2d-get-alist-y y-key [procedure]
Returns an association list of all entries in the association table that are associated
with y-key. The result is a list of (x-key . datum) pairs. Returns the empty list if
no entries for y-key exist.
(2d-put! ’bar ’foo 5)
(2d-put! ’baz ’foo 6)
(2d-get-alist-y ’foo) = ((baz . 6) (bar . 5))

11.4 Hash Tables

Hash tables are a fast, powerful mechanism for storing large numbers of associations.
MIT/GNU Scheme’s hash tables feature automatic resizing, customizable growth parame-
ters, and customizable hash procedures.

The average times for the insertion, deletion, and lookup operations on a hash table are
bounded by a constant. The space required by the table is proportional to the number of as-
sociations in the table; the constant of proportionality is described below (see Section 11.4.3
[Resizing of Hash Tables], page 152).

(Previously, the hash-table implementation was a run-time-loadable option, but as of
release 7.7.0 it is loaded by default. It’s no longer necessary to call load-option prior to
using hash tables.)

11.4.1 Construction of Hash Tables

The next few procedures are hash-table constructors. All hash table constructors are pro-
cedures that accept one optional argument, initial-size, and return a newly allocated hash
table. If initial-size is given, it must be an exact non-negative integer or #f. The meaning
of initial-size is discussed below (see Section 11.4.3 [Resizing of Hash Tables]|, page 152).

Hash tables are normally characterized by two things: the equivalence predicate that is
used to compare keys, and whether or not the table allows its keys to be reclaimed by the
garbage collector. If a table prevents its keys from being reclaimed by the garbage collector,
it is said to hold its keys strongly; otherwise it holds its keys weakly (see Section 10.7 [Weak
Pairs|, page 143).

make-strong-eq-hash-table [initial-size] [procedure]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eq?. The keys are held strongly. These are the fastest of
the standard hash tables.
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make-weak-eq-hash-table [initial-size| [procedure]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eq?. The keys are held weakly.

make-eq-hash-table [initial-size] [procedure]
This is an alias for make-weak-eq-hash-table.

Warning: This become an alias make-strong-eq-hash-table instead. We recom-
mend that you use make-weak-eq-hash-table explicitly for weak hash tables.

make-strong-eqv-hash-table [initial-size] [procedure]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eqv?. The keys are held strongly. These hash tables are a
little slower than those made by make-strong-eq-hash-table.

make-weak-eqv-hash-table [initial-size] [procedure]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with eqv?. The keys are held weakly, except that booleans,
characters, numbers, and interned symbols are held strongly.

make-eqv-hash-table [initial-size] [procedure]
This is an alias for make-weak-eqv-hash-table.

Warning: This become an alias for make-strong-eqv-hash-table instead. We rec-
ommend that you use make-weak-eqv-hash-table explicitly for weak hash tables.

make-equal-hash-table [initial-size] [procedure]
Returns a newly allocated hash table that accepts arbitrary objects as keys, and
compares those keys with equal?. The keys are held strongly. These hash tables are
quite a bit slower than those made by make-strong-eq-hash-table.

make-string-hash-table [initial-size] [procedure]
Returns a newly allocated hash table that accepts character strings as keys, and
compares them with string=7. The keys are held strongly.

The next two procedures are used to create new hash-table constructors. All of the
above hash table constructors, with the exception of make-eqv-hash-table, could have
been created by calls to these “constructor-constructors”; see the examples below.

strong-hash-table/constructor key-hash key=? [rehash-after-gc? [procedure]

weak-hash-table/constructor key-hash key=? [rehash-after-gc?] [procedure]
Each of these procedures accepts two arguments and returns a hash-table constructor.
The key=7? argument is an equivalence predicate for the keys of the hash table. The
key-hash argument is a procedure that computes a hash number. Specifically, key-
hash accepts two arguments, a key and an exact positive integer (the modulus), and
returns an exact non-negative integer that is less than the modulus.

The optional argument rehash-after-gc?, if true, says that the values returned by key-
hash might change after a garbage collection. If so, the hash-table implementation
arranges for the table to be rehashed when necessary. (See Section 11.4.4 [Address
Hashing|, page 155, for information about hash procedures that have this property.)
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Otherwise, it is assumed that key-hash always returns the same value for the same
arguments. The default value of this argument is #£.

The  constructors returned by  strong-hash-table/constructor make
hash tables that hold their keys strongly. The constructors returned by
weak-hash-table/constructor make hash tables that hold their keys weakly.

Some examples showing how some standard hash-table constructors could have been
defined:

(define make-weak-eq-hash-table
(weak-hash-table/constructor eq-hash-mod eq? #t))

(define make-equal-hash-table
(strong-hash-table/constructor equal-hash-mod equal? #t))

(define make-string-hash-table
(strong-hash-table/constructor string-hash-mod string=7 #f))

The following procedure is sometimes useful in conjunction with weak hash tables. Nor-
mally it is not needed, because such hash tables clean themselves automatically as they are
used.

hash-table/clean! hash-table [procedure]
If hash-table is a type of hash table that holds its keys weakly, this procedure recovers
any space that was being used to record associations for objects that have been
reclaimed by the garbage collector. Otherwise, this procedure does nothing. In either
case, it returns an unspecified result.

11.4.2 Basic Hash Table Operations

The procedures described in this section are the basic operations on hash tables. They
provide the functionality most often needed by programmers. Subsequent sections describe
other operations that provide additional functionality needed by some applications.

hash-table? object [procedure]
Returns #t if object is a hash table, otherwise returns #f.

hash-table/put! hash-table key datum [procedure]
Associates datum with key in hash-table and returns an unspecified result. The
average time required by this operation is bounded by a constant.

hash-table/get hash-table key default [procedure]
Returns the datum associated with key in hash-table. If there is no association for
key, default is returned. The average time required by this operation is bounded by
a constant.

hash-table/remove! hash-table key [procedure]
If hash-table has an association for key, removes it. Returns an unspecified result.
The average time required by this operation is bounded by a constant.

hash-table/clear! hash-table [procedure]
Removes all associations in hash-table and returns an unspecified result. The average
and worst-case times required by this operation are bounded by a constant.
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hash-table/count hash-table [procedure]
Returns the number of associations in hash-table as an exact non-negative integer.
If hash-table holds its keys weakly, this is a conservative upper bound that may
count some associations whose keys have recently been reclaimed by the garbage
collector. The average and worst-case times required by this operation are bounded
by a constant.

hash-table->alist hash-table [procedure]
Returns the contents of hash-table as a newly allocated alist. Each element of the
alist is a pair (key . datum) where key is one of the keys of hash-table, and datum
is its associated datum. The average and worst-case times required by this operation
are linear in the number of associations in the table.

hash-table/key-1list hash-table [procedure]
Returns a newly allocated list of the keys in hash-table. The average and worst-case
times required by this operation are linear in the number of associations in the table.

hash-table/datum-1list hash-table [procedure]
Returns a newly allocated list of the datums in hash-table. Fach element of the list
corresponds to one of the associations in hash-table; if the table contains multiple
associations with the same datum, so will this list. The average and worst-case times
required by this operation are linear in the number of associations in the table.

hash-table/for-each hash-table procedure [procedure]
Procedure must be a procedure of two arguments. Invokes procedure once for each
association in hash-table, passing the association’s key and datum as arguments,
in that order. Returns an unspecified result. Procedure must not modify hash-
table, with one exception: it is permitted to call hash-table/remove! to remove the
association being processed.

The following procedure is an alternate form of hash-table/get that is useful in some
situations. Usually, hash-table/get is preferable because it is faster.

hash-table/lookup hash-table key if-found if-not-found [procedure]
If-found must be a procedure of one argument, and if-not-found must be a procedure
of no arguments. If hash-table contains an association for key, if-found is invoked on
the datum of the association. Otherwise, if-not-found is invoked with no arguments.
In either case, the result yielded by the invoked procedure is returned as the result
of hash-table/lookup (hash-table/lookup reduces into the invoked procedure, i.e.
calls it tail-recursively). The average time required by this operation is bounded by
a constant.

11.4.3 Resizing of Hash Tables

Normally, hash tables automatically resize themselves according to need. Because of this,
the programmer need not be concerned with management of the table’s size. However,
some limited control over the table’s size is provided, which will be discussed below. This
discussion involves two concepts, usable size and physical size, which we will now define.

The usable size of a hash table is the number of associations that the table can hold at
a given time. If the number of associations in the table exceeds the usable size, the table
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will automatically grow, increasing the usable size to a new value that is sufficient to hold
the associations.

The physical size is an abstract measure of a hash table that specifies how much space
is allocated to hold the associations of the table. The physical size is always greater than
or equal to the usable size. The physical size is not interesting in itself; it is interesting
only for its effect on the performance of the hash table. While the average performance
of a hash-table lookup is bounded by a constant, the worst-case performance is not. For
a table containing a given number of associations, increasing the physical size of the table
decreases the probability that worse-than-average performance will occur.

The physical size of a hash table is statistically related to the number of associations.
However, it is possible to place bounds on the physical size, and from this to estimate the
amount of space used by the table:

(define (hash-table-space-bounds count rehash-size rehash-threshold)
(let ((tf (/ 1 rehash-threshold)))
(values (if (exact-integer? rehash-size)
(= (* count (+ 4 tf))
(* tf (+ rehash-size rehash-size)))
(* count (+ 4 (/ tf (x rehash-size rehash-size)))))
(x count (+ 4 t£)))))

What this formula shows is that, for a “normal” rehash size (that is, not an exact integer),
the amount of space used by the hash table is proportional to the number of associations
in the table. The constant of proportionality varies statistically, with the low bound being

(+ 4 (/ (/ 1 rehash-threshold) (* rehash-size rehash-size)))
and the high bound being
(+ 4 (/ 1 rehash-threshold))

which, for the default values of these parameters, are 4.25 and 5, respectively. Reducing
the rehash size will tighten these bounds, but increases the amount of time spent resizing,
so you can see that the rehash size gives some control over the time-space tradeoff of the
table.

The programmer can control the size of a hash table by means of three parameters:
e FEach table’s initial-size may be specified when the table is created.

e FEach table has a rehash size that specifies how the size of the table is changed when it
is necessary to grow or shrink the table.

e Each table has a rehash threshold that specifies the relationship of the table’s physical
size to its usable size.

If the programmer knows that the table will initially contain a specific number of items,
initial-size can be given when the table is created. If initial-size is an exact non-negative
integer, it specifies the initial usable size of the hash table; the table will not change size
until the number of items in the table exceeds initial-size, after which automatic resizing
is enabled and initial-size no longer has any effect. Otherwise, if initial-size is not given or
is #f, the table is initialized to an unspecified size and automatic resizing is immediately
enabled.

The rehash size specifies how much to increase the usable size of the hash table when it
becomes full. It is either an exact positive integer, or a real number greater than one. If it
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is an integer, the new size is the sum of the old size and the rehash size. Otherwise, it is a
real number, and the new size is the product of the old size and the rehash size. Increasing
the rehash size decreases the average cost of an insertion, but increases the average amount
of space used by the table. The rehash size of a table may be altered dynamically by the
application in order to optimize the resizing of the table; for example, if the table will
grow quickly for a known period and afterwards will not change size, performance might be
improved by using a large rehash size during the growth phase and a small one during the
static phase. The default rehash size of a newly constructed hash table is 2.0.

Warning: The use of an exact positive integer for a rehash size is almost always unde-
sirable; this option is provided solely for compatibility with the Common Lisp hash-table
mechanism. The reason for this has to do with the time penalty for resizing the hash table.
The time needed to resize a hash table is proportional to the number of associations in
the table. This resizing cost is amortized across the insertions required to fill the table
to the point where it needs to grow again. If the table grows by an amount proportional
to the number of associations, then the cost of resizing and the increase in size are both
proportional to the number of associations, so the amortized cost of an insertion operation
is still bounded by a constant. However, if the table grows by a constant amount, this is
not true: the amortized cost of an insertion is not bounded by a constant. Thus, using a
constant rehash size means that the average cost of an insertion increases proportionally to
the number of associations in the hash table.

The rehash threshold is a real number, between zero exclusive and one inclusive, that
specifies the ratio between a hash table’s usable size and its physical size. Decreasing the
rehash threshold decreases the probability of worse-than-average insertion, deletion, and
lookup times, but increases the physical size of the table for a given usable size. The
default rehash threshold of a newly constructed hash table is 1.

hash-table/size hash-table [procedure]
Returns the usable size of hash-table as an exact positive integer. This is the number
of associations that hash-table can hold before it will grow.

hash-table/rehash-size hash-table [procedure]
Returns the rehash size of hash-table.

set-hash-table/rehash-size! hash-table x [procedure]
X must be either an exact positive integer, or a real number that is greater than
one. Sets the rehash size of hash-table to x and returns an unspecified result. This
operation adjusts the “shrink threshold” of the table; the table might shrink if the
number of associations is less than the new threshold.

hash-table/rehash-threshold hash-table [procedure]
Returns the rehash threshold of hash-table.

set-hash-table/rehash-threshold! hash-table x [procedure]
X must be a real number between zero exclusive and one inclusive. Sets the rehash
threshold of hash-table to x and returns an unspecified result. This operation does
not change the usable size of the table, but it usually changes the physical size of the
table, which causes the table to be rehashed.
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11.4.4 Address Hashing

The procedures described in this section may be used to make very efficient key-hashing
procedures for arbitrary objects. All of these procedures are based on address hashing,
which uses the address of an object as its hash number. The great advantage of address
hashing is that converting an arbitrary object to a hash number is extremely fast and takes
the same amount of time for any object.

The disadvantage of address hashing is that the garbage collector changes the addresses
of most objects. The hash-table implementation compensates for this disadvantage by
automatically rehashing tables that use address hashing when garbage collections occur.
Thus, in order to use these procedures for key hashing, it is necessary to tell the hash-
table implementation (by means of the rehash-after-gc? argument to the “constructor-
constructor” procedure) that the hash numbers computed by your key-hashing procedure
must be recomputed after a garbage collection.

eq-hash object [procedure]
eqv-hash object [procedure]
equal-hash object [procedure]

These procedures return a hash number for object. The result is always a non-
negative integer, and in the case of eq-hash, a non-negative fixnum. Two objects
that are equivalent according to eq?, eqv?, or equal?, respectively, will produce the
same hash number when passed as arguments to these procedures, provided that the
garbage collector does not run during or between the two calls.

The following procedures are the key-hashing procedures used by the standard address-
hash-based hash tables.

eq-hash-mod object modulus [procedure]
This procedure is the key-hashing procedure used by make-strong-eq-hash-table.

eqv-hash-mod object modulus [procedure]
This procedure is the key-hashing procedure used by make-strong-eqv-hash-table.

equal-hash-mod object modulus [procedure]
This procedure is the key-hashing procedure used by make-equal-hash-table.

11.5 Object Hashing

The MIT/GNU Scheme object-hashing facility provides a mechanism for generating a
unique hash number for an arbitrary object. This hash number, unlike an object’s address,
is unchanged by garbage collection. The object-hashing facility is useful in conjunction
with hash tables, but it may be used for other things as well. In particular, it is used in
the generation of the written representation for many objects (see Section 14.7 [Custom
Output], page 196).

All of these procedures accept an optional argument called table; this table contains
the object-integer associations. If given, this argument must be an object-hash table as
constructed by hash-table/make (see below). If not given, a default table is used.
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hash object [table] [procedure]
hash associates an exact non-negative integer with object and returns that integer.
If hash was previously called with object as its argument, the integer returned is the
same as was returned by the previous call. hash guarantees that distinct objects (in
the sense of eq?) are associated with distinct integers.

unhash k [table] [procedure]
unhash takes an exact non-negative integer k and returns the object associated with
that integer. If there is no object associated with k, or if the object previously associ-
ated with k has been reclaimed by the garbage collector, an error of type condition-
type:bad-range-argument is signalled. In other words, if hash previously returned
k for some object, and that object has not been reclaimed, it is the value of the call
to unhash.

An object that is passed to hash as an argument is not protected from being reclaimed
by the garbage collector. If all other references to that object are eliminated, the object will
be reclaimed. Subsequently calling unhash with the hash number of the (now reclaimed)
object will signal an error.

(define x (cons 0 0)) = unspecified
(hash x) = 77
(eqv? (hash x) (hash x)) = #t
(define x 0) = unspecified
(gc-flip) ;force a garbage collection
(unhash 77)
object-hashed? object [table] [procedure]
This predicate is true if object has an associated hash number. Otherwise it is false.
valid-hash-number? k [table] [procedure]
This predicate is true if k is the hash number associated with some object. Otherwise
it is false.

The following two procedures provide a lower-level interface to the object-hashing mech-
anism.

object-hash object [table [insert?|] [procedure]
object-hash is like hash, except that it accepts an additional optional argument,
insert?. If insert? is supplied and is #£f, object-hash will return an integer for object
only if there is already an association in the table; otherwise, it will return #£. If
insert? is not supplied, or is not #f, object-hash always returns an integer, creating
an association in the table if necessary.

object-hash additionally treats #f differently than does hash. Calling object-hash
with #f as its argument will return an integer that, when passed to unhash, will signal
an error rather than returning #£. Likewise, valid-hash-number? will return #f for
this integer.

object-unhash k [table] [procedure]
object-unhash is like unhash, except that when k is not associated with any object
or was previously associated with an object that has been reclaimed, object-unhash
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returns #f. This means that there is an ambiguity in the value returned by object-
unhash: if #f is returned, there is no way to tell if k is associated with #£f or is not
associated with any object at all.

Finally, this procedure makes new object-hash tables:

hash-table/make [procedure]
This procedure creates and returns a new, empty object-hash table that is suitable
for use as the optional table argument to the above procedures. The returned table
contains no associations.

11.6 Red-Black Trees

Balanced binary trees are a useful data structure for maintaining large sets of associations
whose keys are ordered. While most applications involving large association sets should use
hash tables, some applications can benefit from the use of binary trees. Binary trees have
two advantages over hash tables:

e The contents of a binary tree can be converted to an alist, sorted by key, in time
proportional to the number of associations in the tree. A hash table can be converted
into an unsorted alist in linear time; sorting it requires additional time.

e Two binary trees can be compared for equality in linear time. Hash tables, on the other
hand, cannot be compared at all; they must be converted to alists before comparison
can be done, and alist comparison is quadratic unless the alists are sorted.

MIT/GNU Scheme provides an implementation of red-black trees. The red-black tree-
balancing algorithm provides generally good performance because it doesn’t try to keep the
tree very closely balanced. At any given node in the tree, one side of the node can be twice
as high as the other in the worst case. With typical data the tree will remain fairly well
balanced anyway.

A red-black tree takes space that is proportional to the number of associations in the
tree. For the current implementation, the constant of proportionality is eight words per
association.

Red-black trees hold their keys strongly. In other words, if a red-black tree contains an
association for a given key, that key cannot be reclaimed by the garbage collector.

The red-black tree implementation is a run-time-loadable option. To use red-black trees,
execute

(load-option ’rb-tree)

once before calling any of the procedures defined here.

make-rb-tree key=? key<? [procedure]
This procedure creates and returns a newly allocated red-black tree. The tree con-
tains no associations. Key=7 and key<? are predicates that compare two keys and
determine whether they are equal to or less than one another, respectively. For any
two keys, at most one of these predicates is true.

rb-tree? object [procedure]
Returns #t if object is a red-black tree, otherwise returns #f£.
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rb-tree/insert! rb-tree key datum [procedure]
Associates datum with key in rb-tree and returns an unspecified value. If rb-tree
already has an association for key, that association is replaced. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of assocations in rb-tree.

rb-tree/lookup rb-tree key default [procedure]
Returns the datum associated with key in rb-tree. If rb-tree doesn’t contain an
association for key, default is returned. The average and worst-case times required
by this operation are proportional to the logarithm of the number of assocations in
rb-tree.

rb-tree/delete! rb-tree key [procedure]
If rb-tree contains an association for key, removes it. Returns an unspecified value.
The average and worst-case times required by this operation are proportional to the
logarithm of the number of assocations in rb-tree.

rb-tree->alist rb-tree [procedure]
Returns the contents of rb-tree as a newly allocated alist. Each element of the alist
is a pair (key . datum) where key is one of the keys of rb-tree, and datum is its
associated datum. The alist is sorted by key according to the key<? argument used
to construct rb-tree. The time required by this operation is proportional to the
number of associations in the tree.

rb-tree/key-list rb-tree [procedure]
Returns a newly allocated list of the keys in rb-tree. The list is sorted by key according
to the key<? argument used to construct rb-tree. The time required by this operation
is proportional to the number of associations in the tree.

rb-tree/datum-1ist rb-tree [procedure]
Returns a newly allocated list of the datums in rb-tree. Each element of the list
corresponds to one of the associations in rb-tree, so if the tree contains multiple
associations with the same datum, so will this list. The list is sorted by the keys of
the associations, even though they do not appear in the result. The time required by
this operation is proportional to the number of associations in the tree.

This procedure is equivalent to:

(lambda (rb-tree) (map cdr (rb-tree->alist rb-tree)))

rb-tree/equal? rb-tree-1 rb-tree-2 datum="? [procedure]
Compares rb-tree-1 and rb-tree-2 for equality, returning #t iff they are equal and
#f otherwise. The trees must have been constructed with the same equality and
order predicates (same in the sense of eq?). The keys of the trees are compared
using the key=7? predicate used to build the trees, while the datums of the trees are
compared using the equivalence predicate datum=?. The worst-case time required
by this operation is proportional to the number of associations in the tree.

rb-tree/empty? rb-tree [procedure]
Returns #t iff rb-tree contains no associations. Otherwise returns #f£.
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rb-tree/size rb-tree [procedure]
Returns the number of associations in rb-tree, an exact non-negative integer. The av-
erage and worst-case times required by this operation are proportional to the number
of associations in the tree.

rb-tree/height rb-tree [procedure]
Returns the height of rb-tree, an exact non-negative integer. This is the length of the
longest path from a leaf of the tree to the root. The average and worst-case times
required by this operation are proportional to the number of associations in the tree.

The returned value satisfies the following:

(lambda (rb-tree)
(let ((size (rb-tree/size rb-tree))
(1g (lambda (x) (/ (log x) (log 2)))))
(<= (1g size)
(rb-tree/height rb-tree)
(x 2 (g (+ size 1))))))

rb-tree/copy rb-tree [procedure]
Returns a newly allocated copy of rb-tree. The copy is identical to rb-tree in all
respects, except that changes to rb-tree do not affect the copy, and vice versa. The
time required by this operation is proportional to the number of associations in the
tree.

alist->rb-tree alist key=7 key<? [procedure]
Returns a newly allocated red-black tree that contains the same associations as alist.
This procedure is equivalent to:

(lambda (alist key=7 key<?)
(let ((tree (make-rb-tree key=7 key<7)))
(for-each (lambda (association)
(rb-tree/insert! tree
(car association)
(cdr association)))
alist)
tree))

The following operations provide access to the smallest and largest members in a
red/black tree. They are useful for implementing priority queues.

rb-tree/min rb-tree default [procedure]
Returns the smallest key in rb-tree, or default if the tree is empty.

rb-tree/min-datum rb-tree default [procedure]
Returns the datum associated with the smallest key in rb-tree, or default if the tree
is empty.

rb-tree/min-pair rb-tree [procedure]

Finds the smallest key in rb-tree and returns a pair containing that key and its
associated datum. If the tree is empty, returns #£.
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rb-tree/max rb-tree default [procedure]
Returns the largest key in rb-tree, or default if the tree is empty.

rb-tree/max-datum rb-tree default [procedure]
Returns the datum associated with the largest key in rb-tree, or default if the tree is
empty.

rb-tree/max-pair rb-tree [procedure]

Finds the largest key in rb-tree and returns a pair containing that key and its asso-
ciated datum. If the tree is empty, returns #f.

rb-tree/delete-min! rb-tree default [procedure]

rb-tree/delete-min-datum! rb-tree default [procedure]

rb-tree/delete-min-pair! rb-tree [procedure]

rb-tree/delete-max! rb-tree default [procedure]

rb-tree/delete-max-datum! rb-tree default [procedure]

rb-tree/delete-max-pair! rb-tree [procedure]
These operations are exactly like the accessors above, in that they return information
associated with the smallest or largest key, except that they simultaneously delete
that key.

11.7 Weight-Balanced Trees

Balanced binary trees are a useful data structure for maintaining large sets of ordered objects
or sets of associations whose keys are ordered. MIT/GNU Scheme has a comprehensive
implementation of weight-balanced binary trees which has several advantages over the other
data structures for large aggregates:

e In addition to the usual element-level operations like insertion, deletion and lookup,
there is a full complement of collection-level operations, like set intersection, set union
and subset test, all of which are implemented with good orders of growth in time and
space. This makes weight-balanced trees ideal for rapid prototyping of functionally
derived specifications.

e An element in a tree may be indexed by its position under the ordering of the keys, and
the ordinal position of an element may be determined, both with reasonable efficiency.

e Operations to find and remove minimum element make weight-balanced trees simple
to use for priority queues.

e The implementation is functional rather than imperative. This means that operations
like ‘inserting’ an association in a tree do not destroy the old tree, in much the same way
that (+ 1 x) modifies neither the constant 1 nor the value bound to x. The trees are
referentially transparent thus the programmer need not worry about copying the trees.
Referential transparency allows space efficiency to be achieved by sharing subtrees.

These features make weight-balanced trees suitable for a wide range of applications,
especially those that require large numbers of sets or discrete maps. Applications that have
a few global databases and/or concentrate on element-level operations like insertion and
lookup are probably better off using hash tables or red-black trees.

The size of a tree is the number of associations that it contains. Weight-balanced
binary trees are balanced to keep the sizes of the subtrees of each node within a constant
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factor of each other. This ensures logarithmic times for single-path operations (like lookup
and insertion). A weight-balanced tree takes space that is proportional to the number of
associations in the tree. For the current implementation, the constant of proportionality is
six words per association.

Weight-balanced trees can be used as an implementation for either discrete sets or dis-
crete maps (associations). Sets are implemented by ignoring the datum that is associated
with the key. Under this scheme if an association exists in the tree this indicates that the
key of the association is a member of the set. Typically a value such as (), #t or #f is
associated with the key.

Many operations can be viewed as computing a result that, depending on whether the
tree arguments are thought of as sets or maps, is known by two different names. An example
is wt-tree/member?, which, when regarding the tree argument as a set, computes the set
membership operation, but, when regarding the tree as a discrete map, wt-tree/member?
is the predicate testing if the map is defined at an element in its domain. Most names
in this package have been chosen based on interpreting the trees as sets, hence the name
wt-tree/member? rather than wt-tree/defined-at?.

The weight-balanced tree implementation is a run-time-loadable option. To use weight-
balanced trees, execute

(load-option ’wt-tree)

once before calling any of the procedures defined here.

11.7.1 Construction of Weight-Balanced Trees

Binary trees require there to be a total order on the keys used to arrange the elements
in the tree. Weight-balanced trees are organized by types, where the type is an object
encapsulating the ordering relation. Creating a tree is a two-stage process. First a tree
type must be created from the predicate that gives the ordering. The tree type is then used
for making trees, either empty or singleton trees or trees from other aggregate structures
like association lists. Once created, a tree ‘knows’ its type and the type is used to test
compatibility between trees in operations taking two trees. Usually a small number of
tree types are created at the beginning of a program and used many times throughout the
program’s execution.

make-wt-tree-type key<? [procedure]
This procedure creates and returns a new tree type based on the ordering predicate
key<?. Key<? must be a total ordering, having the property that for all key values

a,band c
(key<? a a) = #f
(and (key<? a b) (key<? b a)) = #f
(if (and (key<? a b) (key<? b c))
(key<? a ¢)
#t) = #t

Two key values are assumed to be equal if neither is less than the other by key<?.

Each call to make-wt-tree-type returns a distinct value, and trees are only compat-
ible if their tree types are eq?. A consequence is that trees that are intended to be
used in binary-tree operations must all be created with a tree type originating from
the same call to make-wt-tree-type.
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number-wt-type [variable]
A standard tree type for trees with numeric keys. Number-wt-type could have been
defined by
(define number-wt-type (make-wt-tree-type <))
string-wt-type [variable]
A standard tree type for trees with string keys. String-wt-type could have been
defined by

(define string-wt-type (make-wt-tree-type string<?))

make-wt-tree wt-tree-type [procedure]
This procedure creates and returns a newly allocated weight-balanced tree. The tree
is empty, i.e. it contains no associations. Wt-tree-type is a weight-balanced tree type
obtained by calling make-wt-tree-type; the returned tree has this type.

singleton-wt-tree wt-tree-type key datum [procedure]
This procedure creates and returns a newly allocated weight-balanced tree. The tree
contains a single association, that of datum with key. Wt-tree-type is a weight-
balanced tree type obtained by calling make-wt-tree-type; the returned tree has
this type.

alist->wt-tree tree-type alist [procedure]
Returns a newly allocated weight-balanced tree that contains the same associations
as alist. This procedure is equivalent to:

(lambda (type alist)
(let ((tree (make-wt-tree type)))
(for-each (lambda (association)
(wt-tree/add! tree
(car association)
(cdr association)))
alist)
tree))

11.7.2 Basic Operations on Weight-Balanced Trees

This section describes the basic tree operations on weight-balanced trees. These operations
are the usual tree operations for insertion, deletion and lookup, some predicates and a
procedure for determining the number of associations in a tree.

wt-tree? object [procedure]
Returns #t if object is a weight-balanced tree, otherwise returns #f.

wt-tree/empty? wt-tree [procedure]
Returns #t if wt-tree contains no associations, otherwise returns #£.

wt-tree/size wt-tree [procedure]
Returns the number of associations in wt-tree, an exact non-negative integer. This
operation takes constant time.
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wt-tree/add wt-tree key datum [procedure]
Returns a new tree containing all the associations in wt-tree and the association of
datum with key. If wt-tree already had an association for key, the new association
overrides the old. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in wt-tree.

wt-tree/add! wt-tree key datum [procedure]
Associates datum with key in wt-tree and returns an unspecified value. If wt-tree
already has an association for key, that association is replaced. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of associations in wt-tree.

wt-tree/member? key wt-tree [procedure]
Returns #t if wt-tree contains an association for key, otherwise returns #f. The aver-
age and worst-case times required by this operation are proportional to the logarithm
of the number of associations in wt-tree.

wt-tree/lookup wt-tree key default [procedure]
Returns the datum associated with key in wt-tree. If wt-tree doesn’t contain an
association for key, default is returned. The average and worst-case times required
by this operation are proportional to the logarithm of the number of associations in
wt-tree.

wt-tree/delete wt-tree key [procedure]
Returns a new tree containing all the associations in wt-tree, except that if wt-tree
contains an association for key, it is removed from the result. The average and worst-
case times required by this operation are proportional to the logarithm of the number
of associations in wt-tree.

wt-tree/delete! wt-tree key [procedure]
If wt-tree contains an association for key the association is removed. Returns an
unspecified value. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in wt-tree.

11.7.3 Advanced Operations on Weight-Balanced Trees

In the following the size of a tree is the number of associations that the tree contains, and
a smaller tree contains fewer associations.

wt-tree/split< wt-tree bound [procedure]
Returns a new tree containing all and only the associations in wt-tree that have a key
that is less than bound in the ordering relation of the tree type of wt-tree. The average
and worst-case times required by this operation are proportional to the logarithm of
the size of wt-tree.

wt-tree/split> wt-tree bound [procedure]
Returns a new tree containing all and only the associations in wt-tree that have a
key that is greater than bound in the ordering relation of the tree type of wt-tree.
The average and worst-case times required by this operation are proportional to the
logarithm of the size of wt-tree.
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wt-tree/union wt-tree-1 wt-tree-2 [procedure]
Returns a new tree containing all the associations from both trees. This operation
is asymmetric: when both trees have an association for the same key, the returned
tree associates the datum from wt-tree-2 with the key. Thus if the trees are viewed
as discrete maps then wt-tree/union computes the map override of wt-tree-1 by
wt-tree-2. If the trees are viewed as sets the result is the set union of the arguments.
The worst-case time required by this operation is proportional to the sum of the sizes
of both trees. If the minimum key of one tree is greater than the maximum key of
the other tree then the worst-case time required is proportional to the logarithm of
the size of the larger tree.

wt-tree/intersection wt-tree-1 wt-tree-2 [procedure]
Returns a new tree containing all and only those associations from wt-tree-1 that
have keys appearing as the key of an association in wt-tree-2. Thus the associated
data in the result are those from wt-tree-1. If the trees are being used as sets the
result is the set intersection of the arguments. As a discrete map operation, wt-
tree/intersection computes the domain restriction of wt-tree-1 to (the domain of)
wt-tree-2. The worst-case time required by this operation is proportional to the sum
of the sizes of the trees.

wt-tree/difference wt-tree-1 wt-tree-2 [procedure]
Returns a new tree containing all and only those associations from wt-tree-1 that
have keys that do not appear as the key of an association in wt-tree-2. If the trees
are viewed as sets the result is the asymmetric set difference of the arguments. As
a discrete map operation, it computes the domain restriction of wt-tree-1 to the
complement of (the domain of) wt-tree-2. The worst-case time required by this
operation is proportional to the sum of the sizes of the trees.

wt-tree/subset? wt-tree-1 wt-tree-2 [procedure]
Returns #t iff the key of each association in wt-tree-1 is the key of some association
in wt-tree-2, otherwise returns #f. Viewed as a set operation, wt-tree/subset? is
the improper subset predicate. A proper subset predicate can be constructed:

(define (proper-subset? sl s2)
(and (wt-tree/subset? sl1 s2)
(< (wt-tree/size sl1) (wt-tree/size s2))))
As a discrete map operation, wt-tree/subset? is the subset test on the domain(s)
of the map(s). In the worst-case the time required by this operation is proportional
to the size of wt-tree-1.

wt-tree/set-equal? wt-tree-1 wt-tree-2 [procedure]
Returns #t iff for every association in wt-tree-1 there is an association in wt-tree-2
that has the same key, and vice versa.
Viewing the arguments as sets, wt-tree/set-equal? is the set equality predicate.
As a map operation it determines if two maps are defined on the same domain.

This procedure is equivalent to
(lambda (wt-tree-1 wt-tree-2)
(and (wt-tree/subset? wt-tree-1 wt-tree-2
(wt-tree/subset? wt-tree-2 wt-tree-1)))



Chapter 11: Associations 165

In the worst case the time required by this operation is proportional to the size of the
smaller tree.

wt-tree/fold combiner initial wt-tree [procedure]
This procedure reduces wt-tree by combining all the associations, using an reverse
in-order traversal, so the associations are visited in reverse order. Combiner is a proce-
dure of three arguments: a key, a datum and the accumulated result so far. Provided
combiner takes time bounded by a constant, wt-tree/fold takes time proportional
to the size of wt-tree.

A sorted association list can be derived simply:

(wt-tree/fold (lambda (key datum list)
(cons (cons key datum) list))
>0
wt-tree))

The data in the associations can be summed like this:

(wt-tree/fold (lambda (key datum sum) (+ sum datum))
0
wt-tree)

wt-tree/for-each action wt-tree [procedure]
This procedure traverses wt-tree in order, applying action to each association. The
associations are processed in increasing order of their keys. Action is a procedure of
two arguments that takes the key and datum respectively of the association. Provided
action takes time bounded by a constant, wt-tree/for-each takes time proportional
to the size of wt-tree. The example prints the tree:

(wt-tree/for-each (lambda (key value)
(display (list key value)))
wt-tree))

wt-tree/union-merge wt-tree-1 wt-tree-2 merge [procedure]
Returns a new tree containing all the associations from both trees. If both trees have
an association for the same key, the datum associated with that key in the result tree
is computed by applying the procedure merge to the key, the value from wt-tree-1
and the value from wt-tree-2. Merge is of the form

(lambda (key datum-1 datum-2) ...)
If some key occurs only in one tree, that association will appear in the result tree
without being processed by merge, so for this operation to make sense, either merge
must have both a right and left identity that correspond to the association being
absent in one of the trees, or some guarantee must be made, for example, all the keys
in one tree are known to occur in the other.
These are all reasonable procedures for merge

(lambda (key vall val2) (+ vall val2))
(lambda (key vall val2) (append vall val2))
(lambda (key vall val2) (wt-tree/union vall val2))

However, a procedure like
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(lambda (key vall val2) (- vall val2))

would result in a subtraction of the data for all associations with keys occuring in both
trees but associations with keys occuring in only the second tree would be copied, not
negated, as is presumably be intent. The programmer might ensure that this never
happens.

This procedure has the same time behavior as wt-tree/union but with a slightly
worse constant factor. Indeed, wt-tree/union might have been defined like this:

(define (wt-tree/union treel tree2)
(wt-tree/union-merge treel tree2
(lambda (key vall val2) val2)))

The merge procedure takes the key as a parameter in case the data are not independent
of the key.

11.7.4 Indexing Operations on Weight-Balanced Trees

Weight-balanced trees support operations that view the tree as sorted sequence of associa-
tions. Elements of the sequence can be accessed by position, and the position of an element
in the sequence can be determined, both in logarthmic time.

wt-tree/index wt-tree index [procedure]
wt-tree/index-datum wt-tree index [procedure]
wt-tree/index-pair wt-tree index [procedure]

Returns the 0-based indexth association of wt-tree in the sorted sequence under
the tree’s ordering relation on the keys. wt-tree/index returns the indexth key,
wt-tree/index-datum returns the datum associated with the indexth key and wt-
tree/index-pair returns a new pair (key . datum) which is the cons of the indexth
key and its datum. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in the tree.

These operations signal a condition of type condition-type:bad-range-argument
if index<0 or if index is greater than or equal to the number of associations in the
tree. If the tree is empty, they signal an anonymous error.

Indexing can be used to find the median and maximum keys in the tree as follows:

median: (wt-tree/index wt-tree
(quotient (wt-tree/size wt-tree)
2))
maximum: (wt-tree/index wt-tree
(- (wt-tree/size wt-tree)

1))

wt-tree/rank wt-tree key [procedure]
Determines the 0-based position of key in the sorted sequence of the keys under
the tree’s ordering relation, or #f if the tree has no association with for key. This
procedure returns either an exact non-negative integer or #f. The average and worst-
case times required by this operation are proportional to the logarithm of the number
of associations in the tree.
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wt-tree/min wt-tree [procedure]
wt-tree/min-datum wt-tree [procedure]
wt-tree/min-pair wt-tree [procedure]

Returns the association of wt-tree that has the least key under the tree’s ordering
relation. wt-tree/min returns the least key, wt-tree/min-datum returns the da-
tum associated with the least key and wt-tree/min-pair returns a new pair (key
. datum) which is the cons of the minimum key and its datum. The average and
worst-case times required by this operation are proportional to the logarithm of the
number of associations in the tree.

These operations signal an error if the tree is empty. They could have been written

(define (wt-tree/min tree)
(wt-tree/index tree 0))

(define (wt-tree/min-datum tree)
(wt-tree/index-datum tree 0))

(define (wt-tree/min-pair tree)
(wt-tree/index-pair tree 0))

wt-tree/delete-min wt-tree [procedure]
Returns a new tree containing all of the associations in wt-tree except the association
with the least key under the wt-tree’s ordering relation. An error is signalled if
the tree is empty. The average and worst-case times required by this operation are
proportional to the logarithm of the number of associations in the tree. This operation
is equivalent to

(wt-tree/delete wt-tree (wt-tree/min wt-tree))

wt-tree/delete-min! wt-tree [procedure]
Removes the association with the least key under the wt-tree’s ordering relation. An
error is signalled if the tree is empty. The average and worst-case times required by
this operation are proportional to the logarithm of the number of associations in the
tree. This operation is equivalent to

(wt-tree/delete! wt-tree (wt-tree/min wt-tree))
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12 Procedures

Procedures are created by evaluating lambda expressions (see Section 2.1 [Lambda Expres-
sions|, page 15); the lambda may either be explicit or may be implicit as in a “procedure
define” (see Section 2.4 [Definitions|, page 20). Also there are special built-in procedures,
called primitive procedures, such as car; these procedures are not written in Scheme but in
the language used to implement the Scheme system. MIT/GNU Scheme also provides ap-
plication hooks, which support the construction of data structures that act like procedures.

In MIT/GNU Scheme, the written representation of a procedure tells you the type of
the procedure (compiled, interpreted, or primitive):

pp
= #[compiled-procedure 56 ("pp" #x2) #x10 #x307578]

(lambda (x) x)
= #[compound-procedure 57]
(define (foo x) x)
foo
= #[compound-procedure 58 foo]
car
= #[primitive-procedure car]
(call-with-current-continuation (lambda (x) x))
= #[continuation 59]

Note that interpreted procedures are called “compound” procedures (strictly speaking, com-
piled procedures are also compound procedures). The written representation makes this
distinction for historical reasons, and may eventually change.

12.1 Procedure Operations

apply procedure object object . . . [procedure]
Calls procedure with the elements of the following list as arguments:

(cons* object object ...)

The initial objects may be any objects, but the last object (there must be at least
one object) must be a list.

(apply + (list 3 4 5 6)) = 18
(apply + 3 4 (5 6)) = 18

(define compose
(lambda (f g)
(lambda args
(f (apply g args)))))
((compose sqrt *) 12 75) = 30

procedure? object [procedure]
Returns #t if object is a procedure; otherwise returns #f. If #t is returned, exactly one
of the following predicates is satisfied by object: compiled-procedure?, compound-
procedure?, or primitive-procedure?.
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compiled-procedure? object [procedure]
Returns #t if object is a compiled procedure; otherwise returns #f.

compound-procedure? object [procedure]
Returns #t if object is a compound (i.e. interpreted) procedure; otherwise returns #f.

primitive-procedure? object [procedure]
Returns #t if object is a primitive procedure; otherwise returns #£.

procedure-environment procedure [procedure]
Returns the closing environment of procedure. Signals an error if procedure is a
primitive procedure, or if procedure is a compiled procedure for which the debugging
information is unavailable.

12.2 Arity

Each procedure has an arity, which is the minimum and (optionally) maximum number of
arguments that it will accept. MIT/GNU Scheme provides an abstraction that represents
arity, and tests for the apparent arity of a procedure.

Arity objects come in two forms: the simple form, an exact non-negative integer, rep-
resents a fixed number of arguments. The general form is a pair whose car represents the
minimum number of arguments and whose cdr is the maximum number of arguments.

make-procedure-arity min [max [simple-ok?]] [procedure]
Returns an arity object made from min and max. Min must be an exact non-negative
integer. Max must be an exact non-negative integer at least as large as min. Alterna-
tively, max may be omitted or given as ‘#f’, which represents an arity with no upper
bound.

If simple-ok? is true, the returned arity is in the simple form (an exact non-negative
integer) when possible, and otherwise is always in the general form. Simple-ok?
defaults to ‘#£f’.

procedure-arity? object [procedure]
Returns ‘#t’ if object is an arity object, and ‘#f’ otherwise.

guarantee-procedure-arity object caller [procedure]
Signals an error if object is not an arity object. Caller is a symbol that is printed as
part of the error message and is intended to be the name of the procedure where the
error OCcurs.

procedure-arity-min arity [procedure]
procedure-arity-max arity [procedure]
Return the lower and upper bounds of arity, respectively.

The following procedures test for the apparent arity of a procedure. The results of the
test may be less restrictive than the effect of calling the procedure. In other words, these
procedures may indicate that the procedure will accept a given number of arguments, but
if you call the procedure it may signal a condition-type:wrong-number-of-arguments
error. For example, here is a procedure that appears to accept any number of arguments,
but when called will signal an error if the number of arguments is not one:

(lambda arguments (apply car arguments))
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procedure-arity procedure [procedure]
Returns the arity that procedure accepts. The result may be in either simple or
general form.

(procedure-arity (lambda () 3)) = (0.0
(procedure-arity (lambda (x) x)) = (1.1
(procedure-arity car) = (1. 1)
(procedure-arity (lambda x x)) = (0 . #f)
(procedure-arity (lambda (x . y) x)) = (1 . #£)

(procedure-arity (lambda (x #!optional y) x))
= (1.2

procedure-arity-valid? procedure arity [procedure]
Returns ‘#t’ if procedure accepts arity, and ‘#f’ otherwise.

procedure-of-arity? object arity [procedure]
Returns ‘#t’ if object is a procedure that accepts arity, and ‘#f’ otherwise. Equivalent
to:

(and (procedure? object)
(procedure-arity-valid? object arity))

guarantee-procedure-of-arity object arity caller [procedure]
Signals an error if object is not a procedure accepting arity. Caller is a symbol that is
printed as part of the error message and is intended to be the name of the procedure
where the error occurs.

thunk? object [procedure]
Returns ‘#t’ if object is a procedure that accepts zero arguments, and ‘#f’ otherwise.
Equivalent to:

(procedure-of-arity? object 0)

guarantee—thunk object caller [procedure]
Signals an error if object is not a procedure accepting zero arguments. Caller is a
symbol that is printed as part of the error message and is intended to be the name
of the procedure where the error occurs.

12.3 Primitive Procedures

make-primitive-procedure name [arity] [procedure]
Name must be a symbol. Arity must be an exact non-negative integer, -1, #f, or #t;
if not supplied it defaults to #f. Returns the primitive procedure called name. May
perform further actions depending on arity:

#f If the primitive procedure is not implemented, signals an error.
#t If the primitive procedure is not implemented, returns #f.
integer If the primitive procedure is implemented, signals an error if its arity

is not equal to arity. If the primitive procedure is not implemented,
returns an unimplemented primitive procedure object that accepts arity
arguments. An arity of -1 means it accepts any number of arguments.
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primitive-procedure-name primitive-procedure [procedure]
Returns the name of primitive-procedure, a symbol.
(primitive-procedure-name car) = car
implemented-primitive-procedure? primitive-procedure [procedure]

Returns #t if primitive-procedure is implemented; otherwise returns #f. Useful be-
cause the code that implements a particular primitive procedure is not necessarily
linked into the executable Scheme program.

12.4 Continuations

call-with-current-continuation procedure [procedure]
Procedure must be a procedure of one argument. Packages up the current continua-
tion (see below) as an escape procedure and passes it as an argument to procedure.
The escape procedure is a Scheme procedure of one argument that, if it is later passed
a value, will ignore whatever continuation is in effect at that later time and will give
the value instead to the continuation that was in effect when the escape procedure
was created. The escape procedure created by call-with-current-continuation
has unlimited extent just like any other procedure in Scheme. It may be stored in
variables or data structures and may be called as many times as desired.

The following examples show only the most common uses of this procedure. If all real
programs were as simple as these examples, there would be no need for a procedure
with the power of call-with-current-continuation.

(call-with-current-continuation
(lambda (exit)
(for-each (lambda (x)
(if (negative? x)
(exit x)))
>(54 0 37 -3 245 19))
#t)) = -3

(define list-length
(lambda (obj)
(call-with-current-continuation
(lambda (return)
(letrec ((r
(lambda (obj)
(cond ((null? obj) 0)
((pair? obj) (+ (r (cdr obj)) 1))
(else (return #£))))))
(r objd))))))
(l1ist-length (1 2 3 4)) = 4
(list-length ’(a b . ¢)) = #f
A common use of call-with-current-continuation is for structured, non-local

exits from loops or procedure bodies, but in fact call-with-current-continuation
is quite useful for implementing a wide variety of advanced control structures.
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Whenever a Scheme expression is evaluated a continuation exists that wants the
result of the expression. The continuation represents an entire (default) future for the
computation. If the expression is evaluated at top level, for example, the continuation
will take the result, print it on the screen, prompt for the next input, evaluate it, and
so on forever. Most of the time the continuation includes actions specified by user
code, as in a continuation that will take the result, multiply it by the value stored in
a local variable, add seven, and give the answer to the top-level continuation to be
printed. Normally these ubiquitous continuations are hidden behind the scenes and
programmers don’t think much about them. On the rare occasions that you may need
to deal explicitly with continuations, call-with-current-continuation lets you do
so by creating a procedure that acts just like the current continuation.

continuation? object [procedure]
Returns #t if object is a continuation; otherwise returns #f£.

within-continuation continuation thunk [procedure]
Thunk must be a procedure of no arguments. Conceptually,
within-continuation invokes continuation on the result of invoking thunk, but
thunk is executed in the dynamic context of continuation. In other words, the “cur-
rent” continuation is abandoned before thunk is invoked.

dynamic-wind before thunk after [procedure]
Calls thunk without arguments, returning the result(s) of this call. Before and after
are called, also without arguments, as required by the following rules (note that in the
absence of calls to continuations captured using call-with-current-continuation
the three arguments are called once each, in order). Before is called whenever execu-
tion enters the dynamic extent of the call to thunk and after is called whenever it exits
that dynamic extent. The dynamic extent of a procedure call is the period between
when the call is initiated and when it returns. In Scheme, because of call-with-
current-continuation, the dynamic extent of a call may not be a single, connected
time period. It is defined as follows:

e The dynamic extent is entered when execution of the body of the called procedure
begins.

e The dynamic extent is also entered when execution is not within the dynamic ex-
tent and a continuation is invoked that was captured (using call-with-current-
continuation) during the dynamic extent.

e It is exited when the called procedure returns.

e [t is also exited when execution is within the dynamic extent and a continuation
is invoked that was captured while not within the dynamic extent.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the afters from these
two invocations of dynamic-wind are both to be called, then the after associated with
the second (inner) call to dynamic-wind is called first.

If a second call to dynamic-wind occurs within the dynamic extent of the call to
thunk and then a continuation is invoked in such a way that the befores from these
two invocations of dynamic-wind are both to be called, then the before associated
with the first (outer) call to dynamic-wind is called first.
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If invoking a continuation requires calling the before from one call to dynamic-wind
and the after from another, then the after is called first.

The effect of using a captured continuation to enter or exit the dynamic extent of a
call to before or after is undefined.

(let ((path ’(O))
(c #£))
(let ((add (lambda (s)
(set! path (cons s path)))))
(dynamic-wind
(lambda () (add ’connect))
(lambda ()
(add (call-with-current-continuation
(lambda (c0)
(set! c c0)
’talk1l))))
(lambda () (add ’disconnect)))
(if (< (length path) 4)
(c ’talk2)
(reverse path))))

= (connect talkl disconnect connect talk2 disconnect)
The following two procedures support multiple values.

call-with-values thunk procedure [procedure]
Thunk must be a procedure of no arguments, and procedure must be a procedure.
Thunk is invoked with a continuation that expects to receive multiple values; specif-
ically, the continuation expects to receive the same number of values that procedure
accepts as arguments. Thunk must return multiple values using the values proce-
dure. Then procedure is called with the multiple values as its arguments. The result
yielded by procedure is returned as the result of call-with-values.

values object . .. [procedure]
Returns multiple values. The continuation in effect when this procedure is called
must be a multiple-value continuation that was created by call-with-values. Fur-
thermore it must accept as many values as there are objects.

12.5 Application Hooks

Application hooks are objects that can be applied like procedures. Each application hook
has two parts: a procedure that specifies what to do when the application hook is applied,
and an arbitrary object, called extra. Often the procedure uses the extra object to determine
what to do.

There are two kinds of application hooks, which differ in what arguments are passed to
the procedure. When an apply hook is applied, the procedure is passed exactly the same
arguments that were passed to the apply hook. When an entity is applied, the entity itself
is passed as the first argument, followed by the other arguments that were passed to the
entity.
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Both apply hooks and entities satisfy the predicate procedure?. Each satisfies either
compiled-procedure?, compound-procedure?, or primitive-procedure?, depending on
its procedure component. An apply hook is considered to accept the same number of
arguments as its procedure, while an entity is considered to accept one less argument than
its procedure.

make-apply-hook procedure object [procedure]
Returns a newly allocated apply hook with a procedure component of procedure and
an extra component of object.

apply-hook? object [procedure]
Returns #t if object is an apply hook; otherwise returns #f.

apply-hook-procedure apply-hook [procedure]
Returns the procedure component of apply-hook.

set-apply-hook-procedure! apply-hook procedure [procedure]
Changes the procedure component of apply-hook to be procedure. Returns an un-
specified value.

apply-hook-extra apply-hook [procedure]
Returns the extra component of apply-hook.

set-apply-hook-extra! apply-hook object [procedure]
Changes the extra component of apply-hook to be object. Returns an unspecified
value.

make-entity procedure object [procedure]

Returns a newly allocated entity with a procedure component of procedure and an
extra component of object.

entity? object [procedure]
Returns #t if object is an entity; otherwise returns #£.

entity-procedure entity [procedure]
Returns the procedure component of entity.

set-entity-procedure! entity procedure [procedure]
Changes the procedure component of entity to be procedure. Returns an unspecified
value.

entity-extra entity [procedure]

Returns the extra component of entity.

set-entity-extra! entity object [procedure]
Changes the extra component of entity to be object. Returns an unspecified value.
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12.6 Generic Dispatch

MIT/GNU Scheme provides a generic dispatch mechanism that can choose an action to
take based on the types of a set of objects. Performance is guaranteed by the use of a
hash-based method cache.

This is not an object-oriented programming system, although it can provide the basis
for such systems. The difference is that the generic dispatch doesn’t have any model for
the relationship between object types. Instead, there is a flat space of types and methods
are selected by procedural examination of the given operand types.

12.6.1 Generic Procedures

The core of the dispatch mechanism is the generic procedure. This is a procedure that is
called in the usual way, but which dispatches to a particular method based on the types of
its arguments.

make-generic-procedure arity [name] [procedure]
Returns a new generic procedure accepting arity. Arity must specify a minimum of
one argument.
Name is used for debugging: it is a symbol that has no role in the semantics of
the generic procedure. Name may be #f to indicate that the generic procedure is
anonymous. If name is not specified, it defaults to ‘#£f’.

Examples:
(define foo-bar (make-generic-procedure 2 ’bar))

(define foo-baz (make-generic-procedure ’(1 . 2) ’foo-baz))

(define foo-mum (make-generic-procedure ’(1 . #f)))

generic-procedure? object [procedure]
Returns ‘#t’ if object is a generic procedure, and ‘#f’ otherwise.

guarantee-generic-procedure object caller [procedure]
Signals an error if object is not a generic procedure. Caller is a symbol that is printed
as part of the error message and is intended to be the name of the procedure where
the error occurs.

generic-procedure-arity generic [procedure]
Returns the arity of generic, as given to make-generic-procedure.

generic-procedure-name generic [procedure]
Returns the name of generic, as given to make-generic-procedure.

generic-procedure-applicable? generic operands [procedure]
Returns ‘#t’ if generic is applicable to operands (which must be a list of objects),
and ‘#f’ otherwise.

condition-type:no-applicable-methods operator operands [condition type]
This condition type is signalled when a generic procedure is applied and there are no
applicable methods for the given operands. The condition’s operator field contains
the generic procedure and the operands field contains the given operands.
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condition-type:extra-applicable-methods operator operands  [condition type]
This condition type is signalled when a generic procedure is applied and there are more
than one applicable methods for the given operands. The condition’s operator field
contains the generic procedure and the operands field contains the given operands.

12.6.2 Method Generators

Generic-procedure methods are dynamically chosen by generators, which are procedures of
two arguments. Each generic procedure has a set of associated generators. Whenever the
procedure is applied, each associated generator is applied to two arguments: the generic
procedure and a list of the dispatch tags for the operands. The return value from the
generator is either a method (a procedure accepting that number of arguments) or ‘#£’. In
order for the application to succeed, exactly one of the generic procedure’s generators must
return a method.

Once a method has been chosen, it is cached. A subsequent call to the generic proce-
dure with operands of the same types will reuse that cached method. Consequently, it is
important that generators be functional: they must always compute the same value from
the same arguments.

add-generic-procedure-generator generic generator [procedure]
Adds generator to generic’s set of generators and returns an unspecified value.

remove-generic-procedure-generator generic generator [procedure]
Removes generator from generic’s set of generators and returns an unspecified value.

remove-generic-procedure-generators generic tags [procedure]
Calls each of generic’s set of generators on tags and removes each generator that
returns a method. Returns an unspecified value.

generic-procedure-generator-list generic [procedure]
Returns a list of generic’s generators.

As a convenience, each generic procedure can have a default generator, which is called
only when all of the other generators have returned ‘#f’. When created, a generic procedure
has no default generator.

generic-procedure-default-generator generic [procedure]
Returns generic’s default generator.

set-generic-procedure-default-generator! generic generator [procedure]
Sets generic’s default generator to generator and returns an unspecified value.

12.6.3 Dispatch Tags

A dispatch tag is an object that represents the “type” of an object, for the purposes of
generic dispatch. Every object has an associated dispatch tag. Built-in objects like pairs or
booleans have predefined tags, while dynamically typed objects like records have tags that
are created as needed.

dispatch-tag object [procedure]
Returns the dispatch tag for object.
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(dispatch-tag #f) = #[dispatch-tag 17 (boolean)]
(dispatch-tag #t) = #[dispatch-tag 17 (boolean)]
(dispatch-tag (list)) = #[dispatch-tag 18 (null)]
(dispatch-tag (list 3)) = #[dispatch-tag 19 (pair list)]

built-in-dispatch-tag name [procedure]
Returns the built-in dispatch tag called name. Name must be a symbol that is the
name of a known built-in dispatch tag.

(built-in-dispatch-tag ’boolean) = #[dispatch-tag 17 (boolean)]
(built-in-dispatch-tag ’null) = #[dispatch-tag 18 (null)]
(built-in-dispatch-tag ’pair) = #[dispatch-tag 19 (pair list)]
(built-in-dispatch-tag ’list) = #[dispatch-tag 19 (pair list)]

built-in-dispatch-tags [procedure]
Returns a list of the built-in dispatch tags.

record-type-dispatch-tag record-type [procedure]
Returns the dispatch tag associate with record-type. See See Section 10.4 [Records],
page 138, for more information about record types.

dispatch-tag? object [procedure]
Returns ‘#t’ if object is a dispatch tag, and ‘#f’ otherwise.

guarantee-dispatch-tag object caller [procedure]
Signals an error if object is not a dispatch tag. Caller is a symbol that is printed as
part of the error message and is intended to be the name of the procedure where the
€ITor OCCUrs.
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13 Environments

13.1 Environment Operations

Environments are first-class objects in MIT/GNU Scheme. An environment consists of some
bindings and possibly a parent environment, from which other bindings are inherited. The
operations in this section reveal the frame-like structure of environments by permitting you
to examine the bindings of a particular environment separately from those of its parent.

There are several types of bindings that can occur in an environment. The most com-
mon is the simple variable binding, which associates a value (any Scheme object) with an
identifier (a symbol). A variable binding can also be unassigned, which means that it has
no value. An unassigned variable is bound, in that is will shadow other bindings of the
same name in ancestor environments, but a reference to that variable will signal an error
of type condition-type:unassigned-variable. An unassigned variable can be assigned
(using set! or environment-assign!) to give it a value.

In addition to variable bindings, an environment can also have keyword bindings. A
keyword binding associates a syntactic keyword (usually a macro transformer) with an
identifier. Keyword bindings are special in that they are considered “bound”, but ordinary
variable references don’t work on them. So an attempt to reference or assign a keyword
binding results in an error of type condition-type:macro-binding. However, keyword
bindings can be redefined using define or environment-define.

environment? object [procedure]
Returns #t if object is an environment; otherwise returns #f.

environment-has-parent? environment [procedure]
Returns #t if environment has a parent environment; otherwise returns #f.

environment-parent environment [procedure]
Returns the parent environment of environment. It is an error if environment has no
parent.

environment-bound-names environment [procedure]

Returns a newly allocated list of the names (symbols) that are bound by environ-
ment. This does not include the names that are bound by the parent environment of
environment. It does include names that are unassigned or keywords in environment.

environment-macro-names environment [procedure]
Returns a newly allocated list of the names (symbols) that are bound to syntactic
keywords in environment.

environment-bindings environment [procedure]
Returns a newly allocated list of the bindings of environment; does not include the
bindings of the parent environment. Each element of this list takes one of two forms:
(symbol) indicates that symbol is bound but unassigned, while (symbol object)
indicates that symbol is bound, and its value is object.
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environment-reference-type environment symbol [procedure]
Returns a symbol describing the reference type of symbol in environment or one of
its ancestor environments. The result is one of the following:

normal means symbol is a variable binding with a normal value.

unassigned
means symbol is a variable binding with no value.

macro means symbol is a keyword binding.

unbound  means symbol has no associated binding.

environment-bound? environment symbol [procedure]
Returns #t if symbol is bound in environment or one of its ancestor environments;
otherwise returns #f. This is equivalent to

(not (eq? ’unbound
(environment-reference-type environment symbol)))

environment-assigned? environment symbol [procedure]
Returns #t if symbol is bound in environment or one of its ancestor environments,
and has a normal value. Returns #£ if it is bound but unassigned. Signals an error if
it is unbound or is bound to a keyword.

environment-lookup environment symbol [procedure]
Symbol must be bound to a normal value in environment or one of its ancestor
environments. Returns the value to which it is bound. Signals an error if unbound,
unassigned, or a keyword.

environment-lookup-macro environment symbol [procedure]
If symbol is a keyword binding in environment or one of its ancestor environments,
returns the value of the binding. Otherwise, returns #f. Does not signal any errors
other than argument-type errors.

environment-assignable? environment symbol [procedure]
Symbol must be bound in environment or one of its ancestor environments. Returns
#t if the binding may be modified by side effect.

environment-assign! environment symbol object [procedure]
Symbol must be bound in environment or one of its ancestor environments, and
must be assignable. Modifies the binding to have object as its value, and returns an
unspecified result.

environment-definable? environment symbol [procedure]
Returns #t if symbol is definable in environment, and #f otherwise. At present, this
is false for environments generated by application of compiled procedures, and true
for all other environments.

environment-define environment symbol object [procedure]
Defines symbol to be bound to object in environment, and returns an unspecified
value. Signals an error if symbol isn’t definable in environment.
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environment-define-macro environment symbol transformer [procedure]
Defines symbol to be a keyword bound to transformer in environment, and returns an
unspecified value. Signals an error if symbol isn’t definable in environment. The type
of transformer is defined by the syntax engine and is not checked by this procedure.
If the type is incorrect this will subsequently signal an error during syntax expansion.

eval expression environment [procedure]
Evaluates expression, a list-structure representation (sometimes called s-expression
representation) of a Scheme expression, in environment. You rarely need eval in
ordinary programs; it is useful mostly for evaluating expressions that have been cre-
ated “on the fly” by a program. eval is relatively expensive because it must convert
expression to an internal form before it is executed.

(define foo (list ’+ 1 2))
(eval foo (the-environment)) = 3

13.2 Environment Variables

The user-initial-environment is where the top-level read-eval-print (REP) loop evaluates
expressions and binds definitions. It is a child of system-global-environment, which is
where all of the Scheme system definitions are bound. All of the bindings in system-global-
environment are available when the current environment is user-initial-environment.
However, any new bindings that you create in the REP loop (with define forms or by
loading files containing define forms) occur in user-initial-environment.

system-global-environment [variable]
The variable system-global-environment is bound to the distinguished environment
that’s the ancestor of most other environments (except for those created by make-
root-top-level-environment). It is the parent environment of user-initial-
environment. Primitives, system procedures, and most syntactic keywords are bound
(and sometimes closed) in this environment.

user-initial-environment [variable]
The variable user-initial-environment is bound to the default environment in
which typed expressions are evaluated by the top-level REP loop.

Although all bindings in system-global-environment are visible to the REP loop,
definitions that are typed at, or loaded by, the REP loop occur in the user-initial-
environment. This is partly a safety measure: if you enter a definition that happens
to have the same name as a critical system procedure, your definition will be visible
only to the procedures you define in the user-initial-environment; the MIT/GNU
Scheme system procedures, which are defined in system-global-environment, will
continue to see the original definition.

13.3 REPL Environment

nearest-repl/environment [procedure]
Returns the current REP loop environment (i.e. the current environment of the closest
enclosing REP loop). When Scheme first starts up, this is the same as user-initial-
environment.
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ge environment [procedure]
Changes the current REP loop environment to environment. Environment can be
either an environment or a procedure object. If it’s a procedure, the environment in
which that procedure was closed is the new environment.

13.4 Top-level Environments

The operations in this section manipulate top-level environments, as opposed to environ-
ments created by the application of procedures. For historical reasons, top-level environ-
ments are referred to as interpreter environments.

the-environment [special form)]
Returns the current environment. This form may only be evaluated in a top-level
environment. An error is signalled if it appears elsewhere.

top-level-environment? object [procedure]
interpreter-environment? object [procedure]
Returns #t if object is an top-level environment; otherwise returns #f£.

interpreter-environment? is an alias for top-level-environment?.

extend-top-level-environment environment [names [values|| [procedure]
make-top-level-environment [names [values|] [procedure]
make-root-top-level-environment [names [values]] [procedure]

Returns a newly allocated top-level environment. extend-top-level-environment
creates an environment that has parent environment, make-top-level-environment
creates an environment that has parent system-global-environment, and make-
root-top-level-environment creates an environment that has no parent.

The optional arguments names and values are used to specify initial bindings in the
new environment. If specified, names must be a list of symbols, and values must be
a list of objects. If only names is specified, each name in names will be bound in the
environment, but unassigned. If names and values are both specified, they must be
the same length, and each name in names will be bound to the corresponding value in
values. If neither names nor values is specified, the environment will have no initial
bindings.

link-variables environmentl symboll environment2 symbol2 [procedure]
Defines symboll in environmentl to have the same binding as symbol2 in environ-
ment2, and returns an unspecified value. Prior to the call, symbol2 must be bound in
environment2, but the type of binding is irrelevant; it may be a normal binding, an
unassigned binding, or a keyword binding. Signals an error if symboll isn’t definable
in environmentl, or if symbol2 is unbound in environment?2.
By “the same binding”, we mean that the value cell is shared between the two envi-
ronments. If a value is assigned to symboll in environmentl, a subsequent reference
to symbol2 in environment2 will see that value, and vice versa.

unbind-variable environment symbol [procedure]
If symbol is bound in environment or one of its ancestor environments, removes the
binding, so that subsequent accesses to that symbol behave as if the binding never
existed. Returns #t if there was a binding prior to the call, and #f if there wasn’t.
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14 Input/Output

This chapter describes the procedures that are used for input and output (I/0). The chapter
first describes ports and how they are manipulated, then describes the I/O operations.
Finally, some low-level procedures are described that permit the implementation of custom
ports and high-performance 1/0.

14.1 Ports

Scheme uses ports for I/0. A port, which can be treated like any other Scheme object, serves
as a source or sink for data. A port must be open before it can be read from or written
to. The standard I/O port, console-i/o-port, is opened automatically when you start
Scheme. When you use a file for input or output, you need to explicitly open and close a
port to the file (with procedures described in this chapter). Additional procedures let you
open ports to strings.

Many input procedures, such as read-char and read, read data from the current input
port by default, or from a port that you specify. The current input port is initially console-
i/o-port, but Scheme provides procedures that let you change the current input port to
be a file or string.

Similarly, many output procedures, such as write-char and display, write data to the
current output port by default, or to a port that you specify. The current output port
is initially console-i/o-port, but Scheme provides procedures that let you change the
current output port to be a file or string.

All ports read or write only ISO-8859-1 characters.

Every port is either an input port, an output port, or both. The following predicates
distinguish all of the possible cases.

port? object [procedure]
Returns #t if object is a port, otherwise returns #f.

input-port? object [procedure]
Returns #t if object is an input port, otherwise returns #f. Any object satisfying this
predicate also satisfies port?.

output-port? object [procedure]
Returns #t if object is an output port, otherwise returns #f. Any object satisfying
this predicate also satisfies port?.

i/o-port? object [procedure]
Returns #t if object is both an input port and an output port, otherwise returns #f.
Any object satisfying this predicate also satisfies port?, input-port?, and output-

port?.
guarantee-port object [procedure]
guarantee-input-port object [procedure]

guarantee-output-port object [procedure]
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guarantee-i/o-port object [procedure]
These procedures check the type of object, signalling an error of type
condition-type:wrong-type-argument if it is not a port, input port, output port,
or I/0 port, respectively. Otherwise they return object.

The next five procedures return the runtime system’s standard ports. All of the standard
ports are dynamically bound by the REP loop; this means that when a new REP loop is
started, for example by an error, each of these ports is dynamically bound to the I/O port
of the REP loop. When the REP loop exits, the ports revert to their original values.

current-input-port [procedure]
Returns the current input port. This is the default port used by many input proce-
dures. Initially, current-input-port returns the value of console-i/o-port.

current-output-port [procedure]
Returns the current output port. This is the default port used by many output
procedures. Initially, current-output-port returns the value of console-i/o-port.

notification-output-port [procedure]
Returns an output port suitable for generating “notifications”, that is, messages to
the user that supply interesting information about the execution of a program. For
example, the load procedure writes messages to this port informing the user that
a file is being loaded. Initially, notification-output-port returns the value of
console-i/o-port.

trace-output-port [procedure]
Returns an output port suitable for generating “tracing” information about a pro-
gram’s execution. The output generated by the trace procedure is sent to this port.
Initially, trace-output-port returns the value of console-i/o-port.

interaction-i/o-port [procedure]
Returns an I/O port suitable for querying or prompting the user. The standard
prompting procedures use this port by default (see Section 14.8 [Prompting],
page 198). Initially, interaction-i/o-port returns the value of console-i/o-port.

with-input-from-port input-port thunk [procedure]
with-output-to-port output-port thunk [procedure]
with-notification-output-port output-port thunk [procedure]
with-trace-output-port output-port thunk [procedure]
with-interaction-i/o-port i/o-port thunk [procedure]

Thunk must be a procedure of no arguments. Each of these procedures binds one
of the standard ports to its first argument, calls thunk with no arguments, restores
the port to its original value, and returns the result that was yielded by thunk. This
temporary binding is performed the same way as dynamic binding of a variable,
including the behavior in the presence of continuations (see Section 2.3 [Dynamic
Binding], page 18).

with-input-from-port binds the current input port, with-output-to-port binds
the current output port, with-notification-output-port binds the “notification”
output port, with-trace-output-port binds the “trace” output port, and with-
interaction-i/o-port binds the “interaction” I/O port.
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set-current-input-port! input-port [procedure]

set-current-output-port! output-port [procedure]

set-notification-output-port! output-port [procedure]

set-trace-output-port! output-port [procedure]

set-interaction-i/o-port! i/o-port [procedure]
Each of these procedures alters the binding of one of the standard ports and returns
an unspecified value. The binding that is modified corresponds to the name of the
procedure.

console-i/o-port [variable]
console-i/o-port is an I/O port that communicates with the “console”. Under unix,
the console is the controlling terminal of the Scheme process. Under Windows and
0OS/2, the console is the window that is created when Scheme starts up.

This variable is rarely used; instead programs should use one of the standard ports
defined above. This variable should not be modified.

close-port port [procedure]
Closes port and returns an unspecified value. If port is a file port, the file is closed.

close-input-port port [procedure]
Closes port and returns an unspecified value. Port must be an input port or an I/0O
port; if it is an I/O port, then only the input side of the port is closed.

close-output-port port [procedure]
Closes port and returns an unspecified value. Port must be an output port or an I/O
port; if it is an 1/O port, then only the output side of the port is closed.

14.2 File Ports

Before Scheme can access a file for reading or writing, it is necessary to open a port to the
file. This section describes procedures used to open ports to files. Such ports are closed
(like any other port) by close-port. File ports are automatically closed if and when they
are reclaimed by the garbage collector.

Before opening a file for input or output, by whatever method, the filename argument
is converted to canonical form by calling the procedure merge-pathnames with filename as
its sole argument. Thus, filename can be either a string or a pathname, and it is merged
with the current pathname defaults to produce the pathname that is then opened.

Any file can be opened in one of two modes, normal or binary. Normal mode is for
accessing text files, and binary mode is for accessing other files. Unix does not distinguish
these modes, but Windows and OS/2 do: in normal mode, their file ports perform newline
translation, mapping between the carriage-return/linefeed sequence that terminates text
lines in files, and the #\newline that terminates lines in Scheme. In binary mode, such
ports do not perform newline translation. Unless otherwise mentioned, the procedures in
this section open files in normal mode.

open-input-file filename [procedure]
Takes a filename referring to an existing file and returns an input port capable of
delivering characters from the file. If the file cannot be opened, an error of type
condition-type:file-operation-error is signalled.
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open-output-file filename [append?] [procedure]
Takes a filename referring to an output file to be created and returns an output port
capable of writing characters to a new file by that name. If the file cannot be opened,
an error of type condition-type:file-operation-error is signalled.

The optional argument append? is an MIT/GNU Scheme extension. If append? is
given and not #f, the file is opened in append mode. In this mode, the contents of
the file are not overwritten; instead any characters written to the file are appended
to the end of the existing contents. If the file does not exist, append mode creates
the file and writes to it in the normal way.

open-i/o-file filename [procedure]
Takes a filename referring to an existing file and returns an 1/O port capable of both
reading and writing the file. If the file cannot be opened, an error of type condition-
type:file-operation-error is signalled.

This procedure is often used to open special files. For example, under unix this
procedure can be used to open terminal device files, PTY device files, and named

pipes.
open-binary-input-file filename [procedure]
open-binary-output-file filename [append? [procedure]
open-binary-i/o-file filename [procedure]
These procedures open files in binary mode. In all other respects they are identical

to open-input-file, open-output-file, and open-i/o-file, respectively.

close-all-open-files [procedure]
This procedure closes all file ports that are open at the time that it is called, and
returns an unspecified value.

call-with-input-file filename procedure [procedure]

call-with-output-file filename procedure [procedure]
These procedures call procedure with one argument: the port obtained by opening
the named file for input or output, respectively. If the file cannot be opened, an error
of type condition-type:file-operation-error is signalled. If procedure returns,
then the port is closed automatically and the value yielded by procedure is returned.
If procedure does not return, then the port will not be closed automatically unless it
is reclaimed by the garbage collector.!

call-with-binary-input-file filename procedure [procedure]

call-with-binary-output-file filename procedure [procedure]
These procedures open files in binary mode. In all other respects they are identical
to call-with-input-file and call-with-output-file, respectively.

1 Because Scheme’s escape procedures have unlimited extent, it is possible to escape from the current
continuation but later to escape back in. If implementations were permitted to close the port on any
escape from the current continuation, then it would be impossible to write portable code using both
call-with-current-continuation and call-with-input-file or call-with-output-file.
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with-input-from-file filename thunk [procedure]
with-output-to-file filename thunk [procedure]
Thunk must be a procedure of no arguments. The file is opened for input or output, an
input or output port connected to it is made the default value returned by current-
input-port or current-output-port, and the thunk is called with no arguments.
When the thunk returns, the port is closed and the previous default is restored. with-
input-from-file and with-output-to-file return the value yielded by thunk. If
an escape procedure is used to escape from the continuation of these procedures, their
behavior is implementation-dependent; in that situation MIT /GNU Scheme leaves the

files open.
with-input-from-binary-file filename thunk [procedure]
with-output-to-binary-file filename thunk [procedure]

These procedures open files in binary mode. In all other respects they are identical
to with-input-from-file and with-output-to-file, respectively.

14.3 String Ports

This section describes the simplest kinds of ports: input ports that read their input from
given strings, and output ports that accumulate their output and return it as a string. It
also describes “truncating” output ports, which can limit the length of the resulting string
to a given value.

open-input-string string [start [end]] [procedure]
Returns a new string port that delivers characters from string. The optional argu-
ments start and end may be used to specify that the string port delivers charac-
ters from a substring of string; if not given, start defaults to O and end defaults to
(string-length string).

with-input-from-string string thunk [procedure]
Thunk must be a procedure of no arguments. with-input-from-string creates a
new input port that reads from string, makes that port the current input port, and
calls thunk. When thunk returns, with-input-from-string restores the previous
current input port and returns the result yielded by thunk.

(with-input-from-string "(a b c) (d e f)" read) = (a b c)
Note: this procedure is equivalent to:

(with-input-from-port (open-input-string string) thunk)

open-output-string [procedure]

get-output-string [procedure]
open-output-string returns a new output port that accumulates in a buffer every-
thing that is written to it. The accumulated output can subsequently be obtained by
calling get-output-string on the port.

call-with-output-string procedure [procedure]
Procedure is called with one argument, an output port. The value yielded by pro-
cedure is ignored. When procedure returns, call-with-output-string returns the
port’s accumulated output as a newly allocated string. This is equivalent to:
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(define (call-with-output-string procedure)
(let ((port (open-output-string)))
(procedure port)
(get-output-string port)))

with-output-to-string thunk [procedure]
Thunk must be a procedure of no arguments. with-output-to-string creates a new
output port that accumulates output, makes that port the default value returned by
current-output-port, and calls thunk with no arguments. When thunk returns,
with-output-to-string restores the previous default and returns the accumulated
output as a newly allocated string.

(with-output-to-string
(lambda O
(write ’abc))) = '"abc"

Note: this procedure is equivalent to:
(call-with-output-string
(lambda (port)
(with-output-to-port port thunk)))

with-output-to-truncated-string k thunk [procedure]
Similar to with-output-to-string, except that the output is limited to k characters.
If thunk attempts to write more than k characters, it will be aborted by invoking an
escape procedure that returns from with-output-to-truncated-string.

The value of this procedure is a pair; the car of the pair is #t if thunk attempted
to write more than k characters, and #f otherwise. The cdr of the pair is a newly
allocated string containing the accumulated output.
This procedure is helpful for displaying circular lists, as shown in this example:

(define inf (list ’inf))

(with-output-to-truncated-string 40

(lambda ()
(write inf))) = #f . "(inf)")
(set-cdr! inf inf)
(with-output-to-truncated-string 40

(lambda ()
(write inf)))
= (#t . "(inf inf inf inf inf inf inf inf inf inf")
write-to-string object [K] [procedure]

Writes object to a string output port, and returns the resulting newly allocated string.
If k is supplied and not #£, this procedure is equivalent to

(with-output-to-truncated-string k
(lambda Q)
(write object)))

otherwise it is equivalent to
(with-output-to-string
(lambda (O
(write object)))
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14.4 Input Procedures

This section describes the procedures that read input. Input procedures can read either
from the current input port or from a given port. Remember that to read from a file, you
must first open a port to the file.

Input ports can be divided into two types, called interactive and non-interactive. Interac-
tive input ports are ports that read input from a source that is time-dependent; for example,
a port that reads input from a terminal or from another program. Non-interactive input
ports read input from a time-independent source, such as an ordinary file or a character
string.

All optional arguments called input-port, if not supplied, default to the current input
port.

read-char [input-port] [procedure]
Returns the next character available from input-port, updating input-port to point
to the following character. If no more characters are available, an end-of-file object
is returned.

In MIT/GNU Scheme, if input-port is an interactive input port and no characters
are immediately available, read-char will hang waiting for input, even if the port is
in non-blocking mode.

peek-char [input-port] [procedure]
Returns the next character available from input-port, without updating input-port
to point to the following character. If no more characters are available, an end-of-file
object is returned.?

In MIT/GNU Scheme, if input-port is an interactive input port and no characters
are immediately available, peek-char will hang waiting for input, even if the port is
in non-blocking mode.

char-ready? [input-port] [procedure]
Returns #t if a character is ready on input-port and returns #f otherwise. If char-
ready? returns #t then the next read-char operation on input-port is guaranteed
not to hang. If input-port is a file port at end of file then char-ready? returns #t.3

read [input-port [environment]] [procedure]
Converts external representations of Scheme objects into the objects themselves. read
returns the next object parsable from input-port, updating input-port to point to the
first character past the end of the written representation of the object. If an end
of file is encountered in the input before any characters are found that can begin

2 The value returned by a call to peek-char is the same as the value that would have been returned by
a call to read-char on the same port. The only difference is that the very next call to read-char or
peek-char on that input-port will return the value returned by the preceding call to peek-char. In
particular, a call to peek-char on an interactive port will hang waiting for input whenever a call to
read-char would have hung.

char-ready? exists to make it possible for a program to accept characters from interactive ports without
getting stuck waiting for input. Any input editors associated with such ports must make sure that
characters whose existence has been asserted by char-ready? cannot be rubbed out. If char-ready?
were to return #f at end of file, a port at end of file would be indistinguishable from an interactive port
that has no ready characters.
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an object, read returns an end-of-file object. The input-port remains open, and
further attempts to read will also return an end-of-file object. If an end of file is
encountered after the beginning of an object’s written representation, but the written
representation is incomplete and therefore not parsable, an error is signalled.

Environment is used to look up the values of control variables such as
‘sparser-radix*’. If not supplied, it defaults to the REP environment.

eof-object? object [procedure]
Returns #t if object is an end-of-file object; otherwise returns #f.

read-char-no-hang [input-port] [procedure]
If input-port can deliver a character without blocking, this procedure acts exactly like
read-char, immediately returning that character. Otherwise, #f is returned, unless
input-port is a file port at end of file, in which case an end-of-file object is returned.
In no case will this procedure block waiting for input.

read-string char-set [input-port] [procedure]
Reads characters from input-port until it finds a terminating character that is a
member of char-set (see Section 5.6 [Character Sets|, page 84) or encounters end of
file. The port is updated to point to the terminating character, or to end of file if
no terminating character was found. read-string returns the characters, up to but
excluding the terminating character, as a newly allocated string.

This procedure ignores the blocking mode of the port, blocking unconditionally until it
sees either a delimiter or end of file. If end of file is encountered before any characters
are read, an end-of-file object is returned.

On many input ports, this operation is significantly faster than the following equiva-
lent code using peek-char and read-char:
(define (read-string char-set input-port)
(let ((char (peek-char input-port)))
(if (eof-object? char)
char
(list->string
(let loop ((char char))
(if (or (eof-object? char)
(char-set-member? char-set char))
0]
(begin
(read-char input-port)
(cons char
(loop (peek-char input-port))))))))))

read-line [input-port] [procedure]
read-line reads a single line of text from input-port, and returns that line as a newly
allocated string. The #\newline terminating the line, if any, is discarded and does
not appear in the returned string.

This procedure ignores the blocking mode of the port, blocking unconditionally until
it has read an entire line. If end of file is encountered before any characters are read,
an end-of-file object is returned.
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read-string! string [input-port] [procedure]

read-substring! string start end [input-port] [procedure]
read-string! and read-substring! fill the specified region of string with characters
read from input-port until the region is full or else there are no more characters
available from the port. For read-string!, the region is all of string, and for read-
substring!, the region is that part of string specified by start and end.

The returned value is the number of characters filled into the region. However, there
are several interesting cases to consider:

e Ifread-string! (read-substring!) is called when input-port is at “end-of-file”,
then the returned value is 0. Note that “end-of-file” can mean a file port that is
at the file’s end, a string port that is at the string’s end, or any other port that
will never produce more characters.

e If input-port is an interactive port (e.g. a terminal), and one or more characters
are immediately available, the region is filled using the available characters. The
procedure then returns immediately, without waiting for further characters, even
if the number of available characters is less than the size of the region. The
returned value is the number of characters actually filled in.

e If input-port is an interactive port and no characters are immediately available,
the result of the operation depends on the blocking mode of the port. If the port
is in non-blocking mode, read-string! (read-substring!) immediately returns
the value #f. Otherwise, the operation blocks until a character is available. As
soon as at least one character is available, the region is filled using the available
characters. The procedure then returns immediately, without waiting for further
characters, even if the number of available characters is less than the size of the
region. The returned value is the number of characters actually filled in.

The importance of read-string! and read-substring! are that they are both flex-
ible and extremely fast, especially for large amounts of data.

The following variables may be bound or assigned to change the behavior of the read
procedure. They are looked up in the environment that is passed to read, and so may have
different values in different environments. It is recommended that the global bindings of
these variables be left unchanged; make local changes by shadowing the global bindings in
nested environments.

xparser-radix* [variable]
This variable defines the radix used by the reader when it parses numbers. This is
similar to passing a radix argument to string->number. The value of this variable
must be one of 2, 8, 10, or 16; any other value is ignored, and the reader uses radix
10.

Note that much of the number syntax is invalid for radixes other than 10. The
reader detects cases where such invalid syntax is used and signals an error. However,
problems can still occur when *parser-radix* is set to 16, because syntax that
normally denotes symbols can now denote numbers (e.g. abc). Because of this, it is
usually undesirable to set this variable to anything other than the default.

The default value of this variable is 10.
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*xparser-canonicalize-symbols?* [variable]
This variable controls how the parser handles case-sensitivity of symbols. If it is
bound to its default value of #t, symbols read by the parser are converted to lower
case before being interned. Otherwise, symbols are interned without case conversion.

In general, it is a bad idea to use this feature, as it doesn’t really make Scheme case-
sensitive, and therefore can break features of the Scheme runtime that depend on
case-insensitive symbols.

14.5 Output Procedures

Output ports may or may not support buffering of output, in which output characters are
collected together in a buffer and then sent to the output device all at once. (Most of the
output ports implemented by the runtime system support buffering.) Sending all of the
characters in the buffer to the output device is called flushing the buffer. In general, output
procedures do not flush the buffer of an output port unless the buffer is full.

However, the standard output procedures described in this section perform what is
called discretionary flushing of the buffer. Discretionary output flushing works as follows.
After a procedure performs its output (writing characters to the output buffer), it checks
to see if the port implements an operation called discretionary-flush-output. If so,
then that operation is invoked to flush the buffer. At present, only the console port defines
discretionary-flush-output; this is used to guarantee that output to the console appears
immediately after it is written, without requiring calls to flush-output.

All optional arguments called output-port, if not supplied, default to the current output
port.

write-char char [output-port] [procedure]
Writes char (the character itself, not a written representation of the character) to
output-port, performs discretionary output flushing, and returns an unspecified value.

write-string string [output-port] [procedure]
Writes string to output-port, performs discretionary output flushing, and returns an
unspecified value. This is equivalent to writing the contents of string, one character
at a time using write-char, except that it is usually much faster.

write-substring string start end [output-port] [procedure]
Writes the substring defined by string, start, and end to output-port, performs dis-
cretionary output flushing, and returns an unspecified value. This is equivalent to
writing the contents of the substring, one character at a time using write-char,
except that it is usually much faster.

write object [output-port] [procedure]
Writes a written representation of object to output-port, and returns an unspecified
value. If object has a standard external representation, then the written representa-
tion generated by write shall be parsable by read into an equivalent object. Thus
strings that appear in the written representation are enclosed in doublequotes, and
within those strings backslash and doublequote are escaped by backslashes. write
performs discretionary output flushing and returns an unspecified value.
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display object [output-port] [procedure]
Writes a representation of object to output-port. Strings appear in the written repre-
sentation as if written by write-string instead of by write. Character objects ap-
pear in the representation as if written by write-char instead of by write. display
performs discretionary output flushing and returns an unspecified value.*

newline [output-port] [procedure]
Writes an end-of-line to output-port, performs discretionary output flushing, and
returns an unspecified value. Equivalent to (write-char #\newline output-port).

fresh-line [output-port] [procedure]
Most output ports are able to tell whether or not they are at the beginning of a line of
output. If output-port is such a port, this procedure writes an end-of-line to the port
only if the port is not already at the beginning of a line. If output-port is not such
a port, this procedure is identical to newline. In either case, fresh-line performs
discretionary output flushing and returns an unspecified value.

write-line object [output-port] [procedure]
Like write, except that it writes an end-of-line to output-port after writing object’s
representation. This procedure performs discretionary output flushing and returns
an unspecified value.

flush-output [output-port] [procedure]
If output-port is buffered, this causes the contents of its buffer to be written to the
output device. Otherwise it has no effect. Returns an unspecified value.

beep [output-port] [procedure]
Performs a “beep” operation on output-port, performs discretionary output flushing,
and returns an unspecified value. On the console port, this usually causes the console
bell to beep, but more sophisticated interactive ports may take other actions, such as
flashing the screen. On most output ports, e.g. file and string output ports, this does
nothing.

clear [output-port] [procedure]
“Clears the screen” of output-port, performs discretionary output flushing, and re-
turns an unspecified value. On a terminal or window, this has a well-defined effect.
On other output ports, e.g. file and string output ports, this does nothing.

pp object [output-port [as-code?]] [procedure]
pp prints object in a visually appealing and structurally revealing manner on output-
port. If object is a procedure, pp attempts to print the source text. If the optional
argument as-code? is true, pp prints lists as Scheme code, providing appropriate
indentation; by default this argument is false. pp performs discretionary output
flushing and returns an unspecified value.

The following variables may be dynamically bound to change the behavior of the write
and display procedures.

4 yrite is intended for producing machine-readable output and display is for producing human-readable

output.
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xunparser-radix* [variable]
This variable specifies the default radix used to print numbers. Its value must be one
of the exact integers 2, 8, 10, or 16; the default is 10. If *unparser-radix* is not
10, numbers are prefixed to indicate their radix.

xunparser-list-breadth-limitx* [variable]
This variable specifies a limit on the length of the printed representation of a list or
vector; for example, if the limit is 4, only the first four elements of any list are printed,
followed by ellipses to indicate any additional elements. The value of this variable
must be an exact non-negative integer, or #f meaning no limit; the default is #f.

(fluid-let ((*unparser-list-breadth-limit* 4))
(write-to-string ’(a b c d)))
= "(abcd"
(fluid-let ((*unparser-list-breadth-limit* 4))
(write-to-string ’(a b c d e)))
= "(abcd...)"

*xunparser-list-depth-limit* [variable]
This variable specifies a limit on the nesting of lists and vectors in the printed repre-
sentation. If lists (or vectors) are more deeply nested than the limit, the part of the
representation that exceeds the limit is replaced by ellipses. The value of this variable
must be an exact non-negative integer, or #f meaning no limit; the default is #f.

(fluid-let ((xunparser-list-depth-limit* 4))
(write-to-string ’((((a))) b ¢ d)))
= "((((@))) b c d"
(fluid-let ((*unparser-list-depth-limit* 4))
(write-to-string ’(((((a)))) b c d)))
= "(((¢...))) bc D"

xunparser-string-length-limit* [variable]
This variable specifies a limit on the length of the printed representation of strings.
If a string’s length exceeds this limit, the part of the printed representation for the
characters exceeding the limit is replaced by ellipses. The value of this variable must
be an exact non-negative integer, or #f meaning no limit; the default is #£.

(fluid-let ((*unparser-string-length-limit* 4))
(write-to-string "abcd"))
:> ||\llabcd\ll n
(fluid-let ((*unparser-string-length-limit* 4))
(write-to-string "abcde"))
= "\"abcd...\""

*unparse-with-maximum-readability?* [variable]
This variable, which takes a boolean value, tells the printer to use a special printed
representation for objects that normally print in a form that cannot be recognized by
read. These objects are printed using the representation #@n, where n is the result
of calling hash on the object to be printed. The reader recognizes this syntax, calling
unhash on n to get back the original object. Note that this printed representation
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can only be recognized by the Scheme program in which it was generated, because
these hash numbers are different for each invocation of Scheme.

14.6 Format

The procedure format is very useful for producing nicely formatted text, producing good-
looking messages, and so on. MIT/GNU Scheme’s implementation of format is similar to
that of Common Lisp, except that Common Lisp defines many more directives.®

format is a run-time-loadable option. To use it, execute
(load-option ’format)

once before calling it.

format destination control-string argument . . . [procedure]
Writes the characters of control-string to destination, except that a tilde (~) intro-
duces a format directive. The character after the tilde, possibly preceded by prefix
parameters and modifiers, specifies what kind of formatting is desired. Most direc-
tives use one or more arguments to create their output; the typical directive puts the
next argument into the output, formatted in some special way. It is an error if no
argument remains for a directive requiring an argument, but it is not an error if one
or more arguments remain unprocessed by a directive.

The output is sent to destination. If destination is #£f, a string is created that contains
the output; this string is returned as the value of the call to format. In all other cases
format returns an unspecified value. If destination is #t, the output is sent to the
current output port. Otherwise, destination must be an output port, and the output
is sent there.

This procedure performs discretionary output flushing (see Section 14.5 [Output Pro-
cedures|, page 192).

A format directive consists of a tilde (7), optional prefix parameters separated by
commas, optional colon (:) and at-sign (@) modifiers, and a single character indicating
what kind of directive this is. The alphabetic case of the directive character is ignored.
The prefix parameters are generally integers, notated as optionally signed decimal
numbers. If both the colon and at-sign modifiers are given, they may appear in either
order.

In place of a prefix parameter to a directive, you can put the letter ‘v’ (or ‘v’), which
takes an argument for use as a parameter to the directive. Normally this should be
an exact integer. This feature allows variable-width fields and the like. You can also
use the character ‘#” in place of a parameter; it represents the number of arguments
remaining to be processed.

It is an error to give a format directive more parameters than it is described here
as accepting. It is also an error to give colon or at-sign modifiers to a directive in a
combination not specifically described here as being meaningful.

“A The next argument, which may be any object, is printed as if by display.
“mincolA inserts spaces on the right, if necessary, to make the width at

5 This description of format is adapted from Common Lisp, The Language, second edition, section 22.3.3.
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least mincol columns. The @ modifier causes the spaces to be inserted on
the left rather than the right.

The next argument, which may be any object, is printed as if by write.
“mincolS$ inserts spaces on the right, if necessary, to make the width at
least mincol columns. The @ modifier causes the spaces to be inserted on
the left rather than the right.

This outputs a #\newline character. ~“n% outputs n newlines. No ar-
gument is used. Simply putting a newline in control-string would work,
but ~% is often used because it makes the control string look nicer in the
middle of a program.

This outputs a tilde. “n~ outputs n tildes.

Tilde immediately followed by a newline ignores the newline and any
following non-newline whitespace characters. With an @, the newline is
left in place, but any following whitespace is ignored. This directive is
typically used when control-string is too long to fit nicely into one line of
the program:

(define (type-clash-error procedure arg spec actual)
(format
#t
"~Y%Procedure ~“S~)requires its %A argument ~
to be of type “S, %but it was called with ~
an argument of type ~S.7%"
procedure arg spec actual))

(type-clash-error ’vector-ref
"first"
’integer
’vector)

prints

Procedure vector-ref
requires its first argument to be of type integer,
but it was called with an argument of type vector.

Note that in this example newlines appear in the output only as specified
by the ~% directives; the actual newline characters in the control string
are suppressed because each is preceded by a tilde.

14.7 Custom Output

MIT/GNU Scheme provides hooks for specifying that certain kinds of objects have special
written representations. There are no restrictions on the written representations, but only
a few kinds of objects may have custom representation specified for them, specifically:
records (see Section 10.4 [Records|, page 138), vectors that have special tags in their zero-
th elements (see Chapter 8 [Vectors|, page 125), and pairs that have special tags in their



Chapter 14: Input/Output 197

car fields (see Chapter 7 [Lists|, page 109). There is a different procedure for specifying the
written representation of each of these types.

set-record-type-unparser-method! record-type unparser-method [procedure]
Changes the unparser method of the type represented by record-type to be unparser-
method, and returns an unspecified value. Subsequently, when the unparser encoun-
ters a record of this type, it will invoke unparser-method to generate the written
representation.

unparser/set-tagged-vector-method! tag unparser-method [procedure]
Changes the unparser method of the vector type represented by tag to be unparser-
method, and returns an unspecified value. Subsequently, when the unparser en-
counters a vector with tag as its zero-th element, it will invoke unparser-method to
generate the written representation.

unparser/set-tagged-pair-method! tag unparser-method [procedure]
Changes the unparser method of the pair type represented by tag to be unparser-
method, and returns an unspecified value. Subsequently, when the unparser encoun-
ters a pair with tag in its car field, it will invoke unparser-method to generate the
written representation.

An unparser method is a procedure that is invoked with two arguments: an unparser
state and an object. An unparser method generates a written representation for the object,
writing it to the output port specified by the unparser state. The value yielded by an
unparser method is ignored. Note that an unparser state is not an output port, rather it
is an object that contains an output port as one of its components. Application programs
generally do not construct or examine unparser state objects, but just pass them along.

There are two ways to create an unparser method (which is then registered by one of
the above procedures). The first, and easiest, is to use standard-unparser-method. The
second is to define your own method using the procedure with-current-unparser-state.
We encourage the use of the first method, as it results in a more uniform appearance for
objects. Many predefined datatypes, for example procedures and environments, already
have this appearance.

standard-unparser-method name procedure [procedure]
Returns a standard unparser method. Name may be any object, and is used as the
name of the type with which the unparser method is associated; name is usually a
symbol. Procedure must be #f or a procedure of two arguments.

If procedure is #f, the returned method generates an external representation of this
form:

#[name hash]

Here name is the external representation of the argument name, as generated by
write,® and hash is the external representation of an exact non-negative integer
unique to the object being printed (specifically, it is the result of calling hash on the
object). Subsequently, the expression

6 Except that if the argument name is a string, its external representation is generated by write-string.
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#Qhash
is notation for the object.

If procedure is supplied, the returned method generates a slightly different external
representation:

#[name hash output]

Here name and hash are as above, and output is the output generated by procedure.
The representation is constructed in three stages:

1. The first part of the format (up to output) is written to the output port specified
by the unparser state. This is "#[", name, " ", and hash.

2. Procedure is invoked on two arguments: the object and an output port.

3. The closing bracket is written to the output port.
The following procedure is useful for writing more general kinds of unparser methods.

with-current-unparser-state unparser-state procedure [procedure]
This procedure calls procedure with one argument, the output port from unparser-
state. Additionally, it arranges for the remaining components of unparser-state to be
given to the printer when they are needed. The procedure generates some output by
writing to the output port using the usual output operations, and the value yielded
by procedure is returned from with-current-unparser-state.

The port passed to procedure should only be used within the dynamic extent of
procedure.

14.8 Prompting

This section describes procedures that prompt the user for input. Why should the pro-
grammer use these procedures when it is possible to do prompting using ordinary input
and output procedures? Omne reason is that the prompting procedures are more succinct.
However, a second and better reason is that the prompting procedures can be separately
customized for each user interface, providing more natural interaction. The interfaces for
Edwin and for GNU Emacs have already been customized in this fashion; because Edwin
and Emacs are very similar editors, their customizations provide very similar behavior.

Each of these procedure accepts an optional argument called port, which if given must
be an I/O port. If not given, this port defaults to the value of (interaction-i/o-port);
this is initially the console I/O port.

prompt-for-command-expression prompt [port [environment]] [procedure]
Prompts the user for an expression that is to be executed as a command. This is the
procedure called by the REP loop to read the user’s expressions.

If prompt is a string, it is used verbatim as the prompt string. Otherwise, it must
be a pair whose car is the symbol ‘standard’ and whose cdr is a string; in this case
the prompt string is formed by prepending to the string the current REP loop “level
number” and a space. Also, a space is appended to the string, unless it already ends
in a space or is an empty string.

If environment is given, it is passed as the second argument to read.
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The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; then read an object and return it.

Under Edwin and Emacs, before the object is read, the interaction buffer is put into
a mode that allows expressions to be edited and submitted for input using specific
editor commands. The first expression that is submitted is returned as the value of
this procedure.

prompt-for-command-char prompt [port] [procedure]
Prompts the user for a single character that is to be executed as a command; the
returned character is guaranteed to satisfy char-graphic?. If at all possible, the
character is read from the user interface using a mode that reads the character as a
single keystroke; in other words, it should not be necessary for the user to follow the
character with a carriage return or something similar.

This is the procedure called by debug and where to read the user’s commands.

If prompt is a string, it is used verbatim as the prompt string. Otherwise, it must
be a pair whose car is standard and whose cdr is a string; in this case the prompt
string is formed by prepending to the string the current REP loop “level number” and
a space. Also, a space is appended to the string, unless it already ends in a space or
is an empty string.

The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; read a character in raw mode, echo that
character, and return it.

Under Edwin and Emacs, instead of reading a character, the interaction buffer is put
into a mode in which graphic characters submit themselves as input. After this mode
change, the first such character submitted is returned as the value of this procedure.

prompt-for-expression prompt [port [environment]| [procedure]
Prompts the user for an expression.

The prompt string is formed by appending a colon and a space to prompt, unless
prompt already ends in a space or is the null string.

If environment is given, it is passed as the second argument to read.

The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; then read an object and return it.

Under Edwin and Emacs, the expression is read in the minibuffer.

prompt-for-evaluated-expression prompt [environment [port]] [procedure]
Prompts the user for an evaluated expression. Calls prompt-for-expression to read
an expression, then evaluates the expression using environment; if environment is not
given, the REP loop environment is used.

prompt-for-confirmation prompt [port] [procedure]
Prompts the user for confirmation. The result yielded by this procedure is a boolean.
The prompt string is formed by appending the string " (y or n)? " to prompt, unless
prompt already ends in a space or is the null string.

The default behavior of this procedure is to print a fresh line, a newline, and the
prompt string; flush the output buffer; then read a character in raw mode. If the
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character is #\y, #\Y, or #\space, the procedure returns #t; If the character is #\n,
#\N, or #\rubout, the procedure returns #f. Otherwise the prompt is repeated.

Under Edwin or Emacs, the confirmation is read in the minibuffer.

14.9 Port Primitives

This section describes the low-level operations that can be used to build and manipulate
I/0 ports.

The purpose of these operations is twofold: to allow programmers to construct new kinds
of I/O ports, and to provide faster I/O operations than those supplied by the standard
high level procedures. The latter is useful because the standard I1/O operations provide
defaulting and error checking, and sometimes other features, which are often unnecessary.
This interface provides the means to bypass such features, thus improving performance.

The abstract model of an I/O port, as implemented here, is a combination of a set of
named operations and a state. The state is an arbitrary object, the meaning of which is
determined by the operations. The operations are defined by a mapping from names to
procedures.

The set of named operations is represented by an object called a port type. A port
type is constructed from a set of named operations, and is subsequently used to construct a
port. The port type completely specifies the behavior of the port. Port types also support
a simple form of inheritance, allowing you to create new ports that are similar to existing
ports.

The port operations are divided into two classes:

Standard operations
There is a specific set of standard operations for input ports, and a different set
for output ports. Applications can assume that the standard input operations
are implemented for all input ports, and likewise the standard output operations
are implemented for all output ports.

Custom operations
Some ports support additional operations. For example, ports that implement
output to terminals (or windows) may define an operation named y-size that
returns the height of the terminal in characters. Because only some ports will
implement these operations, programs that use custom operations must test
each port for their existence, and be prepared to deal with ports that do not
implement them.

14.9.1 Port Types

The procedures in this section provide means for constructing port types with standard and
custom operations, and accessing their operations.

make-port-type operations port-type [procedure]
Creates and returns a new port type. Operations must be a list; each element is a
list of two elements, the name of the operation (a symbol) and the procedure that
implements it. Port-type is either #f or a port type; if it is a port type, any operations
implemented by port-type but not specified in operations will be implemented by the
resulting port type.
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Operations need not contain definitions for all of the standard operations; the pro-
cedure will provide defaults for any standard operations that are not defined. At
a minimum, the following operations must be defined: for input ports, read-char
and peek-char; for output ports, either write-char or write-substring. I/O ports
must supply the minimum operations for both input and output.

If an operation in operations is defined to be #f, then the corresponding operation in
port-type is not inherited.

If read-char is defined in operations, then any standard input operations defined
in port-type are ignored. Likewise, if write-char or write-substring is defined in
operations, then any standard output operations defined in port-type are ignored.
This feature allows overriding the standard operations without having to enumerate

them.
port-type? object [procedure]
input-port-type? object [procedure]
output-port-type? object [procedure]
i/o-port-type? object [procedure]

These predicates return #t if object is a port type, input-port type, output-port type,
or I/O-port type, respectively. Otherwise, they return #£.

port-type/operations port-type [procedure]
Returns a newly allocated list containing all of the operations implemented by port-
type. Each element of the list is a list of two elements — the name and its associated
operation.

port-type/operation-names port-type [procedure]
Returns a newly allocated list whose elements are the names of the operations imple-
mented by port-type.

port-type/operation port-type symbol [procedure]
Returns the operation named symbol in port-type. If port-type has no such operation,
returns #f£.

14.9.2 Constructors and Accessors for Ports

The procedures in this section provide means for constructing ports, accessing the type of
a port, and manipulating the state of a port.

make-port port-type state [procedure]
Returns a new port with type port-type and the given state. The port will be an
input, output, or I/O port according to port-type.

port/type port [procedure]
Returns the port type of port.

port/state port [procedure]
Returns the state component of port.

set-port/state! port object [procedure]
Changes the state component of port to be object. Returns an unspecified value.
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port/operation port symbol [procedure]
Equivalent to

(port-type/operation (port/type port) symbol)

port/operation-names port [procedure]
Equivalent to

(port-type/operation-names (port/type port))

make-eof-object input-port [procedure]
Returns an object that satisfies the predicate eof-object?. This is sometimes useful
when building input ports.

14.9.3 Input Port Operations

This section describes the standard operations on input ports. Following that, some useful
custom operations are described.

read-char input-port [operation on input port]
Removes the next character available from input-port and returns it. If input-port
has no more characters and will never have any (e.g. at the end of an input file), this
operation returns an end-of-file object. If input-port has no more characters but will
eventually have some more (e.g. a terminal where nothing has been typed recently),
and it is in non-blocking mode, #f is returned; otherwise the operation hangs until
input is available.

peek-char input-port [operation on input port]
Reads the next character available from input-port and returns it. The character is
not removed from input-port, and a subsequent attempt to read from the port will
get that character again. In other respects this operation behaves like read-char.

char-ready? input-port k [operation on input port]
char-ready? returns #t if at least one character is available to be read from input-
port. If no characters are available, the operation waits up to k milliseconds before
returning #£f, returning immediately if any characters become available while it is

waiting.
read-string input-port char-set [operation on input port]
discard-chars input-port char-set [operation on input port]

These operations are like read-char, except that they read or discard multiple char-
acters at once. All characters up to, but excluding, the first character in char-set
(or end of file) are read from input-port. read-string returns these characters as a
newly allocated string, while discard-chars discards them and returns an unspeci-
fied value. These operations hang until sufficient input is available, even if input-port
is in non-blocking mode. If end of file is encountered before any input characters,
read-string returns an end-of-file object.

read-substring input-port string start end [operation on input port]
Reads characters from input-port into the substring defined by string, start, and end
until either the substring has been filled or there are no more characters available.
Returns the number of characters written to the substring.



Chapter 14: Input/Output 203

If input-port is an interactive port, and at least one character is immediately avail-
able, the available characters are written to the substring and this operation returns
immediately. If no characters are available, and input-port is in blocking mode, the
operation blocks until at least one character is available. Otherwise, the operation
returns #f immediately.

This is an extremely fast way to read characters from a port.

input-port/read-char input-port [ ]
input-port/peek-char input-port [ ]
input-port/char-ready? input-port k [procedure]
input-port/read-string input-port char-set [ ]
input-port/discard-chars input-port char-set [ ]
input-port/read-substring input-port string start end [procedure]
Each of these procedures invokes the respective operation on input-port. For example,
the following are equivalent:
(input-port/read-char input-port)
((port/operation input-port ’read-char) input-port)

The following custom operations are implemented for input ports to files, and will also
work with some other kinds of input ports:

eof? input-port [operation on input port]
Returns #t if input-port is known to be at end of file, otherwise it returns #f.

chars-remaining input-port [operation on input port]
Returns an estimate of the number of characters remaining to be read from input-
port. This is useful only when input-port is a file port in binary mode; in other cases,
it returns #f.

buffered-input-chars input-port [operation on input port]
Returns the number of unread characters that are stored in input-port’s buffer. This
will always be less than or equal to the buffer’s size.

input-buffer-size input-port [operation on input port]
Returns the maximum number of characters that input-port’s buffer can hold.

set-input-buffer-size input-port size [operation on input port]
Resizes input-port’s buffer so that it can hold at most size characters. Characters in
the buffer are discarded. Size must be an exact non-negative integer.

14.9.4 Output Port Operations

This section describes the standard operations on output ports. Following that, some useful
custom operations are described.

write—char output-port char [operation on output port]
Writes char to output-port and returns an unspecified value.

write-substring output-port string start end [operation on output port]
Writes the substring specified by string, start, and end to output-port and returns
an unspecified value. Equivalent to writing the characters of the substring, one by
one, to output-port, but is implemented very efficiently.
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fresh-line output-port [operation on output port]
Most output ports are able to tell whether or not they are at the beginning of a line
of output. If output-port is such a port, end-of-line is written to the port only if the
port is not already at the beginning of a line. If output-port is not such a port, an
end-of-line is unconditionally written to the port. Returns an unspecified value.

flush-output output-port [operation on output port]
If output-port is buffered, this causes its buffer to be written out. Otherwise it has
no effect. Returns an unspecified value.

discretionary-flush-output output-port [operation on output port]
Normally, this operation does nothing. However, ports that support discretionary
output flushing implement this operation identically to flush-output.

output-port/write-char output-port char [procedure]

output-port/write-substring output-port string start end [procedure]

output-port/fresh-line output-port [procedure]

output-port/flush-output output-port [procedure]

output-port/discretionary-flush-output output-port [procedure]
Each of these procedures invokes the respective operation on output-port. For exam-
ple, the following are equivalent:

(output-port/write-char output-port char)
((port/operation output-port ’write-char)
output-port char)

output-port/write-string output-port string [procedure]
Writes string to output-port. Equivalent to

(output-port/write-substring output-port
string
0
(string-length string))

The following custom operations are generally useful.

buffered-output-chars output-port [operation on output port]
Returns the number of unwritten characters that are stored in output-port’s buffer.
This will always be less than or equal to the buffer’s size.

output-buffer-size output-port [operation on output port]
Returns the maximum number of characters that output-port’s buffer can hold.

set-output-buffer-size output-port size [operation on output port]
Resizes output-port’s buffer so that it can hold at most size characters. Characters
in the buffer are discarded. Size must be an exact non-negative integer.

x-size output-port [operation on output port]
Returns an exact positive integer that is the width of output-port in characters. If
output-port has no natural width, e.g. if it is a file port, #f is returned.
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y-size output-port [operation on output port]
Returns an exact positive integer that is the height of output-port in characters. If
output-port has no natural height, e.g. if it is a file port, #£ is returned.

output-port/x-size output-port [procedure]
This procedure invokes the custom operation whose name is the symbol x-size, if it
exists. If the x-size operation is both defined and returns a value other than #f, that
value is returned as the result of this procedure. Otherwise, output-port/x-size
returns a default value (currently 80).

output-port/x-size is useful for programs that tailor their output to the width
of the display (a fairly common practice). If the output device is not a display,
such programs normally want some reasonable default width to work with, and this
procedure provides exactly that.

output-port/y-size output-port [procedure]
This procedure invokes the custom operation whose name is the symbol y-size, if
it exists. If the y-size operation is defined, the value it returns is returned as the
result of this procedure; otherwise, #f is returned.

14.9.5 Blocking Mode

An interactive port is always in one of two modes: blocking or non-blocking. This mode
is independent of the terminal mode: each can be changed independent of the other. Fur-
thermore, if it is an interactive I/O port, there are separate blocking modes for input and
for output.

If an input port is in blocking mode, attempting to read from it when no input is available
will cause Scheme to “block”, i.e. suspend itself, until input is available. If an input port is
in non-blocking mode, attempting to read from it when no input is available will cause the
reading procedure to return immediately, indicating the lack of input in some way (exactly
how this situation is indicated is separately specified for each procedure or operation).

An output port in blocking mode will block if the output device is not ready to accept
output. In non-blocking mode it will return immediately after performing as much output
as the device will allow (again, each procedure or operation reports this situation in its own

way).

Interactive ports are initially in blocking mode; this can be changed at any time with
the procedures defined in this section.

These procedures represent blocking mode by the symbol blocking, and non-blocking
mode by the symbol nonblocking. An argument called mode must be one of these symbols.
A port argument to any of these procedures may be any port, even if that port does not
support blocking mode; in that case, the port is not modified in any way.

port/input-blocking-mode port [procedure]
Returns the input blocking mode of port.

port/set-input-blocking-mode port mode [procedure]
Changes the input blocking mode of port to be mode. Returns an unspecified value.
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port/with-input-blocking-mode port mode thunk [procedure]
Thunk must be a procedure of no arguments. port/with-input-blocking-mode
binds the input blocking mode of port to be mode, executes thunk, restores the input
blocking mode of port to what it was when port/with-input-blocking-mode was
called, and returns the value that was yielded by thunk. This binding is performed
by dynamic-wind, which guarantees that the input blocking mode is restored if thunk
escapes from its continuation.

port/output-blocking-mode port [procedure]
Returns the output blocking mode of port.

port/set-output-blocking-mode port mode [procedure]
Changes the output blocking mode of port to be mode. Returns an unspecified value.

port/with-output-blocking-mode port mode thunk [procedure]
Thunk must be a procedure of no arguments. port/with-output-blocking-mode
binds the output blocking mode of port to be mode, executes thunk, restores the
output blocking mode of port to what it was when port/with-output-blocking-
mode was called, and returns the value that was yielded by thunk. This binding
is performed by dynamic-wind, which guarantees that the output blocking mode is
restored if thunk escapes from its continuation.

14.9.6 Terminal Mode

A port that reads from or writes to a terminal has a terminal mode; this is either cooked
or raw. This mode is independent of the blocking mode: each can be changed independent
of the other. Furthermore, a terminal I/O port has independent terminal modes both for
input and for output.

A terminal port in cooked mode provides some standard processing to make the terminal
easy to communicate with. For example, under unix, cooked mode on input reads from the
terminal a line at a time and provides rubout processing within the line, while cooked
mode on output might translate linefeeds to carriage-return/linefeed pairs. In general, the
precise meaning of cooked mode is operating-system dependent, and furthermore might
be customizable by means of operating system utilities. The basic idea is that cooked
mode does whatever is necessary to make the terminal handle all of the usual user-interface
conventions for the operating system, while keeping the program’s interaction with the port
as normal as possible.

A terminal port in raw mode disables all of that processing. In raw mode, characters are
directly read from and written to the device without any translation or interpretation by
the operating system. On input, characters are available as soon as they are typed, and are
not echoed on the terminal by the operating system. In general, programs that put ports
in raw mode have to know the details of interacting with the terminal. In particular, raw
mode is used for writing programs such as text editors.

Terminal ports are initially in cooked mode; this can be changed at any time with the
procedures defined in this section.
These procedures represent cooked mode by the symbol cooked, and raw mode by the

symbol raw. Additionally, the value #f represents ‘no mode”; it is the terminal mode of a
port that is not a terminal. An argument called mode must be one of these three values.
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A port argument to any of these procedures may be any port, even if that port does not
support terminal mode; in that case, the port is not modified in any way.

port/input-terminal-mode port [procedure]
Returns the input terminal mode of port.

port/set-input-terminal-mode port mode [procedure]
Changes the input terminal mode of port to be mode. Returns an unspecified value.

port/with-input-terminal-mode port mode thunk [procedure]
Thunk must be a procedure of no arguments. port/with-input-terminal-mode
binds the input terminal mode of port to be mode, executes thunk, restores the input
terminal mode of port to what it was when port/with-input-terminal-mode was
called, and returns the value that was yielded by thunk. This binding is performed
by dynamic-wind, which guarantees that the input terminal mode is restored if thunk
escapes from its continuation.

port/output-terminal-mode port [procedure]
Returns the output terminal mode of port.

port/set-output-terminal-mode port mode [procedure]
Changes the output terminal mode of port to be mode. Returns an unspecified value.

port/with-output-terminal-mode port mode thunk [procedure]
Thunk must be a procedure of no arguments. port/with-output-terminal-mode
binds the output terminal mode of port to be mode, executes thunk, restores the
output terminal mode of port to what it was when port/with-output-terminal-
mode was called, and returns the value that was yielded by thunk. This binding
is performed by dynamic-wind, which guarantees that the output terminal mode is
restored if thunk escapes from its continuation.

14.10 Parser Buffers

The parser buffer mechanism facilitates construction of parsers for complex grammars. It
does this by providing an input stream with unbounded buffering and backtracking. The
amount of buffering is under program control. The stream can backtrack to any position
in the buffer.

The mechanism defines two data types: the parser buffer and the parser-buffer pointer.
A parser buffer is like an input port with buffering and backtracking. A parser-buffer pointer
is a pointer into the stream of characters provided by a parser buffer.

Note that all of the procedures defined here consider a parser buffer to contain a stream of
8-bit characters in the ISO-8859-1 character set, except for match-utf8-char-in-alphabet
which treats it as a stream of Unicode characters encoded as 8-bit bytes in the UTF-8
encoding.

There are several constructors for parser buffers:

input-port->parser-buffer port [procedure]
Returns a parser buffer that buffers characters read from port.
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substring->parser-buffer string start end [procedure]
Returns a parser buffer that buffers the characters in the argument substring. This is
equivalent to creating a string input port and calling input-port->parser-buffer,
but it runs faster and uses less memory.

string->parser-buffer string [procedure]
Like substring->parser-buffer but buffers the entire string.

source->parser-buffer source [procedure]
Returns a parser buffer that buffers the characters returned by calling source. Source
is a procedure of three arguments: a string, a start index, and an end index (in other
words, a substring specifier). Each time source is called, it writes some characters
in the substring, and returns the number of characters written. When there are
no more characters available, it returns zero. It must not return zero in any other
circumstance.

Parser buffers and parser-buffer pointers may be distinguished from other objects:

parser-buffer? object [procedure]
Returns #t if object is a parser buffer, otherwise returns #f£.

parser-buffer-pointer? object [procedure]
Returns #t if object is a parser-buffer pointer, otherwise returns #f.

Characters can be read from a parser buffer much as they can be read from an input
port. The parser buffer maintains an internal pointer indicating its current position in the
input stream. Additionally, the buffer remembers all characters that were previously read,
and can look at characters arbitrarily far ahead in the stream. It is this buffering capability
that facilitates complex matching and backtracking.

read-parser-buffer-char buffer [procedure]
Returns the next character in buffer, advancing the internal pointer past that char-
acter. If there are no more characters available, returns #f and leaves the internal
pointer unchanged.

peek-parser-buffer-char buffer [procedure]
Returns the next character in buffer, or #f if no characters are available. Leaves the
internal pointer unchanged.

parser-buffer-ref buffer index [procedure]
Returns a character in buffer. Index is a non-negative integer specifying the character
to be returned. If index is zero, returns the next available character; if it is one,
returns the character after that, and so on. If index specifies a position after the last
character in buffer, returns #£. Leaves the internal pointer unchanged.

The internal pointer of a parser buffer can be read or written:

get-parser-buffer-pointer buffer [procedure]
Returns a parser-buffer pointer object corresponding to the internal pointer of buffer.
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set-parser-buffer-pointer! buffer pointer [procedure]
Sets the internal pointer of buffer to the position specified by pointer. Pointer must
have been returned from a previous call of get-parser-buffer-pointer on buffer.
Additionally, if some of buffer’s characters have been discarded by discard-parser-
buffer-head!, pointer must be outside the range that was discarded.

get-parser-buffer-tail buffer pointer [procedure]
Returns a newly-allocated string consisting of all of the characters in buffer that fall
between pointer and buffer’s internal pointer. Pointer must have been returned from
a previous call of get-parser-buffer-pointer on buffer. Additionally, if some of
buffer’s characters have been discarded by discard-parser-buffer-head!, pointer
must be outside the range that was discarded.

discard-parser-buffer-head! buffer [procedure]
Discards all characters in buffer that have already been read; in other words, all
characters prior to the internal pointer. After this operation has completed, it is no
longer possible to move the internal pointer backwards past the current position by
calling set-parser-buffer-pointer!.

The next rather large set of procedures does conditional matching against the contents
of a parser buffer. All matching is performed relative to the buffer’s internal pointer, so
the first character to be matched against is the next character that would be returned
by peek-parser-buffer-char. The returned value is always #t for a successful match,
and #f otherwise. For procedures whose names do not end in ‘-no-advance’, a successful
match also moves the internal pointer of the buffer forward to the end of the matched text;
otherwise the internal pointer is unchanged.

match-parser-buffer-char buffer char procedure
match-parser-buffer-char-ci buffer char procedure
match-parser-buffer-not-char buffer char procedure
match-parser-buffer-not-char-ci buffer char procedure

[ ]
[ ]
[ ]
[ |
match-parser-buffer-char-no-advance buffer char [procedure]
[ ]
[ ]
[ ]

match-parser-buffer-char-ci-no-advance buffer char procedure
match-parser-buffer-not-char-no-advance buffer char procedure
match-parser-buffer-not-char-ci-no-advance buffer char procedure

Each of these procedures compares a single character in buffer to char. The ba-
sic comparison match-parser-buffer-char compares the character to char using
char=7. The procedures whose names contain the ‘-ci’ modifier do case-insensitive
comparison (i.e. they use char-ci=?). The procedures whose names contain the
‘not-’ modifier are successful if the character doesn’t match char.

match-parser-buffer-char-in-set buffer char-set [procedure]

match-parser-buffer-char-in-set-no-advance buffer char-set [procedure]
These procedures compare the next character in buffer against char-set using char-
set-member?.

match-parser-buffer-string buffer string [procedure]
match-parser-buffer-string-ci buffer string [procedure]
match-parser-buffer-string-no-advance buffer string [procedure]
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match-parser-buffer-string-ci-no-advance buffer string [procedure]
These procedures match string against buffer’s contents. The ‘-ci’ procedures do
case-insensitive matching.

match-parser-buffer-substring buffer string start end [procedure]
match-parser-buffer-substring-ci buffer string start end [procedure]
match-parser-buffer-substring-no-advance buffer string start end  [procedure]
match-parser-buffer-substring-ci-no-advance buffer string start  [procedure]

end
These procedures match the specified substring against buffer’s contents. The ‘-ci’
procedures do case-insensitive matching.

match-utf8-char-in-alphabet buffer alphabet [procedure]
This procedure treats buffer’s contents as UTF-8 encoded Unicode characters and
matches the next such character against alphabet, which must be a Unicode alphabet
(see Section 5.7 [Unicode], page 86). UTF-8 represents characters with 1 to 6 bytes,
so a successful match can move the internal pointer forward by as many as 6 bytes.

The remaining procedures provide information that can be used to identify locations in
a parser buffer’s stream.

parser-buffer-position-string pointer [procedure]
Returns a string describing the location of pointer in terms of its character and line
indexes. This resulting string is meant to be presented to an end user in order to
direct their attention to a feature in the input stream. In this string, the indexes are
presented as one-based numbers.

Pointer may alternatively be a parser buffer, in which case it is equivalent to having
specified the buffer’s internal pointer.

parser-buffer-pointer-index pointer [procedure]

parser-buffer-pointer-line pointer [procedure]
Returns the character or line index, respectively, of pointer. Both indexes are zero-
based.

14.11 Parser Language

Although it is possible to write parsers using the parser-buffer abstraction (see Section 14.10
[Parser Buffers|, page 207), it is tedious. The problem is that the abstraction isn’t closely
matched to the way that people think about syntactic structures. In this section, we
introduce a higher-level mechanism that greatly simplifies the implementation of a parser.

The parser language described here allows the programmer to write BNF-like specifi-
cations that are translated into efficient Scheme code at compile time. The language is
declarative, but it can be freely mixed with Scheme code; this allows the parsing of gram-
mars that aren’t conveniently described in the language.

The language also provides backtracking. For example, this expression matches any
sequence of alphanumeric characters followed by a single alphabetic character:
(*matcher
(seq (x (char-set char-set:alphanumeric))
(char-set char-set:alphabetic)))
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The way that this works is that the matcher matches alphanumeric characters in the input
stream until it finds a non-alphanumeric character. It then tries to match an alphabetic
character, which of course fails. At this point, if it matched at least one alphanumeric char-
acter, it backtracks: the last matched alphanumeric is “unmatched”, and it again attempts
to match an alphabetic character. The backtracking can be arbitrarily deep; the matcher
will continue to back up until it finds a way to match the remainder of the expression.

So far, this sounds a lot like regular-expression matching (see Section 6.8 [Regular Ex-
pressions|, page 100). However, there are some important differences.

e The parser language uses a Scheme-like syntax that is easier to read and write than
regular-expression notation.

e The language provides macros so that common syntactic constructs can be abstracted.

e The language mixes easily with Scheme code, allowing the full power of Scheme to be
applied to program around limitations in the parser language.

e The language provides expressive facilities for converting syntax into parsed structure.
It also makes it easy to convert parsed strings into meaningful objects (e.g. numbers).

e The language is compiled into machine language; regular expressions are usually inter-
preted.

Here is an example that shows off several of the features of the parser language. The
example is a parser for XML start tags:

(*parser
(with-pointer p
(seq "<"
parse-name
parse-attribute-list
(alt (match ">")
(match "/>")
(sexp
(lambda (b)
(error
(string-append
"Unterminated start tag at "
(parser-buffer-position-string p)))))))))

This shows that the basic description of a start tag is very similar to its BNF. Non-terminal
symbols parse-name and parse-attribute-list do most of the work, and the noise strings
"<" and ">" are the syntactic markers delimiting the form. There are two alternate endings
for start tags, and if the parser doesn’t find either of the endings, the Scheme code (wrapped
in sexp) is run to signal an error. The error procedure perror takes a pointer p, which it
uses to indicate the position in the input stream at which the error occurred. In this case,
that is the beginning of the start tag, i.e. the position of the leading "<" marker.

This example still looks pretty complicated, mostly due to the error-signalling code. In
practice, this is abstracted into a macro, after which the expression is quite succinct:
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(xparser
(bracket "start tag"
(seq (noise (string "<")) parse-name)
(match (alt (string ">") (string "/>")))
parse-attribute-list))

The bracket macro captures the pattern of a bracketed item, and hides much of the detail.

The parser language actually consists of two languages: one for defining matchers, and
one for defining parsers. The languages are intentionally very similar, and are meant to be
used together. Each sub-language is described below in its own section.

The parser language is a run-time-loadable option; to use it, execute
(load-option ’*parser)

once before compiling any code that uses the language.

14.11.1 *Matcher

The matcher language is a declarative language for specifying a matcher procedure. A
matcher procedure is a procedure that accepts a single parser-buffer argument and returns
a boolean value indicating whether the match it performs was successful. If the match
succeeds, the internal pointer of the parser buffer is moved forward over the matched text.
If the match fails, the internal pointer is unchanged.

For example, here is a matcher procedure that matches the character ‘a’:
(lambda (b) (match-parser-buffer-char b #\a))
Here is another example that matches two given characters, ¢l and c2, in sequence:

(lambda (b)
(let ((p (get-parser-buffer-pointer b)))
(if (match-parser-buffer-char b c1)
(if (match-parser-buffer-char b c2)
#t
(begin
(set-parser-buffer-pointer! b p)
#£))
#£)))

This is code is clear, but has lots of details that get in the way of understanding what it is
doing. Here is the same example in the matcher language:

(*matcher (seq (char c1) (char c2)))
This is much simpler and more intuitive. And it generates virtually the same code:

(pp (*matcher (seq (char c1) (char c2))))
- (lambda (#[b1l)
(let ((#[p1l] (get-parser-buffer-pointer #[b1])))
(and (match-parser-buffer-char #[b1l] c1)
(if (match-parser-buffer-char #[b1] c2)
#t
(begin
(set-parser-buffer-pointer! #[bi] #[p1])
#£)))))

e I
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Now that we have seen an example of the language, it’s time to look at the detail. The
*matcher special form is the interface between the matcher language and Scheme.

*matcher mexp [special form]
The operand mexp is an expression in the matcher language. The *matcher expres-
sion expands into Scheme code that implements a matcher procedure.

Here are the predefined matcher expressions. New matcher expressions can be defined
using the macro facility (see Section 14.11.3 [Parser-language Macros|, page 218). We will
start with the primitive expressions.

char expression [matcher expression]

char-ci expression [matcher expression]

not-char expression [matcher expression]

not-char-ci expression [matcher expression]
These expressions match a given character. In each case, the expression operand
is a Scheme expression that must evaluate to a character at run time. The ‘-ci’
expressions do case-insensitive matching. The ‘not-’ expressions match any character
other than the given one.

string expression [matcher expression]

string-ci expression [matcher expression]
These expressions match a given string. The expression operand is a Scheme ex-
pression that must evaluate to a string at run time. The string-ci expression does
case-insensitive matching.

char-set expression [matcher expression]
These expressions match a single character that is a member of a given character set.
The expression operand is a Scheme expression that must evaluate to a character set
at run time.

alphabet expression [matcher expression]
These expressions match a single character that is a member of a given Unicode
alphabet (see Section 5.7 [Unicode|, page 86). The expression operand is a Scheme
expression that must evaluate to an alphabet at run time.

end-of-input [matcher expression]
The end-of-input expression is successful only when there are no more characters
available to be matched.

discard-matched [matcher expression]
The discard-matched expression always successfully matches the null string. How-
ever, it isn’t meant to be used as a matching expression; it is used for its effect.
discard-matched causes all of the buffered text prior to this point to be discarded
(i.e. it calls discard-parser-buffer-head! on the parser buffer).

Note that discard-matched may not be used in certain places in a matcher ex-
pression. The reason for this is that it deliberately discards information needed for
backtracking, so it may not be used in a place where subsequent backtracking will
need to back over it. As a rule of thumb, use discard-matched only in the last
operand of a seq or alt expression (including any seq or alt expressions in which it
is indirectly contained).
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In addition to the above primitive expressions, there are two convenient abbreviations.
A character literal (e.g. ‘#\A’) is a legal primitive expression, and is equivalent to a char
expression with that literal as its operand (e.g. ‘(char #\A)’). Likewise, a string literal is
equivalent to a string expression (e.g. ‘(string "abc")’).

Next there are several combinator expressions. These closely correspond to similar com-
binators in regular expressions. Parameters named mexp are arbitrary expressions in the
matcher language.

seq mexp ... [matcher expression]
This matches each mexp operand in sequence. For example,

(seq (char-set char-set:alphabetic)
(char-set char-set:numeric))

matches an alphabetic character followed by a numeric character, such as ‘H4’.

Note that if there are no mexp operands, the seq expression successfully matches the
null string.

alt mexp ... [matcher expression]
This attempts to match each mexp operand in order from left to right. The first one
that successfully matches becomes the match for the entire alt expression.

The alt expression participates in backtracking. If one of the mexp operands matches,
but the overall match in which this expression is embedded fails, the backtracking
mechanism will cause the alt expression to try the remaining mexp operands. For
example, if the expression

(seq (alt nabu nan) "b")
is matched against the text ‘abc’, the alt expression will initially match its first
operand. But it will then fail to match the second operand of the seq expression.
This will cause the alt to be restarted, at which time it will match ‘a’, and the overall
match will succeed.

Note that if there are no mexp operands, the alt match will always fail.

* mexp [matcher expression]
This matches zero or more occurrences of the mexp operand. (Consequently this
match always succeeds.)

The * expression participates in backtracking; if it matches N occurrences of mexp,
but the overall match fails, it will backtrack to N-1 occurrences and continue. If the
overall match continues to fail, the * expression will continue to backtrack until there
are no occurrences left.

+ mexp [matcher expression]
This matches one or more occurrences of the mexp operand. It is equivalent to

(seq mexp (* mexp))
7 mexp [matcher expression]
This matches zero or one occurrences of the mexp operand. It is equivalent to

(alt mexp (seq))
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Sexp expression [matcher expression]
The sexp expression allows arbitrary Scheme code to be embedded inside a matcher.
The expression operand must evaluate to a matcher procedure at run time; the pro-
cedure is called to match the parser buffer. For example,

(*matcher
(seq uau
(sexp parse-foo)

npn ) )
expands to

(lambda (#[b1])
(let ((#[p1l] (get-parser-buffer-pointer #[b1])))
(and (match-parser-buffer-char #[b1l] #\a)
(if (parse-foo #[b1l])
(if (match-parser-buffer-char #[bl] #\b)

#t
(begin
(set-parser-buffer-pointer! #[bl] #[p1])
#£))
(begin
(set-parser-buffer-pointer! #[b1] #[p1])
#£)))))

The case in which expression is a symbol is so common that it has an abbreviation:
‘(sexp symbol)’ may be abbreviated as just symbol.

with-pointer identifier mexp [matcher expression]
The with-pointer expression fetches the parser buffer’s internal pointer (using get-
parser-buffer-pointer), binds it to identifier, and then matches the pattern spec-
ified by mexp. Identifier must be a symbol.

This is meant to be used on conjunction with sexp, as a way to capture a pointer to
a part of the input stream that is outside the sexp expression. An example of the
use of with-pointer appears above (see [with-pointer example|, page 211).

14.11.2 *Parser

The parser language is a declarative language for specifying a parser procedure. A parser
procedure is a procedure that accepts a single parser-buffer argument and parses some of
the input from the buffer. If the parse is successful, the procedure returns a vector of objects
that are the result of the parse, and the internal pointer of the parser buffer is advanced
past the input that was parsed. If the parse fails, the procedure returns #f and the internal
pointer is unchanged. This interface is much like that of a matcher procedure, except that
on success the parser procedure returns a vector of values rather than #t.

The *parser special form is the interface between the parser language and Scheme.

*parser pexp [special form)]
The operand pexp is an expression in the parser language. The *parser expression
expands into Scheme code that implements a parser procedure.
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There are several primitive expressions in the parser language. The first two provide a
bridge to the matcher language (see Section 14.11.1 [*Matcher], page 212):

match mexp [parser expression]
The match expression performs a match on the parser buffer. The match to be
performed is specified by mexp, which is an expression in the matcher language. If
the match is successful, the result of the match expression is a vector of one element:
a string containing that text.

noise mexp [parser expression|
The noise expression performs a match on the parser buffer. The match to be
performed is specified by mexp, which is an expression in the matcher language. If
the match is successful, the result of the noise expression is a vector of zero elements.
(In other words, the text is matched and then thrown away.)

The mexp operand is often a known character or string, so in the case that mexp is
a character or string literal, the noise expression can be abbreviated as the literal.
In other words, ‘(noise "foo")’ can be abbreviated just ‘"foo"’.

values expression . . . [parser expression|
Sometimes it is useful to be able to insert arbitrary values into the parser result. The
values expression supports this. The expression arguments are arbitrary Scheme
expressions that are evaluated at run time and returned in a vector. The values
expression always succeeds and never modifies the internal pointer of the parser buffer.

discard-matched [parser expression]
The discard-matched expression always succeeds, returning a vector of zero ele-
ments. In all other respects it is identical to the discard-matched expression in the
matcher language.

Next there are several combinator expressions. Parameters named pexp are arbitrary
expressions in the parser language. The first few combinators are direct equivalents of those
in the matcher language.

seq pexp ... [parser expression]
The seq expression parses each of the pexp operands in order. If all of the pexp
operands successfully match, the result is the concatenation of their values (by
vector-append).

alt pexp ... [parser expression]
The alt expression attempts to parse each pexp operand in order from left to right.
The first one that successfully parses produces the result for the entire alt expression.

Like the alt expression in the matcher language, this expression participates in back-
tracking.

* pexp [parser expression|
The * expression parses zero or more occurrences of pexp. The results of the parsed
occurrences are concatenated together (by vector-append) to produce the expres-
sion’s result.

Like the * expression in the matcher language, this expression participates in back-
tracking.
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+ pexp [parser expression]
The * expression parses one or more occurrences of pexp. It is equivalent to

(seq pexp (* pexp))

? pexp [parser expression|
The * expression parses zero or one occurrences of pexp. It is equivalent to

(alt pexp (seq))

The next three expressions do not have equivalents in the matcher language. Each
accepts a single pexp argument, which is parsed in the usual way. These expressions perform
transformations on the returned values of a successful match.

transform expression pexp [parser expression]
The transform expression performs an arbitrary transformation of the values re-
turned by parsing pexp. Expression is a Scheme expression that must evaluate to a
procedure at run time. If pexp is successfully parsed, the procedure is called with
the vector of values as its argument, and must return a vector or #£f. If it returns
a vector, the parse is successful, and those are the resulting values. If it returns #f,
the parse fails and the internal pointer of the parser buffer is returned to what it was
before pexp was parsed.

For example:

(transform (lambda (v) (if (= O (vector-length v)) #f v)) ...)

encapsulate expression pexp [parser expression]
The encapsulate expression transforms the values returned by parsing pexp into a
single value. Expression is a Scheme expression that must evaluate to a procedure
at run time. If pexp is successfully parsed, the procedure is called with the vector
of values as its argument, and may return any Scheme object. The result of the
encapsulate expression is a vector of length one containing that object. (And con-
sequently encapsulate doesn’t change the success or failure of pexp, only its value.)

For example:

(encapsulate vector->list ...)

map expression pexp [parser expression|
The map expression performs a per-element transform on the values returned by pars-
ing pexp. Expression is a Scheme expression that must evaluate to a procedure at run
time. If pexp is successfully parsed, the procedure is mapped (by vector-map) over
the values returned from the parse. The mapped values are returned as the result of
the map expression. (And consequently map doesn’t change the success or failure of
pexp, nor the number of values returned.)

For example:

(map string->symbol ...)

Finally, as in the matcher language, we have sexp and with-pointer to support em-
bedding Scheme code in the parser.
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Sexp expression [parser expression]
The sexp expression allows arbitrary Scheme code to be embedded inside a parser.
The expression operand must evaluate to a parser procedure at run time; the proce-
dure is called to parse the parser buffer. This is the parser-language equivalent of the
sexp expression in the matcher language.

The case in which expression is a symbol is so common that it has an abbreviation:
‘(sexp symbol)’ may be abbreviated as just symbol.

with-pointer identifier pexp [parser expression|
The with-pointer expression fetches the parser buffer’s internal pointer (using get-
parser-buffer-pointer), binds it to identifier, and then parses the pattern specified
by pexp. Identifier must be a symbol. This is the parser-language equivalent of the
with-pointer expression in the matcher language.

14.11.3 Parser-language Macros

The parser and matcher languages provide a macro facility so that common patterns can
be abstracted. The macro facility allows new expression types to be independently defined
in the two languages. The macros are defined in hierarchically organized tables, so that
different applications can have private macro bindings.

define-*matcher-macro formals expression [special form)]

define-*parser-macro formals expression [special form]
These special forms are used to define macros in the matcher and parser language,
respectively. Formals is like the formals list of a define special form, and expression
is a Scheme expression.

If formals is a list (or improper list) of symbols, the first symbol in the list is the name
of the macro, and the remaining symbols are interpreted as the formals of a lambda
expression. A lambda expression is formed by combining the latter formals with
the expression, and this lambda expression, when evaluated, becomes the expander.
The defined macro accepts the same number of operands as the expander. A macro
instance is expanded by applying the expander to the list of operands; the result of
the application is interpreted as a replacement expression for the macro instance.

If formals is a symbol, it is the name of the macro. In this case, the expander is
a procedure of no arguments whose body is expression. When the formals symbol
appears by itself as an expression in the language, the expander is called with no
arguments, and the result is interpreted as a replacement expression for the symbol.

define-*matcher-expander identifier expander [procedure]

define-*parser-expander identifier expander [procedure]
These procedures provide a procedural interface to the macro-definition mechanism.
Identifier must be a symbol, and expander must be an expander procedure, as defined
above. Instances of the define-*matcher-macro and def ine-*parser-macro special
forms expand into calls to these procedures.

The remaining procedures define the interface to the parser-macros table abstraction.
Each parser-macro table has a separate binding space for macros in the matcher and parser
languages. However, the table inherits bindings from one specified table; it’s not possible
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to inherit matcher-language bindings from one table and parser-language bindings from
another.

make-parser-macros parent-table [procedure]
Create and return a new parser-macro table that inherits from parent-table. Parent-
table must be either a parser-macro table, or #f; usually it is specified as the value
of global-parser-macros.

parser-macros? object [procedure]
This is a predicate for parser-macro tables.

global-parser-macros [procedure]
Return the global parser-macro table. This table is predefined and contains all of the
bindings documented here.

There is a “current” table at all times, and macro definitions are always placed in this
table. By default, the current table is the global macro table, but the following procedures
allow this to be changed.

current-parser-macros [procedure]
Return the current parser-macro table.

set-current-parser-macros! table [procedure]
Change the current parser-macro table to table, which must satisfy parser-macros?.

with-current-parser-macros table thunk [procedure]
Bind the current parser-macro table to table, call thunk with no arguments, then
restore the original table binding. The value returned by thunk is the returned as the
value of this procedure. Table must satisfy parser-macros?, and thunk must be a
procedure of no arguments.

14.12 XML Support

MIT/GNU Scheme provides a simple non-validating XML parser. This parser is believed
to be conformant with XML 1.0. It passes all of the tests in the "xmltest" directory of
the XML conformance tests (dated 2001-03-15). The parser supports XML namespaces; it
doesn’t support external document type declarations (DTDs), and it doesn’t yet support
XML 1.1. The output of the parser is a record tree that closely reflects the structure of the
XML document.

MIT/GNU Scheme also provides support for writing an XML record tree to an output
port. There is no guarantee that parsing an XML document and writing it back out will
make a verbatim copy of the document. The output will be semantically identical but may
have small syntactic differences. For example, entities are substituted during the parsing
process.

The purpose of the XML support is to provide a mechanism for reading and writing
simple XML documents. In the future this support may be further developed to support a
standard interface such as DOM or SAX.

The XML support is a run-time-loadable option; to use it, execute

(Load-option ’xml)
once before running any code that uses it.
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14.12.1 XML Input

The primary entry point for the XML parser is read-xml, which reads characters from a
port and returns an XML document record. The character coding of the input is determined
by reading some of the input stream and looking for a byte order mark and/or an encoding
in the XML declaration. We support all ISO 8859 codings, as well as UTF-8, UTF-16, and
UTF-32.

When an XHTML document is read, the parser provides entity definitions for all of the
named XHTML characters; for example, it defines ‘&nbsp;’ and ‘&copy;’. In order for a
document to be recognized as XHTML, it must contain an XHTML DTD, such as this:

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtmll-strict.dtd">

At present the parser recognizes XHTML Strict 1.0 and XHTML 1.1 documents.

read-xml port [pi-handlers] [procedure]
Read an XML document from port and return the corresponding XML document
record.

Pi-handlers, if specified, must be an association list. Each element of pi-handlers must
be a list of two elements: a symbol and a procedure. When the parser encounters
processing instructions with a name that appears in pi-handlers, the procedure is
called with one argument, which is the text of the processing instructions. The
procedure must return a list of XML structure records that are legal for the context
of the processing instructions.

read-xml-file pathname [pi-handlers] [procedure]
This convenience procedure simplifies reading XML from a file. It is roughly equivalent
to

(define (read-xml-file pathname #!optional pi-handlers)
(call-with-input-file pathname
(lambda (port)
(read-xml port pi-handlers))))

string->xml string [start [end [pi-handlers]]] [procedure]
This convenience procedure simplifies reading XML from a string. The string argu-
ment may be a string or a wide string. It is roughly equivalent to

(define (string->xzml string #!optional start end pi-handlers)
(read-xml (open-input-string string start end)
pi-handlers))

14.12.2 XML Output

The following procedures serialize XML document records into character sequences. All are
virtually identical except for the way that the character sequence is represented.

Each procedure will accept either an xml-document record or any of the other XML
record types. This makes it possible to write fragments of XML documents, although you
should keep in mind that such fragments aren’t documents and won’t generally be accepted
by any XML parser.
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If the xml being written is an xml-document record, the procedures write-xml and
write-xml-file will look for a contained xml-declaration record and its encoding at-
tribute. If the encoding is a supported value, the output will be encoded as specified;
otherwise it will be encoded as UTF-8.

When an XHTML document record is written, named XHTML characters are trans-
lated into their corresponding entities. For example, the character ‘#\U+00AQ’ is written as
‘gnbsp;’. In order for an XML document record to be recognized as XHTML, it must have
a DTD record that satisfies the predicate html-dtd?.

write-xml xml port [procedure]
Write xml to port. Note that character encoding will only be done if port supports
it.

write-xml-file xml pathname [procedure]

Write xml to the file specified by pathname. Roughly equivalent to

(define (write-xml-file xml pathname)
(call-with-output-file pathname
(lambda (port)
(write-xml xml port))))

xml->wide-string xml [procedure]
Convert xml to a wide string. No character encoding is used, since wide strings can
represent all characters without encoding. Roughly equivalent to

(define (xml->wide-string xml)
(call-with-wide-output-string
(lambda (port)
(write-xml xml port))))

xml->string xml [procedure]
Convert xml to a character string encoded as UTF-8. Roughly equivalent to

(define (xml->string xml)
(wide-string->utf8-string (xml->wide-string xml)))

14.12.3 XML Names

MIT/GNU Scheme implements XML names in a slightly complex way. Unfortunately, this
complexity is a direct consequence of the definition of XML names rather than a mis-feature
of this implementation.

The reason that XML names are complex is that XML namespace support, which was
added after XML was standardized, is not very well integrated with the core XML definition.
The most obvious problem is that names can’t have associated namespaces when they ap-
pear in the DTD of a document, even if the body of the document uses them. Consequently,
it must be possible to compare non-associated names with associated names.

An XML name consists of two parts: the gname, which is a symbol, possibly including a
namespace prefix; and the Uniform Resource Identifier (URI), which identifies an optional
namespace.
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make-xml-name gname uri [procedure]
Creates and returns an XML name. Qname must be a symbol whose name satis-
fies string-is-xml-name?. Uri must satisfy either absolute-uri? or null-xml-
namespace-uri?. The returned value is an XML name that satisfies xml-name?.

If uri is the null namespace (satisfies null-xml-namespace-uri?), the returned value
is a symbol equivalent to gname. This means that an ordinary symbol can be used
as an XML name when there is no namespace associated with the name.

For convenience, gname may be a string, in which case it is converted to a symbol
using make-xml-gname.

For convenience, uri may be any object that —>uri is able to convert to a URI record,
provided the resulting URI meets the above restrictions.

xml-name? object [procedure]
Returns #t if object is an XML name, and #f otherwise.

xml-name->symbol xml-name [procedure]
Returns the symbol part of xml-name.

xml-name-uri xml-name [procedure]
Returns the URI of xml-name. The result always satisfies absolute-uri? or null-
xml-namespace-uri?.

xml-name-string xml-name [procedure]
Returns the gname of xml-name as a string. Equivalent to

(symbol-name (xml-name->symbol xml-name))

The next two procedures get the prefix and local part of an XML name, respectively.
The prefix of an XML name is the part of the qname to the left of the colon, while the local
part is the part of the qname to the right of the colon. If there is no colon in the gname,
the local part is the entire qname, and the prefix is the null symbol (i.e. ‘| |’).

xml-name-prefix xml-name [procedure]
Returns the prefix of xml-name as a symbol.

xml-name-local xml-name [procedure]
Returns the local part of xml-name as a symbol.

The next procedure compares two XML names for equality. The rules for equality are
slightly complex, in order to permit comparing names in the DTD with names in the doc-
ument body. So, if both of the names have non-null namespace URIs, then the names are
equal if and only if their local parts are equal and their URIs are equal. (The prefixes of
the names are not considered in this case.) Otherwise, the names are equal if and only if
their qnames are equal.

xml-name=? xml-name-1 xml-name-2 [procedure]
Returns #t if xml-name-1 and xml-name-2 are the same name, and #f otherwise.

These next procedures define the data abstraction for qnames. While gqnames are repre-
sented as symbols, only symbols whose names satisfy string-is-xml-name? are gqnames.
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make-xml-qname string [procedure]
String must satisfy string-is-xml-name?. Returns the gqname corresponding to
string (the symbol whose name is string).

xml-qname? object [procedure]
Returns #t if object is a qname, otherwise returns #f£.

xml-qname-prefix gname [procedure]
Returns the prefix of gname as a symbol.

xml-gname-local gname [procedure]
Returns the local part of gname as a symbol.

The prefix of a gname or XML name may be absent if there is no colon in the name. The
absent, or null, prefix is abstracted by the next two procedures. Note that the null prefix
is a symbol, just like non-null prefixes.

null-xml-name-prefix [procedure]
Returns the null prefix.

null-xml-name-prefix? object [procedure]
Returns #t if object is the null prefix, otherwise returns #f.

The namespace URI of an XML name may be null, meaning that there is no namespace
associated with the name. This namespace is represented by a relative URI record whose
string representation is the null string.

null-xml-namespace-uri [procedure]
Returns the null namespace URI record.

null-xml-namespace-uri? object [procedure]
Returns #t if object is the null namespace URI record, otherwise returns #f.

The following values are two distinguished URI records.

xml-uri [variable]
xml-uri is the URI reserved for use by the XML recommendation. This URI must be
used with the ‘xml’ prefix.

xmlns-uri [variable]
xmlns-uri is the URI reserved for use by the XML namespace recommendation. This
URI must be used with the ‘xmlns’ prefix.

make-xml-nmtoken string [procedure]
xml-nmtoken? object [procedure]
string-is-xml-name? string [procedure]
string-is-xml-nmtoken? string [procedure]
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14.12.4 XML Structure

The output from the XML parser and the input to the XML output procedure is a complex
data structure composed of a hierarchy of typed components. Each component is a record
whose fields correspond to parts of the XML structure that the record represents. There
are no special operations on these records; each is a tuple with named subparts. The root
record type is xml-document, which represents a complete XML document.

Each record type type has the following associated bindings:

<type> is a variable bound to the record-type descriptor for type. The record-type
descriptor may be used as a specializer in SOS method definitions, which greatly
simplifies code to dispatch on these types.

type? is a predicate for records of type type. It accepts one argument, which can be
any object, and returns #t if the object is a record of this type, or #f otherwise.

make-type
is a constructor for records of type type. It accepts one argument for each field
of type, in the same order that they are written in the type description, and
returns a newly-allocated record of that type.

type-field
is an accessor procedure for the field field in records of type type. It accepts
one argument, which must be a record of that type, and returns the contents
of the corresponding field in the record.

set-type-field!
is a modifier procedure for the field field in records of type type. It accepts two
arguments: the first must be a record of that type, and the second is a new
value for the corresponding field. The record’s field is modified to have the new
value.

xml-document declaration misc-1 dtd misc-2 root misc-3 [record type]
The xml-document record is the top-level record representing a complete XML doc-
ument. Declaration is either an xml-declaration object or #f. Dtd is either an
xml-dtd object or #f. Root is an xml-element object. Misc-1, misc-2, and misc-3
are lists of miscellaneous items; a miscellaneous item is either an xml-comment object,
an xml-processing-instructions object, or a string of whitespace.

xml-declaration version encoding standalone [record type]
The xml-declaration record represents the ‘<?7xml ... 7>’ declaration that option-
ally appears at the beginning of an XML document. Version is a version string,
typically "1.0". Encoding is either an encoding string or #f. Standalone is either
"yes", "no", or #f.

xml-element name attributes contents [record type]
The xml-element record represents general XML elements; the bulk of a typical XML
document consists of these elements. Name is the element name (an XML name).
Attributes is a list of XML attribute objects. Contents is a list of the contents of the
element. Each element of this list is either a string, an xml-element record or an
xml-processing-instructions record.
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xml-processing-instructions name text [record type]
The xml-processing-instructions record represents processing instructions, which
have the form ‘<?7name ... 7>’. These instructions are intended to contain non-XML
data that will be processed by another interpreter; for example they might contain
PHP programs. The name field is the processor name (a symbol), and the text field
is the body of the instructions (a string).

xml-dtd root external internal [record type]
The xm1-dtd record represents a document type declaration. The root field is an XML
name for the root element of the document. External is either an xml-external-id
record or #f. Internal is a list of DTD element records (e.g. xml-!element, xml-
lattlist, etc.).

The remaining record types are valid only within a DTD.

xml-!element name content-type [record type]
The xml-!element record represents an element-type declaration. Name is the XML
name of the type being declared (a symbol). Content-type describes the type and
can have several different values, as follows:

e The XML names ‘EMPTY’ and ‘ANY’ correspond to the XML keywords of the same

name.
e A list ‘(MIX type ...)’ corresponds to the ‘(#PCDATA | type | ...)’ syntax.
xml-'lattlist name definitions [record type]

The xml-'attlist record represents an attribute-list declaration. Name is the XML
name of the type for which attributes are being declared (a symbol). Definitions is
a list of attribute definitions, each of which is a list of three elements (name type
default). Name is an XML name for the name of the attribute (a symbol). Type
describes the attribute type, and can have one of the following values:

e The XML names ‘CDATA’, ‘IDREFS’, ‘IDREF’, ‘ID’, ‘ENTITY’, ‘ENTITIES’,
‘NMTOKENS’, and ‘NMTOKEN’ correspond to the XML keywords of the same names.

e A list ‘(NOTATION namel name2 ...)’ corresponds to the ‘NOTATION (namel |

name2 ...)’ syntax.
e A list ‘(ENUMERATED namel name2 ...)’ corresponds to the ‘(namel | name2
...)  syntax.

Default describes the default value for the attribute, and can have one of the following
values:
e The XML names ‘#REQUIRED’ and ‘#IMPLIED’ correspond to the XML keywords
of the same names.
o A list ‘(#FIXED value)’ corresponds to the ‘#FIXED "value"’ syntax. Value is
represented as a string.
e A list ‘(DEFAULT value)’ corresponds to the ‘"value"’ syntax. Value is repre-
sented as a string.

xml-lentity name value [record type]
The xml-!entity record represents a general entity declaration. Name is an XML
name for the entity. Value is the entity’s value, either a string or an xml-external-id
record.
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xml-parameter-!entity name value [record type]
The xml-parameter-!entity record represents a parameter entity declaration. Name
is an XML name for the entity. Value is the entity’s value, either a string or an xml-
external-id record.

xml-unparsed-!entity name id notation [record type]
The xml-unparsed-!entity record represents an unparsed entity declaration. Name
is an XML name for the entity. Id is an xml-external-id record. Notation is an
XML name for the notation.

xml-!notation name id [record type]
The xml-'notation record represents a notation declaration. Name is an XML name
for the notation. Id is an xml-external-id record.

xml-external-id id uri [record type]
The xml-external-id record is a reference to an external DTD. This reference con-
sists of two parts: id is a public ID literal, corresponding to the ‘PUBLIC’ keyword,
while uri is a system literal, corresponding to the ‘SYSTEM’ keyword. Either or both
may be present, depending on the context. Id is represented as a string, while uri is
represented as a URI record.
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15 Operating-System Interface

The Scheme standard provides a simple mechanism for reading and writing files: file ports.
MIT/GNU Scheme provides additional tools for dealing with other aspects of the operating
system:
e Pathnames are a reasonably operating-system independent tool for manipulating the
component parts of file names. This can be useful for implementing defaulting of file
name components.

e Control over the current working directory: the place in the file system from which
relative file names are interpreted.

e Procedures that rename, copy, delete, and test for the existence of files. Also, proce-
dures that return detailed information about a particular file, such as its type (directory,
link, etc.) or length.

e Procedures for reading the contents of a directory.

e Procedures for obtaining times in various formats, converting between the formats, and
generating human-readable time strings.

e Procedures to run other programs as subprocesses of Scheme, to read their output, and
write input to them.

e A means to determine the operating system Scheme is running under.

15.1 Pathnames

MIT/GNU Scheme programs need to use names to designate files. The main difficulty in
dealing with names of files is that different file systems have different naming formats for
files. For example, here is a table of several file systems (actually, operating systems that
provide file systems) and what equivalent file names might look like for each one:

System File Name

TOPS-20 <LISPIO>FORMAT.FASL.13
TOPS-10 FORMAT .FAS[1,4]

ITS LISPIO;FORMAT FASL
MULTICS >udd>LispI0>format.fasl
TENEX <LISPIO>FORMAT.FASL;13
VAX/VMS [LISPIO]FORMAT.FAS;13
UNIX /usr/lispio/format.fasl
DOS C:\USR\LISPIO\FORMAT.FAS

It would be impossible for each program that deals with file names to know about
each different file name format that exists; a new operating system to which Scheme was
ported might use a format different from any of its predecessors. Therefore, MIT/GNU
Scheme provides two ways to represent file names: filenames (also called namestrings),
which are strings in the implementation-dependent form customary for the file system,
and pathnames, which are special abstract data objects that represent file names in an
implementation-independent way. Procedures are provided to convert between these two
representations, and all manipulations of files can be expressed in machine-independent
terms by using pathnames.
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In order to allow MIT/GNU Scheme programs to operate in a network environment that
may have more than one kind of file system, the pathname facility allows a file name to
specify which file system is to be used. In this context, each file system is called a host, in
keeping with the usual networking terminology.*

Note that the examples given in this section are specific to unix pathnames. Pathnames
for other operating systems have different external representations.

15.1.1 Filenames and Pathnames

Pathname objects are usually created by parsing filenames (character strings) into compo-
nent parts. MIT/GNU Scheme provides operations that convert filenames into pathnames
and vice versa.

—->pathname object [procedure]
Returns a pathname that is the equivalent of object. Object must be a pathname or
a string. If object is a pathname, it is returned. If object is a string, this procedure
returns the pathname that corresponds to the string; in this case it is equivalent to
(parse-namestring object #f #f).

(->pathname "foo") = #[pathname 65 "foo"]
(->pathname "/usr/morris") = #[pathname 66 "/usr/morris"]

parse-namestring thing [host [defaults]] [procedure]
This turns thing into a pathname. Thing must be a pathname or a string. If thing is
a pathname, it is returned. If thing is a string, this procedure returns the pathname
that corresponds to the string, parsed according to the syntax of the file system
specified by host.

This procedure does not do defaulting of pathname components.

The optional arguments are used to determine what syntax should be used for parsing
the string. In general this is only really useful if your implementation of MIT/GNU
Scheme supports more than one file system, otherwise you would use ->pathname.
If given, host must be a host object or #f, and defaults must be a pathname. Host
specifies the syntax used to parse the string. If host is not given or #f, the host
component from defaults is used instead; if defaults is not given, the host component
from *default-pathname-defaults* is used.

->namestring pathname [procedure]
->namestring returns a newly allocated string that is the filename corresponding to
pathname.

(->namestring (->pathname "/usr/morris/minor.van"))
= "/usr/morris/minor.van"

pathname-simplify pathname [procedure]
Returns a pathname that locates the same file or directory as pathname, but is in some
sense simpler. Note that pathname-simplify might not always be able to simplify the
pathname, e.g. on unix with symbolic links the directory ‘/usr/morris/. ./’ need not
be the same as ‘/usr/’. In cases of uncertainty the behavior is conservative, returning
the original or a partly simplified pathname.

1 This introduction is adapted from Common Lisp, The Language, second edition, section 23.1.
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(pathname-simplify "/usr/morris/../morris/dance")
= #[pathname "/usr/morris/dance"]

15.1.2 Components of Pathnames

A pathname object always has six components, described below. These components are the
common interface that allows programs to work the same way with different file systems;
the mapping of the pathname components into the concepts peculiar to each file system is
taken care of by the Scheme implementation.

host The name of the file system on which the file resides. In the current implemen-
tation, this component is always a host object that is filled in automatically by
the runtime system. When specifying the host component, use either #f or the
value of the variable local-host.

device Corresponds to the “device” or “file structure” concept in many host file sys-
tems: the name of a (logical or physical) device containing files. This component
is the drive letter for PC file systems, and is unused for unix file systems.

directory  Corresponds to the “directory” concept in many host file systems: the name of
a group of related files (typically those belonging to a single user or project).
This component is always used for all file systems.

name The name of a group of files that can be thought of as conceptually the “same”
file. This component is always used for all file systems.

type Corresponds to the “filetype” or “extension” concept in many host file systems.
This says what kind of file this is. Files with the same name but different type
are usually related in some specific way, such as one being a source file, another
the compiled form of that source, and a third the listing of error messages
from the compiler. This component is currently used for all file systems, and is
formed by taking the characters that follow the last dot in the namestring.

version Corresponds to the “version number” concept in many host file systems. Typ-
ically this is a number that is incremented every time the file is modified. This
component is currently unused for all file systems.

Note that a pathname is not necessarily the name of a specific file. Rather, it is a
specification (possibly only a partial specification) of how to access a file. A pathname need
not correspond to any file that actually exists, and more than one pathname can refer to the
same file. For example, the pathname with a version of newest may refer to the same file
as a pathname with the same components except a certain number as the version. Indeed,
a pathname with version newest may refer to different files as time passes, because the
meaning of such a pathname depends on the state of the file system. In file systems with
such facilities as “links”, multiple file names, logical devices, and so on, two pathnames
that look quite different may turn out to address the same file. To access a file given a
pathname, one must do a file-system operation such as open-input-file.

Two important operations involving pathnames are parsing and merging. Parsing is the
conversion of a filename (which might be something supplied interactively by the users
when asked to supply the name of a file) into a pathname object. This operation is
implementation-dependent, because the format of filenames is implementation-dependent.
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Merging takes a pathname with missing components and supplies values for those compo-
nents from a source of default values.

Not all of the components of a pathname need to be specified. If a component of a
pathname is missing, its value is #f. Before the file system interface can do anything
interesting with a file, such as opening the file, all the missing components of a pathname
must be filled in. Pathnames with missing components are used internally for various
purposes; in particular, parsing a namestring that does not specify certain components will
result in a pathname with missing components.

Any component of a pathname may be the symbol unspecific, meaning that the com-
ponent simply does not exist, for file systems in which such a value makes no sense. For
example, unix, Windows, and OS/2 file systems usually do not support version numbers,
so the version component for such a host might be unspecific.?

In addition to #f and unspecific, the components of a pathname may take on the
following meaningful values:

host An implementation-defined type which may be tested for using the host? pred-
icate.
device On systems that support this component (Windows and OS/2), it may be

specified as a string containing a single alphabetic character, for which the
alphabetic case is ignored.

directory A non-empty list, which represents a directory path: a sequence of directories,
each of which has a name in the previous directory, the last of which is the
directory specified by the entire path. Each element in such a path specifies
the name of the directory relative to the directory specified by the elements
to its left. The first element of the list is either the symbol absolute or the
symbol relative. If the first element in the list is the symbol absolute, then
the directory component (and subsequently the pathname) is absolute; the first
component in the sequence is to be found at the “root” of the file system. If
the directory is relative then the first component is to be found in some as yet
unspecified directory; typically this is later specified to be the current working
directory.

Aside from absolute and relative, which may only appear as the first element
of the list, each subsequent element in the list is either: a string, which is a
literal component; the symbol wild, meaningful only when used in conjunction
with the directory reader; or the symbol up, meaning the next directory is the
“parent” of the previous one. up corresponds to the file ‘..’ in unix and PC
file systems.

(The following note does not refer to any file system currently supported by
MIT/GNU Scheme, but is included for completeness.) In file systems that do
not have “hierarchical” structure, a specified directory component will always be
a list whose first element is absolute. If the system does not support directories
other than a single global directory, the list will have no other elements. If
the system supports “flat” directories, i.e. a global set of directories with no
subdirectories, then the list will contain a second element, which is either a

2 This description is adapted from Common Lisp, The Language, second edition, section 23.1.1.
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name

type

version

string or wild. In other words, a non-hierarchical file system is treated as if it
were hierarchical, but the hierarchical features are unused. This representation
is somewhat inconvenient for such file systems, but it discourages programmers
from making code depend on the lack of a file hierarchy.

A string, which is a literal component; or the symbol wild, meaningful only
when used in conjunction with the directory reader.

A string, which is a literal component; or the symbol wild, meaningful only
when used in conjunction with the directory reader.

An exact positive integer, which is a literal component; the symbol newest,
which means to choose the largest available version number for that file; the
symbol oldest, which means to choose the smallest version number; or the sym-
bol wild, meaningful only when used in conjunction with the directory reader.
In the future some other possible values may be added, e.g. installed. Note
that currently no file systems support version numbers; thus this component is
not used and should be specified as #f£.

make-pathname host device directory name type version [procedure]
Returns a pathname object whose components are the respective arguments. Each
argument must satisfy the restrictions for the corresponding component, which were
outlined above.

pathname-host pathname [ ]
pathname-device pathname [ ]
pathname-directory pathname [procedure]
[ ]
[ ]
[ ]

(make-pathname #f
#1
’ (absolute "usr" "morris")
llfooll
"scm"
#£)
= #[pathname 67 "/usr/morris/foo.scm"]

pathname-name pathname procedure
pathname-type pathname procedure
pathname-version pathname procedure
Returns a particular component of pathname.

(define x (->pathname "/usr/morris/foo.scm"))

(pathname-host x) = #[host 1]

(pathname-device x) = unspecific

(pathname-directory x) = (absolute "usr" "morris")

(pathname-name x) = "foo"

(pathname-type x) = ‘"scm"

(pathname-version x) = unspecific
pathname-new-device pathname device [procedure]
pathname-new-directory pathname directory [procedure]

pathname-new-name pathname name [procedure]
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pathname-new-type pathname type [procedure]
pathname-new-version pathname version [procedure]
Returns a new copy of pathname with the respective component replaced by the
second argument. Pathname is unchanged. Portable programs should not explicitly
replace a component with unspecific because this might not be permitted in some
situations.
(define p (->pathname "/usr/blisp/reli5"))
p
= #[pathname 71 "/usr/blisp/rellbs"]
(pathname-new-name p "rell00")
= #[pathname 72 "/usr/blisp/rel100"]
(pathname-new-directory p ’(relative "test" "morris"))
= #[pathname 73 "test/morris/rell5"]

p
= #[pathname 71 "/usr/blisp/rellbs"]
pathname-default-device pathname device [procedure]
pathname-default-directory pathname directory [procedure]
pathname-default-name pathname name [procedure]
pathname-default-type pathname type [procedure]
pathname-default-version pathname version [procedure]

These operations are similar to the pathname-new-component operations, except that
they only change the specified component if it has the value #£f in pathname.

15.1.3 Operations on Pathnames

pathname? object [procedure]
Returns #t if object is a pathname; otherwise returns #f.

pathname=? pathnamel pathname2 [procedure]
Returns #t if pathnamel is equivalent to pathname2; otherwise returns #f. Path-
names are equivalent if all of their components are equivalent, hence two pathnames
that are equivalent must identify the same file or equivalent partial pathnames. How-
ever, the converse is not true: non-equivalent pathnames may specify the same file
(e.g. via absolute and relative directory components), and pathnames that specify no
file at all (e.g. name and directory components unspecified) may be equivalent.

pathname-absolute? pathname [procedure]
Returns #t if pathname is an absolute rather than relative pathname object; otherwise
returns #f. Specifically, this procedure returns #t when the directory component of
pathname is a list starting with the symbol absolute, and returns #f in all other
cases. All pathnames are either absolute or relative, so if this procedure returns #f,
the argument is a relative pathname.

directory-pathname? pathname [procedure]
Returns #t if pathname has only directory components and no file components. This
is roughly equivalent to

(define (directory-pathname? pathname)
(string-null? (file-namestring pathname)))
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except that it is faster.

pathname-wild? pathname [procedure]
Returns #t if pathname contains any wildcard components; otherwise returns #f£.

merge-pathnames pathname [defaults [default-version] [procedure]
Returns a pathname whose components are obtained by combining those of pathname
and defaults. Defaults defaults to the value of *default-pathname-defaults* and
default-version defaults to newest.

The pathnames are combined by components: if pathname has a non-missing com-
ponent, that is the resulting component, otherwise the component from defaults is
used. The default version can be #£f to preserve the information that the component
was missing from pathname. The directory component is handled specially: if both
pathnames have directory components that are lists, and the directory component
from pathname is relative (i.e. starts with relative), then the resulting directory
component is formed by appending pathname’s component to defaults’s component.
For example:

(define pathl (->pathname "scheme/foo.scm"))
(define path2 (->pathname "/usr/morris"))
pathl

= #[pathname 74 "scheme/foo.scm"]
path2

= #[pathname 75 "/usr/morris"]
(merge-pathnames pathl path2)

= #[pathname 76 "/usr/scheme/foo.scm"]
(merge-pathnames path2 pathl)

= #[pathname 77 "/usr/morris.scm"]

The merging rules for the version are more complex and depend on whether pathname
specifies a name. If pathname does not specify a name, then the version, if not
provided, will come from defaults. However, if pathname does specify a name then
the version is not affected by defaults. The reason is that the version “belongs to”
some other file name and is unlikely to have anything to do with the new one. Finally,
if this process leaves the version missing, then default-version is used.

The net effect is that if the user supplies just a name, then the host, device, directory
and type will come from defaults, but the version will come from default-version. If
the user supplies nothing, or just a directory, the name, type and version will come
over from defaults together.

*default-pathname-defaults* [variable]
This is the default pathname-defaults pathname; if any pathname primitive that
needs a set of defaults is not given one, it uses this one. set-working-directory-
pathname! sets this variable to a new value, computed by merging the new working
directory with the variable’s old value.

pathname-default pathname device directory name type version [procedure]
This procedure defaults all of the components of pathname simultaneously. It could
have been defined by:
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(define (pathname-default pathname
device directory name type version)
(make-pathname (pathname-host pathname)
(or (pathname-device pathname) device)
(or (pathname-directory pathname) directory)
(or (pathname-name pathname) name)
(or (pathname-type pathname) type)
(or (pathname-version pathname) version)))

file-namestring pathname [procedure]
directory-namestring pathname [procedure]
host-namestring pathname [procedure]
enough-namestring pathname [defaults] [procedure]

These procedures return a string corresponding to a subset of the pathname informa-
tion. file-namestring returns a string representing just the name, type and version
components of pathname; the result of directory-namestring represents just the
host, device, and directory components; and host-namestring returns a string for
just the host portion.

enough-namestring takes another argument, defaults. It returns an abbreviated
namestring that is just sufficient to identify the file named by pathname when con-
sidered relative to the defaults (which defaults to *default-pathname-defaults*).

(file-namestring "/usr/morris/minor.van")
= "minor.van"

(directory-namestring "/usr/morris/minor.van")
= "/usr/morris/"

(enough-namestring "/usr/morris/men")

= '"men" ;perhaps
file-pathname pathname [procedure]
directory-pathname pathname [procedure]
enough-pathname pathname [defaults] [procedure]

These procedures return a pathname corresponding to a subset of the pathname in-
formation. file-pathname returns a pathname with just the name, type and version
components of pathname. The result of directory-pathname is a pathname con-
taining the host, device and directory components of pathname.

enough-pathname takes another argument, defaults. It returns an abbreviated path-
name that is just sufficient to identify the file named by pathname when considered
relative to the defaults (which defaults to *default-pathname-defaultsx).

These procedures are similar to file-namestring, directory-namestring and
enough-namestring, but they return pathnames instead of strings.

directory-pathname-as-file pathname [procedure]
Returns a pathname that is equivalent to pathname, but in which the directory com-
ponent is represented as a file. The last directory is removed from the directory
component and converted into name and type components. This is the inverse oper-
ation to pathname-as-directory.
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(directory-pathname-as-file (->pathname "/usr/blisp/"))
= #[pathname "/usr/blisp"]

pathname-as-directory pathname [procedure]
Returns a pathname that is equivalent to pathname, but in which any file components
have been converted to a directory component. If pathname does not have name,
type, or version components, it is returned without modification. Otherwise, these
file components are converted into a string, and the string is added to the end of the
list of directory components. This is the inverse operation to directory-pathname-
as—-file.

(pathname-as-directory (->pathname "/usr/blisp/rel5"))
= #[pathname "/usr/blisp/rel5/"]

15.1.4 Miscellaneous Pathname Procedures

This section gives some standard operations on host objects, and some procedures that
return some useful pathnames.

local-host [variable]
This variable has as its value the host object that describes the local host’s file system.

host? object [procedure]
Returns #t if object is a pathname host; otherwise returns #£.

host=7 hostl host2 [procedure]
Returns #t if hostl and host2 denote the same pathname host; otherwise returns #£.

init-file-pathname [host] [procedure]
Returns a pathname for the user’s initialization file on host. The host argument
defaults to the value of local-host. If the initialization file does not exist this
procedure returns #f.

Under unix, the init file is called ‘.scheme.init’; under Windows and OS/2, the init
file is called ‘scheme.ini’. In either case, it is located in the user’s home directory,
which is computed by user-homedir-pathname.

user-homedir-pathname [host] [procedure]
Returns a pathname for the user’s “home directory” on host. The host argument
defaults to the value of local-host. The concept of a “home directory” is itself
somewhat implementation-dependent, but it should be the place where the user keeps
personal files, such as initialization files and mail.

Under unix, the user’s home directory is specified by the HOME environment variable.
If this variable is undefined, the user name is computed using the getlogin system
call, or if that fails, the getuid system call. The resulting user name is passed to the
getpwnam system call to obtain the home directory.

Under OS/2, several heuristics are tried to find the user’s home directory. First,
if the environment variable HOME is defined, that is the home directory. If HOME
is undefined, but the USERDIR and USER environment variables are defined and the
directory ‘%4USERDIR%\%USERY’ exists, then it is used. Failing that, if the directory
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‘%AUSERY,’ exists on the OS/2 system drive, then it is used. As a last resort, the OS/2
system drive is the home directory.

Like OS/2, the Windows implementation uses heuristics based on environment vari-
ables. The user’s home directory is computed by examining several environment
variables, in the following order:

e HOMEDRIVE and HOMEPATH are both defined and ‘/;HOMEDRIVEY,;HOMEPATHY,’ is an
existing directory. (These variables are automatically defined by Windows NT.)

e HOME is defined and ‘%HOMEY,’ is an existing directory.

e USERDIR and USERNAME are defined and ‘4USERDIRY%\,USERNAMEY’ is an existing
directory.

e USERDIR and USER are defined and ‘4USERDIR}\%USERY, is an existing directory.

e USERNAME is defined and ‘/4USERNAMEY,’ is an existing directory on the Windows
system drive.

e USER is defined and ‘/4USERY’ is an existing directory on the Windows system
drive.

e Finally, if all else fails, the Windows system drive is used as the home directory.

system-library-pathname pathname [procedure]
Locates pathname in MIT/GNU Scheme’s system library directory. An error of type
condition-type:file-operation-error is signalled if pathname cannot be located
on the library search path.

(system-library-pathname "compiler.com")
= #[pathname 45 "/usr/local/lib/mit-scheme/compiler.com"]

system-library-directory-pathname pathname [procedure]
Locates the pathname of an MIT/GNU Scheme system library directory. An error
of type condition-type:file-operation-error is signalled if pathname cannot be
located on the library search path.

(system-library-directory-pathname "options")
= #[pathname 44 "/usr/local/lib/mit-scheme/options/"]

15.2 Working Directory

When MIT/GNU Scheme is started, the current working directory (or simply, working
directory) is initialized in an operating-system dependent manner; usually, it is the directory
in which Scheme was invoked. The working directory can be determined from within Scheme
by calling the pwd procedure, and changed by calling the cd procedure. Each REP loop has
its own working directory, and inferior REP loops initialize their working directory from the
value in effect in their superior at the time they are created.

working-directory-pathname [procedure]

pwd [procedure]
Returns the current working directory as a pathname that has no name, type, or
version components, just host, device, and directory components. pwd is an alias for
working-directory-pathname; the long name is intended for programs and the short
name for interactive use.
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set-working-directory-pathname! filename [procedure]

cd filename [procedure]
Makes filename the current working directory and returns the new current working
directory as a pathname. Filename is coerced to a pathname using pathname-as-
directory. cd is an alias for set-working-directory-pathname!; the long name is
intended for programs and the short name for interactive use.

Additionally, set-working-directory-pathname! modifies the value of
xdefault-pathname-defaults* by merging the new working directory into it.

When this procedure is executed in the top-level REP loop, it changes the working
directory of the running Scheme executable.

(set-working-directory-pathname! "/usr/morris/blisp")
= #[pathname "/usr/morris/blisp/"]
(set-working-directory-pathname! "~")
= #[pathname "/usr/morris/"]

This procedure signals an error if filename does not refer to an existing directory.

If filename describes a relative rather than absolute pathname, this procedure in-
terprets it as relative to the current working directory, before changing the working
directory.

(working-directory-pathname)
= #[pathname "/usr/morris/"]
(set-working-directory-pathname! "foo")
= #[pathname "/usr/morris/foo/"]

with-working-directory-pathname filename thunk [procedure]
This procedure temporarily rebinds the current working directory to filename, in-
vokes thunk (a procedure of no arguments), then restores the previous working di-
rectory and returns the value yielded by thunk. Filename is coerced to a path-
name using pathname-as-directory. In addition to binding the working directory,
with-working-directory-pathname also binds the variable *default-pathname-
defaults*, merging the old value of that variable with the new working directory
pathname. Both bindings are performed in exactly the same way as dynamic binding
of a variable (see Section 2.3 [Dynamic Binding|, page 18).

15.3 File Manipulation

This section describes procedures that manipulate files and directories. Any of these proce-
dures can signal a number of errors for many reasons. The specifics of these errors are much
too operating-system dependent to document here. However, if such an error is signalled
by one of these procedures, it will be of type condition-type:file-operation-error.

file-exists? filename [procedure]
file-exists-direct? filename [procedure]
file-exists-indirect? filename [procedure]

These procedures return #t if filename is an existing file or directory; otherwise they
return #£. In operating systems that support symbolic links, if the file is a symbolic
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link, file-exists—-direct? tests for the existence of the link, while file-exists-
indirect? and file-exists? test for the existence of the file pointed to by the
link.

copy-file source-filename target-filename [procedure]
Makes a copy of the file named by source-filename. The copy is performed by creating
a new file called target-filename, and filling it with the same data as source-filename.

rename-file source-filename target-filename [procedure]
Changes the name of source-filename to be target-filename. In the unix implementa-
tion, this will not rename across file systems.

delete-file filename [procedure]
Deletes the file named filename.

delete-file-no-errors filename [procedure]
Like delete-file, but returns a boolean value indicating whether an error occurred
during the deletion. If no errors occurred, #t is returned. If an error of type
condition-type:file-error or condition-type:port-error is signalled, #£ is re-
turned.

hard-link-file source-filename target-filename [procedure]
Makes a hard link from source-filename to target-filename. This operation gives the
file specified by source-filename a new name, in addition to the old name.

This currently works only on unix systems. It is further restricted to work only when
source-filename and target-filename refer to names in the same file system.

soft-link-file source-filename target-filename [procedure]
Creates a new soft link called target-filename that points at the file source-filename.
(Soft links are also sometimes called symbolic links.) Note that source-filename will
be interpreted as a string (although you may specify it as a pathname object, if
you wish). The contents of this string will be stored in the file system as the soft
link. When a file operation attempts to open the link, the contents of the link are
interpreted relative to the link’s location at that time.

This currently works only on unix systems.

make-directory filename [procedure]
Creates a new directory named filename. Signals an error if filename already exists,
or if the directory cannot be created.

delete-directory filename [procedure]
Deletes the directory named filename. Signals an error if the directory does not exist,
is not a directory, or contains any files or subdirectories.

->truename filename [procedure]
This procedure attempts to discover and return the “true name” of the file associ-
ated with filename within the file system. An error of type condition-type:file-
operation-error is signalled if the appropriate file cannot be located within the file
system.
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call-with-temporary-file-pathname procedure [procedure]
Calls temporary-file-pathname to create a temporary file, then calls procedure
with one argument, the pathname referring to that file. When procedure returns, if
the temporary file still exists, it is deleted; then, the value yielded by procedure is
returned. If procedure escapes from its continuation, and the file still exists, it is
deleted.

temporary-file-pathname [directory] [procedure]
Creates a new empty temporary file and returns a pathname referring to it. The
temporary file is created with Scheme’s default permissions, so barring unusual cir-
cumstances it can be opened for input and/or output without error. The temporary
file will remain in existence until explicitly deleted. If the file still exists when the
Scheme process terminates, it will be deleted.

If directory is specified, the temporary file will be stored there. If it is not specified,
or if it is #£, the temporary file will be stored in the directory returned by temporary-
directory-pathname.

temporary-directory-pathname [procedure]
Returns the pathname of an existing directory that can be used to store temporary
files. These directory names are tried, in order, until a writeable directory is found:

e The directories specified by the environment variables TMPDIR, TEMP, or TMP.

e Under unix, the directories ‘/var/tmp’, ‘/usr/tmp’, or ‘/tmp’.

e Under OS/2 or Windows, the following directories on the system drive: ‘\temp’,
‘\tmp’, or ‘\’.

e Under OS/2 or Windows, the current directory, as specified by *default-
pathname-defaultsx*.

file-directory? filename [procedure]
Returns #t if the file named filename exists and is a directory. Otherwise returns #f.
In operating systems that support symbolic links, if filename names a symbolic link,
this examines the file linked to, not the link itself.

This is equivalent to

(eq? ’directory (file-type-indirect file